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ABSTRACT

The cost-effectiveness ratio (CER) is a measure of the monetary value of resources expended to obtain
reductions in emissions of air pollutants. Properly used, the CER can lead to selection of the most effective
sequence of pollution reduction options. Derived with different methodologies and technical assumptions, CER
estimates for alternative fuel vehicles (AFVs) have varied widely among previous studies. In one of several
explanations of CER differences, this report uses a consistent basis for fuel price to re-estimate CERs for
AFVs in reduction of emissions of criteria pollutants, toxics, and greenhouse gases. The re-estimated CERs
for a given fuel type have considerable differences due to non-fuel costs and emissions reductions, but the
CERs do provide an ordinal sense of cost-effectiveness. The category with CER less than $5,000 per ton
includes compressed natural gas and liquified petroleum gas vehicles; and E85 flexible-fueled vehicles (with
fuel mixture of 85 percent cellulose-derived ethanol in gasoling). The E85 system would be much less
attractive if corn-derived ethanol were used. Furthermore, the CER for E85 (corn-derived) is higher with
higher values placed on the reduction of greenhouse gas emissions. CER estimates are relative to conventional
vehicles fueled with Phase 1 California reformulated gasoline (RFG). The California Phase 2 REG program
will be implemented before significant market penetration by AFVs. CERs could be substantially greater if
they are calculated incremental to the Phase 2 RFG program. Regression analysis suggests that different
assumptions across studies can sometimes have predictable effects on the CER estimate of a particular AFV
type. However, the relative differences in cost and emissions reduction assumptions can be large, and the
effect of these differences on the CER estimate is often not predictable. Decomposition of CERs suggests that
methodological differences can make large contributions to CER differences among studies. Resolution of CER
differences could require the community of analysts and policy makers to establish methodological ground
rules and to agree on premises for determination of critically important technical characteristics such as vehicle
emissions profiles.







A COMPARISON OF ESTIMATES OF COST-EFFECTIVENESS
OF ALTERNATIVE FUELS AND VEHICLES FOR REDUCING EMISSIONS

1. INTRODUCTION

The development of alternative transportation fuels is driven by national concerns about growing
U.S. dependence on imported oil, declining urban air quality, and a negative U.S. trade balance (DOE,
. 1993/1994).

The transportation sector accounts for about two-thirds of total petroleum use and one-fourth of total
energy consumption in the U.S. There is nearly a one-to-one relationship between additional gasoline
consumption and increased use of imported oil by the U.S. At $60 billion per year, U.S. oil import
expenditures account for about 60 percent of the merchandise trade deficit. Displacing imported oil by
using domestically-produced alternative fuels (AFs) could reduce the trade deficit, create jobs, and
promote economic activity (Tierney, 1994). With regard to air quality concerns, motor vehicles are
responsible for about two-thirds of all carbon monoxide and at least one-third of all emissions of
hydrocarbons and nitrogen oxides. Hydrocarbons and nitrogen oxides react to form ozone, an ingredient
of urban smog. Motor vehicles also emit about half of the nation’s toxic air pollutants (GAO, 1994).

Congress has enacted several laws to promote the use of AFs, including the Alternative Motor Fuels
Act of 1988, the Clean Air Act Amendments of 1990 (CAAA), and the Energy Policy Act of 1992
(EPACT). These statutes provide for regulatory, incentive and voluntary actions to increase the use of
AFs (Tierney, 1994). The alternative fuel vehicle (AFV) purchase requirements of affected vehicle fleets
under EPACT are summarized in Table 1 (DOE, 1993b). In Executive Order 12844 (April 21, 1993),
President Clinton directed federal agencies to exceed by 50 percent the EPACT requirements related to
federal purchase of AFVs. This would mean an additional 33,750 AFVs entering the federal fleet
between fiscal years 1993 and 1995. The Order also established the Federal Fleet Conversion Task Force
to develop and to recommend a coordinated public and private sector plan for accelerating the
commercialization and market acceptance of AFVs (Tierney, 1994). A chief recommendation of the Task
Force was the establishment of a presidential Clean Cities Program which seeks to involve federal, state,
local, and private interests in promoting AFs. This program aims to accelerate and expand the use of
AFVs in urban communities and to provide refueling and maintenance facilities for their operation. By
involving vehicle users, fuel suppliers and various levels of government, the program can more readily
address the barriers to construction of AFV refueling facilities and can enhance public awareness of °
AFVs. The Department of Energy hopes that 50 cities will be involved in the program by 1996 (GAO,
1994).



Several AFs can potentially replace gasoline and diesel fuel, the fuels most vehicles now use. These
AFs include electricity, alcohols, natural gas, and propane. AFs can be used in AFV configurations that
have different fuel flexibility, emissions, and costs. In the development of policies to promote AFs, cost-
effectiveness can be useful in identifying attractive AF/AFV configurations. With a properly used
measure of costs to obtain air quality improvements, the cost-effectiveness concept can lead to selection
of the most effective sequence of pollution reduction options. Derived with different methodologies and
technical assumptions (i.e., assumptions about emissions and costs for fuel, vehicle, and maintenance),
cost-effectiveness estimates have varied widely among previous studies. In one of several explanations
of cost-effectiveness differences, this report uses a consistent basis for fuel price to re-estimate cost-
effectiveness for fuels and AFVs in reduction of emissions of criteria pollutants (hydrocarbons,? nitrogen
oxides, and carbon monoxide), toxic air pollutants, and greenhouse gases.

The following section describes some of the alternative fuel and vehicle options. Section 3 discusses
key issues in the estimation of AFV cost-effectiveness, converts the cost-effectiveness results of other
studies into a comparable metric, and identifies the factors that contribute to differences in cost-
effectiveness estimates. Section 4 makes adjustments in the cost-effectiveness measure to account for the
benefits of greenhouse gas reduction in certain AFV systems. The cost-effectiveness of reformulated
gasoline and replacement fuel ("low petroleum gasoline") is discussed in Section 5. Recent emissions
test data are used to estimate cost-effectiveness for "best-designed” systems in Section 6. Section 7
compares the cost-effectiveness of AFVs and gasolines with other measures to control mobile source
emissions and presents key observations of this review.

In subsequent references, "hydrocarbons" will refer to reactivity-adjusted non-methane organic gases.
(NMOG = nonmethane hydrocarbons + carbonyls + alcohols).
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Table 1. Alternative fuel vehicle purchase requirements of affected vehicle fleets
under the Energy Policy Act of 1992

Year Number of Percent of AFVs
Federal AFVS | pederal State Fuel Municipal/

' Provider Private

1993 5,000 ‘

1994 7,500

1995 10,000

1996 25 10 30

1997 33 15 50

1998 50 25 70

1999 75 50 90 0-20

2000 75 75 90 0-20

2001 75 75 90 0-20

2002 75 75 90 20-30

2003 75 75 90 40

2004 57 75 90 50-60

2005 75 75 90 60-70

2006 75 75 90 70




2. ALTERNATIVE FUELS AND VEHICLES

Compared to conventional liquid transportation fuels, AFs have properties which are sufficiently
different to require major changes in physical infrastructure, industry practice, consumer behavior, or
regulatory conventions. Differences in AF properties may require minor to complete changes in engines,
fuel storage systems, refueling and fuel distribution systems, production technologies, and resource bases
(Interagency Commission on Alternative Motor Fuels, 1990). Potential near-term AFs include electricity,
methanol, ethanol, natural gas, and propane. AFVs can fall into several categories:

® Dedicated (ded) vehicles can operate on only one type of AF. Generally, dedicated vehicles have
superior emissions and performance because their design has been optimized for operation on only
one fuel.

* Dual-fueled (df) or bi-fueled vehicles can operate on two different fuels, typically one AF and one
conventional fuel, but not at the same time.?> Two separate fuel systems are required in dual-fueled
vehicles. These vehicles are advantageous for drivers who do not always have access to an AF
fueling station.

* Flexible-fueled vehicles (ffv) can operate on a varying mixture of two fuels, stored in a single tank.
Expensive fuel sensors and controllers are required in ffvs to identify and respond to the type of fuel
coming to the engine. As with df vehicles, ffvs are advantageous for drivers who do not always
have access to an AF (GAO, 1994; DOE, 1994b).

2.1 ELECTRICITY

Interest in electricity as an AF is high because of (1) the potential for improving energy security
and air quality, (2) a California mandate requiring automobile manufacturers to offer zero emission
vehicles (ZEVs) for sale beginning in 1998, and (3) the possibility that other states may adopt the
California ZEV mandate. Since the electricity generating source produces emissions, the actual air
quality benefits of electric vehicles (EVs) will vary (GAO, 1994). In an EV, gasoline and internal
combustion engine are replaced with battery and electric motor. In comparison to gasoline, batteries are
extremely poor energy storage devices, with low energy density. The battery’s reduced energy and
power account for reduced EV range, acceleration, and speed. On the other hand, electric motors are
light weight, efficient, small, quiet, contain few moving parts, are rated for continuous performance, and
can double or triple output for short periods, such as during passing (Henderson and Rusin, 1994).

Batteries are the most expensive items in an EV. Battery pack replacement could be required every
30,000 miles or three years. Each battery replacement could cost 15 to 20 percent of the original vehicle
cost. Some of the features for use of electricity as an alternative fuel are shown in Table 2 (DOE,
1994b).

2In recent DOE definitions, bi-fueled still refers to vehicles that can use either of two fuels, but not at
the same time. In the new definitions, dual-fueled vehicles are defined as those that have fuel tanks for
two separate fuels, but burn both fuels simultaneously.
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2.2 ALCOHOLS

The AFs which most closely resemble gasoline are methanol and ethanol. Both alcohols can be
combined with gasoline. Methanol has a higher octane rating than gasoline, which can result in greater
fuel efficiency with proper adjustment of the engine’s compression ratio. Methanol’s high heat of
vaporization results in lower peak flame temperatures than gasoline and lower emissions of nitrogen
oxides. Its greater tolerance to lean combustion (higher air-to-fuel equivalence ratio) results in generally
lower overall emissions and higher energy efficiency. Disadvantages include methanol’s lower energy
density (about half of gasoline’s), which reduces the range a vehicle can travel on an equivalent volume
of fuel. Current-technology vehicles using neat methanol (M 100) at temperatures below 45°F are difficult
to start because of methanol’s lower vapor pressure. M85, a mixture of 85 percent methanol and 15
percent gasoline, solves the cold start difficulties because of its gasoline component (NREL, 1992).
Methanol can be corrosive, and stainless steel is required in areas where wet fuel is in continuous contact
with metals. Conventional elastomers must be replaced by materials compatible with methanol. Ethanol
is less corrosive than methanol and has about 35 percent greater energy content, so that ethanol could
require less severe modifications to conventional vehicle designs (Interagency Commission on Alternative
Motor Fuels, 1990).

Tables 3 and 4 show some of the characteristics of alcohol-based AFs (DOE, 1994b). The
incremental costs of dedicated alcohol-based AFVs will be negligible. Dedicated alcohol vehicles do not
need a fuel sensor, the most expensive item required for fuel flexibility.

2.3 NATURAL GAS AND PROPANE

At normal temperatures, natural gas and propane have lower volumetric energy contents than liquid
fuels. Pressurized storage is needed to provide adequate driving range in vehicles that use natural gas
or propane. Because these fuels are used in closed systems, they can significantly reduce or eliminate
evaporative fuel emissions. Exhaust emissions, particularly hydrocarbons, could be lower for natural gas
and propane than for gasoline.

Natural gas can be used as compressed natural gas (CNG) or liquified natural gas (LNG). CNG
is stored on the vehicle in cylinders pressurized to 2,400 to 3,600 pounds per square inch (psi). Because
of CNG’s lower energy density, the size and weight of the storage cylinders make it difficult to store
enough fuel to provide a satisfactory driving range in light duty vehicles. LNG requires large, heavy,
insulated storage cylinders, and would be used in larger vehicles, such as long-haul trucks. Natural gas
is less expensive on a cost-per-mile basis, and there are substantial domestic reserves. Storage cylinders
are high cost items for CNG vehicles. Other items include high-pressure fuel lines and pressure
regulators. In the df configuration, gasoline fuel components and a fuel selection switch are needed.
Table 5 summarizes some of the characteristics of CNG and LNG fuels (DOE, 1994b).

Propane (liquified petroleum gas, LPG) is a by-product of natural gas production and petroleum
refining. Propane has greater driving range than CNG and often costs less than gasoline. The supply
of propane is limited, and its costs are sensitive to the demand for propane in building heating service.
Storage cylinders are high cost items for the LPG vehicle. Other items include vaporizers (or regulators)
and gas/air mixers. In the df configuration, gasoline fuel components and a fuel selection switch are
needed. Table 6 summarizes the characteristics of LPG transportation fuel (DOE, 1994b)




" Table 2. Electricity as an alternative fuel (DOE, 1994b) . "

Fuel description

¢ Onboard rechargeable batteries power an electric motor.

Domestic content
of fuel

¢ Over 95 percent.

Fueling ® Onboard charger. Full charging takes 4 to 8 hours.
Fuel availability | ® Home/business outlets. Special hookups may be required.
¢ Public charging networks under development in California.
Vehicle * Fleets with over 500 vehicles have operated for several years in California,
experience and Arizona, and local utilities.
availability ¢ Chrysler and Ford minivans available.
¢ Conversions available in larger metropolitan areas.
Operational ¢ 50 mile range with current technology.
performance ¢ Payload, range, and accessories limited by battery weight.

¢ More energy efficient than conventional fuels.
¢ Acceleration, speed equivalent to comparable conventional fuel system.

Maintenance and

* Battery pack replacement every 30,000 miles or three years.

reliability ¢ Low component wear, less maintenance.
¢ No tune-ups or oil changes.
¢ Tire replacement more frequent due to vehicle weight.
¢ Unsealed batteries need daily water check.
Safety ¢ Training needed to operate and maintain vehicles.
Costs ¢ Each battery replacement equals 15-20 percent or more of original vehicle

cost.

¢ New vans costs four to five times more than conventional van.

¢ Electricity likely to cost less than gasoline.

¢ Charging facility may require only minimal costs.

® Auto manufacturers, utilities, and converters may assist with technician
training.

¢ May need to purchase service and diagnostic equipment if access to
commercial electric vehicle maintenance facilities is not available.




Fuel description

. Table 3. Methanol as an alternative fuel (DOE, 1994b)

® QOdorless clear liquid, produced from natural gas, coal, or biomass. MS$5 is
for light-duty applications. M100-is for heavy duty applications now:; light
duty applications are under development.

Domestic content
of fuel

* At least 90 percent, depending on price.

Fueling ¢ Same as with gasoline or diesel fuel.

Fuel availability | ® Fueling stations are sparse, with increasing availability in California, New
York, Atlanta, Denver, Houston, Detroit and other locations.

® M100 available through bulk suppliers in most major cities.

Vehicle ® More than 15,000 ffvs are in operation.

experience and * Ford, Chrysler offer M85 flexible-fuel sedans.

availability ¢ Heavy-duty compression-ignition engines are available for M100 from
Detroit Diesel.

Operational ® Provides a little over half the driving range of comparable gasoline vehicle.

performance ® Power, acceleration, and payload are comparable to conventional fuel

system.

Maintenance and

e Use special lubricants with slight cost premium.

reliability ® Use M85-compatible replacement parts.
Safety ¢ Training needed to operate and maintain vehicles.
Costs * M85 fuel cost is about 1.5 times that of gasoline under current taxing

structure.
® M85 vehicle costs up to $250 greater than gasoline-fueled vehicle, due to
special fittings.




Fuel description

|| Table 4. Ethanol as an alternative fuel (DOE, 1994b) ll

® Liquid produced from grain or agricultural waste. E85 is for light-duty
applications, while E95 is for heavy-duty applications.

Domestic content
of fuel

* As high as 100 percent, depending on price.

Fueling ¢ Same as with gasoline or diesel fuel.
Fuel availability | ® Fueling stations are sparse, primarily in the upper Midwest, DC, and
California.
¢ E95 is available only through bulk suppliers.
Vehicle * More than 400 vehicles are in use. Methanol-compatible vehicles can be
experience and modified to use ethanol.
availability ¢ Ford offers E85 flexible-fuel sedans.
® Two conversions are available: M85 to E85, only after fuel metering
system and sensor are adjusted; and heavy-duty compression-ignition
engines to E95.
Operational ¢ Has slightly lower driving range than comparable gasoline vehicle.
performance * Power, acceleration, payload, and cruise speed are comparable to

conventional fuel system.

Maintenance and

¢ Use special lubricants with slight cost premium.

reliability ¢ Use E85-compatible replacement parts.
* Maintenance assistance is available from local dealers; practices are similar
to those for conventional fuels.
Safety ¢ Training needed to operate and maintain vehicles. -
Costs ¢ E85 fuel costs about twice what gasoline costs.

¢ E85 vehicle costs up to $250 greater than gasoline-fueled vehicle, due to
special fittings.




'l Table 5. Natural gas as an alternative fuel (DOE, 1994b) 'I

Fuel description

¢ Extracted from underground reserves, composed primarily of methane

* For CNG vehicle, gas is compressed to 2,400-3,600 psi in special
cylinders. In LNG vehicle, gas is liquified by cooling to -259 °F and stored
in insulated tanks.

Domestic content
" of fuel

¢ 100 percent.

Fueling ¢ "Slow" fill (up to 8 hours) and "quick" fill (3 to 5 minutes) are available
for CNG. LNG is dispensed like liquified petroleum gas; refueling times
are comparable to those for gasoline or diesel fuel.

Fuel availability | ® Fueling stations are located in most major cities and in many rural areas.

¢ LNG is only available through suppliers of cryogenic liquids.

Vehicle ¢ Over 30,000 vehicles in U.S. and nearly one million worldwide.

experience and ¢ Dual fuel and dedicated vans, minivans, and light trucks are available from

availability Ford and Chrysler.
¢ CNG- or LNG-specialty buses, service vehicles are available from at least
15 manufacturers.
Operational * Range of CNG vehicle is at least one-half that of comparable gasoline-
-performance fueled vehicle. LNG fuel tank range is just under two-thirds that of

gasoline.
¢ Power, acceleration, payload, and cruise speed are comparable to
conventional fuel system.

Maintenance and

® Most CNG fleets report good reliability, longer useful lifetimes, longer time

reliability between tune-ups and engine rebuilds.
¢ High-pressure tanks require periodic inspection and certification.
Safety * Pressurized tanks have been designed to withstand severe impact and high
external temperatures; they are as safe as gasoline tanks.
¢ Adequate training is required to operate and maintain vehicles.
Costs ¢ Fuel cost is about three-fourths that of gasoline.

¢ Conversion costs about $2,700 to $5,000 per vehicle. Manufacturer’s extra
price premium can be $3,500 to $7,500.

¢ May need to purchase service and diagnostic equipment if access to
commercial CNG/LNG vehicle maintenance facilities is not available.




|| Table 6. Propane as an alternative fuel (DOE, 1994b) "

Fuel description

* Liquified petroleum gas (LPG; commonly called propane) is a liquid
mixture (at least 90 percent propane, 2.5 percent butane and higher
hydrocarbons, and the balance ethane and propylene). LPG is a by-product
of natural gas processing or petroleum refining.

Domestic content
of fuel

® Between 95 and 98 percent.

Fueling e Similar to filling gas grill tank; time comparable to that needed for gasoline
or diesel fuel.
¢ Tank should be filled to 80 percent capac1ty to allow for hqu1d expansion as
ambient temperature rises.
Fuel availability | ® 5,000 to 10,0000 publicly accessible fueling stations exist in all states.
Vehicle ¢ Over 350,000 on- and off-road propane-powered units in U.S., and about
experience and 3.5 million worldwide.
availability ¢ Currently available as conversions.
¢ Ford offers factory-installed conversion package option for medium-duty
trucks.
Operational ¢ Range is almost equivalent to that of comparable gasoline vehicle.
performance ¢ Power, acceleration, payload, and cruise speed are comparable to

conventional fuel system.

Maintenance and

¢ Fleets generally report good reliability, slightly longer engine lifetime, and

reliability reduced maintenance costs.
Safety ¢ Adequate training is required to operate and maintain vehicles.
Costs ¢ Bulk purchases provide a one-fifth saving in fuel cost compared to gasoline.

¢ Ford factory-installed truck conversion costs about $1,000 over the
conventional vehicle base price; nonfactory conversions average about
$2,500.

*® Cost for fueling station is similar to, or lower than, comparably sized
gasoline dispensing system.

 Service and diagnostic equipment would probably be required if access to
commercial propane vehicle maintenance facilities is not available.
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2.4 PUBLIC ACCEPTANCE OF ALTERNATIVE FUEL VEHICLES

To achieve their anticipated benefits, AFs must enjoy widespread public use. Surveys have
determined that the fuel and vehicle characteristics listed in Table 7 are among the factors important in
a motorist’s vehicle choice (Greene, 1994). The table suggests that to gain public acceptance, AFs must
be competitive with conventional fuels in availability, cost, and performance. A critical barrier to
widespread acceptance of AFVs has been the interdependency between vehicle manufacturers and fuel
providers that makes each hesitant to expand first. Manufacturers hesitate to produce large numbers of
AFVs until AFs are widely available, but fuel providers are reluctant to invest in new facilities without
a market provided by a large number of vehicles that use AFs (GAO, 1994).

¢

Table 7. Fuel and vehicle choices

| ) Fuel Characteristics #

1. Cost
. Fuel availability
. Refueling difficulty
Range (frequency)
Refueling time and convenience
4. Fuel quality
Performance (acceleration and power)
Effect on vehicle reliability and maintenance
Health and safety
Aesthetics
5. Social benefits
Emissions
Oil dependence

W N

Vehicle Characteristics

Cost

Reliability and maintenance
Performance (acceleration and power)
Health and safety

Capacity (passenger and cargo)

Value of multi-fuel options

Combined effects of fuel characteristics

NP -
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3. COST-EFFECTIVENESS OF ALTERNATIVE FUEL VEHICLE SYSTEMS

3.1 COST-EFFECTIVENESS ESTIMATION

The cost-effectiveness ratio (CER) is a measure of the monetary value of resources expended to
obtain reductions in emissions of air pollutants. Properly used, CERs can lead to the selection of the least
expensive and most effective sequence of AF/AFV options. Selection of options without regard to cost-
effectiveness could squander scarce resources (Krupnick and Walls, 1992).

The CER estimate can be based on damage value or on control costs. Damage values directly
represent the value of emissions reductions by certain control measures. Estimation of damage value
involves (1) identification of emission sources; (2) estimation of emissions; (3) simulation of air pollutant
concentrations in the atmosphere; (4) estimation of exposure of humans and objects to air pollutants; (5)
identification of physical effects of air pollutants on humans and objects; and (6) economic valuation of
physical effects. Estimation of damage value suffers from necessary assumptions and simplifications and
from great uncertainties involved in each estimating step. The cumulative effect of the uncertainties is
a decrease in the accuracy of the estimated damage value. Damage values are underestimated because
it is not practical to account for all potentially adverse air pollution effects. Some scientists have disputed
the reliability of methods that are applied to air quality modeling and economic valuation of air pollution
effects, and there has been philosophical uneasiness with attempts to place dollar values on human
comfort and life. Given these drawbacks and the high resource-intensity of damage value estimation,
many researchers base their CER estimate on control costs rather than damage value.

The control cost estimating method assumes that the cost required to satisfy air quality standards
imposed by legislators reveals the value society places on the emissions being controlled. If the
assumption is true, the estimated marginal control cost equals the marginal damage value of air pollution
when air quality standards are met. Calculation of the CER, in dollars per ton of emissions controlled,
requires information on the cost and emissions reduction of the marginal control measure over its lifetime.
Cost estimation must include initial capital cost, operation and maintenance costs, and other pollutant-
specific cost components. Estimates of emission reductions need to account for emission control
deterioration over the lifetime of the equipment. If a control measure reduces emissions of more than
one pollutant, the cost of the technology needs to be allocated among the reduced pollutants. Although
it is generally agreed that discounting should be applied to the cost estimates, researchers differ as to
whether discounting should be applied to emissions estimates. Depending on whether discounting is
applied to emissions and whether the lifetime of the control technologies is considered, different
techniques can be used in calculation of control costs. Table 8 illustrates four techniques, each of which
results in different CER estimates with different meanings for the same control technology (Wang et al,
1994).
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Units

|| Table 8. Emission control cost calculation techniques (Wang et al, 1994) "

Meaning

costs divided by annual emission reductions

Calculation method
Technique 1: Lifetime
a: Discount (lifetime present value of
costs and cost)/(levelized tons
emissions: reduced per year)
b: Discount (lifetime present value of
costs only: cost)/(straight average of

tons reduced per year)

($/lifetime)/(ton/year)

Cost to reduce one
ton each year
throughout lifetime

Technique 2: Annual costs divided by annual emissions reductions

a: Discount (levelized costs per

costs and year)/(levelized tons
emissions: reduced per year)

b: Discount (levelized costs per

costs only: year)/(straight average of

tons reduced per year)

$/ton

Cost to reduce one
ton.

Technique 3: Lifetime costs divided by lifetime emission reductions

a: Discount (lifetime present value of

costs and costs)/(lifetime present

emissions: value of tons reduced)

b: Discount (lifetime present value of

costs only: costs)/straight sum of
lifetime tons reduced)

$/ton

Cost to reduce one
ton

Technique 4: Annual costs divided by lifetime emissions reductions

a: Discount (levelized costs per
costs and year)/(lifetime present
emissions: value of tons reduced)
b: Discount (levelized costs per
costs only: year)/(straight sum of
lifetime tons reduced)

($/year)/(ton/lifetime)

Annual cost
throughout lifetime
to reduce one ton
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A number of studies have estimated the CERs of AFVs in the reduction of emissions of ozone
forming pollutants, toxic air pollutants, and carbon monoxide. Table 9 shows the CER estimates of these
studies, indicates which calculation technique is used, and summarizes the extent of treatment of key
issues in CER estimation (Lareau, 1994):

Baseline emissions: Cost-effectiveness depends on what policies precede the option under
consideration. As more efforts are undertaken to reduce emissions, the baseline from which a new
option is evaluated shrinks, and cost-effectiveness deteriorates. The-baseline should include only
emissions from programs already implemented or required by law. When program order makes
a difference, the order should be determined that provides the lowest cost means of reaching air
quality objectives.

Incremental derivation: Marginal cost-effectiveness (the value of the last ton of reduced
emissions) is the preferred basis for comparison. Average cost-effectiveness can hide the typically
increasing cost of emission reduction and does not reveal which components of a program pass a
cost-effectiveness test. ‘

Regionality: The benefits of emissions reduction are greater in nonattainment areas than in
attainment areas. Unless emission control benefits are important in attainment areas, then cost-
effectiveness of national control policies should be computed by dividing national costs by
nonattainment tonnage reductions. The distinction between attainment and nonattainment tons can
be further refined, since the value of reducing a ton of emissions varies with nonattainment areas.
Emissions reductions could have some value in attainment areas because:

Dose-response functions may increase smoothly from the origin. Without a threshold type
dose-response function, there is some benefit for control below the standard.

There could be residual impacts such as ozome damage to crops, forests, or building
materials.

Precursor emissions and ozone might be transported by weather patterns from attainment into
nonattainment areas.

Some hydrocarbons can be carcinogenic. To the extent that these emissions are not regulated
to harmless levels, some residual damage is possible.

Seasonality: When emissions reductions occur all year, society could be paying for some
reductions that have little value. For example, the length of the ozone season varies, partly
depending on whether an area is a northern or southern city, and partly due to the differences in
emission inventories. ’

Cost discounting: The cost of a pollution control measure should include costs that can be attributed
to that measure, discounted to a present value. Discounting cost items reflects the fact that future
dollars are worth less than present dollars, because of the lack of investment opportunity for future
dollars and because of inﬂatiog.
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Benefit discounting: There are three different arguments on benefit discounting:
One, because emissions are not in monetary terms, they should never be discounted.

Two, benefits should be discounted at a negative rate, with future emissions worth more than
present emissions. While the current generation has conmtrol of emissions for future
generations, future generations have mo control over the current gemeration’s actions.
Assigning a higher value to future emissions helps limit the consequences of the current
generation’s actions (Wang, 1994).

Three, benefits should be discounted at a positive rate with future emissions worth less than
present emissions. Using the simplifying assumption that the effect on air quality of a ton of
emissions reduction is the same over time, some argue that the health benefits associated with
the air quality improvement would also be expected to be the same. Whatever economic
value is assigned to improved health, there is an advantage in accelerating the time when the
benefits are realized. Discounting at a positive rate may be further justified by the fact that
air quality is improving in almost all areas of the country. Emissions reductions now are
reducing public exposure to higher levels of pollution than will exist ten years from now
(Austin and Lyons, 1994).

Emissions denomination: Dividing total costs by total tons of all emissions reductions can lead
to errors, since emission tons are generally not alike. Changing the mix, but not the total tons,
changes the damage caused by the emissions. Similarly, if the emissions contribute to formation
of a different compound, changing the mix of emissions species can lead to a different level of
pollution. Other complications can include the fact that most toxic emissions are volatile
hydrocarbons. Also, a ton of hydrocarbon control may not may not have the same impact on ozone
as a ton of nitrogen oxide (NOx) control. NOx control may not even contribute to the reduction
of ozone. Carbon monoxide (CO) control is being solved by vehicle turnover and winter use of
oxygenated fuel. By 2000, it is likely that only a handful of cities will still be out of attainment for
CO. Thus, reductions in CO should not be valued as highly as reductions in hydrocarbons. Using
an unweighted sum of hydrocarbons, NOx, and CO as a measure of effectiveness may be
misleading.

. While it is preferable to compare policies using CERs denominated in the control species (e.g.,
ozone) rather than precursor emission units, this is generally not practical. The relationship between
precursor emissions and the controlled species has to be established, accounting for reactivity
variability and differences in precursor composition across cities (Lareau, 1994).

Vehicle technology advances: Emissions profiles determined by standard testing of prototype or
converted gasoline vehicles may lead to emissions overestimates for advanced-technology future
fleets of AFVs, equipped with optimized emissions control. On the other hand, it may be
inappropriate to compare the emissions behavior of developmental and prototype AFVs with
current-technology gasoline vehicles.
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Table 9.

Alternative firel vehicle cost-effectiveness and issue treatment .

avige | suay CR | oomm | Goewwmen |
calculation technique (thousand
$/ton, 1993) Vehicle technology advancement
Emissions denomination
Benefit discounting
Cost discounting
Seasonality
Regionality
Incremental
derivation
Baseline
emissions
M85 fiv ‘Wang, 1993/3a 8.05 HC,CO, [ ] o o o ® | O
(S. Cal) NOx,TAP
Fraas and 9.6 to 36 HC o] O e
McGartland, 1990/2b
M85 ded Hahn, 1993/3b 76.5 BC o] [ ] o o
(S. Cal)
Hahn, 1993/3b 11.9 HC 0 [ ] [
(S. Cal)
‘Wang, 1993/3a 1.45 HC,CO, o o o [ ® | O
. Cal) NOx,TAP
Krupnick and Walls, 40.8 HC [ ] ® ® | O
1992/2b
Fraas and 4.1t029 HC O O ®
McGartland, 1990/2b
Congress, 1989/2b 10t0 78 HC ®|O
M100 fiv ‘Wang, 1993/3a 9.02 HC,CO, o o [ ] (@]
(S. Cal) NOx,TAP
M100 ded Wang, 1993/3a 2.33 HC,CO, o ® o o ®| O
(S. Cal) NOx, TAP
Krupnick and Walls, . 73.3 HC o ® ®}| O
1992/2b
Lareau, 1990/2b 2t0 1116 HC o ®
Fraas and 4.7t 9.6 HC O [ J
McGartland, 1990/2b
Congress, 1990/2b 3.7t0 26 HC O [ ] (o] ® | O
@® -+ O - blank cell: indicates decreasing degree of treatment
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Table 9 (continued). Alternative fuel vehicle cost-effectiveness and issue treatment

| azvoee | sua R | o | beewems |
' calculation technique (thousand
‘ $/ton, 1993) Vehicle technology advancement
Emissions denomination
Benefit discounting
Cost discounting
Seasonality
Regionality
Incremental
derivation
Baseline
emissions
E85 fiv ‘Wang, 1993/3a 16.2 HC,CO, [ ® o| e |e®|O
(corn- (8. Cal) NOx,TAP
derived)
LPG df Wang, 1993/3a 7.36 HC,CO, [ J [ el oo |O
(S. Cal) NOx,TAP
CNG df ‘Wang, 1993/3a 0.65 BHC,CO, ® [ J o ®| e |O
(S. Cal) NOx,TAP
Congress, 1989/2b 4.6 to 26 HC O [ O ® | O
CNG ded Sierra, 1994/3a 24.2 10 24.6 HC,NOx, ® ej|le@|OC}| e
(Cal) co
Sierra, 1994/3a 76.8 to 78.1 HC,NOx, @ o e O o
(Nation) Cco
Wang, 1993/3a -0.72 HC,CO, [ ] ® ejoe|je®|O
(S. Cal NOx,TAP
Fraas and -13.7t101.88 | , HC,CO (o] o] ® | O
McGartland, 1990/2b
Congress, 1989/2b 1.9t0 17 HC o ® O @ | O
EV ‘Wang, 1993/3a 4.60 HC,CO, e [ ol e
(S. Cah NOx,TAP
ULEV to Sierra, 1994/3a 109 HC,NOx, o [ ] [ o ® [
ZEV (Cal) Cco
Sierra, 1994/3a 194 HC,NOx, ® oo |0 |0} e
(Nation) co
EVs and DRI/McGraw-Hill, 44 to 265 HC,NOx [ ®e| O 010
AFVs 1994/2b (Cal)
|| @ —+ O - blank cell: indicates decreasing degree of treatment I
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3.2 CONSISTENT METRIC FOR COST-EFFECTIVENESS ESTIMATES

Using different calculation techniques and different assumptions about costs and emissions

reductions, as shown in Table 10, CER estimates for the same AFV type can be substantially different.
In an attempt to reduce the differences underlying CER estimates, adjustments are made in two variables:

Fuel price -

Several studies present results for multiple fuel price assumptions and demonstrate that
CER is quite sensitive to the price of the AF relative to the price of gasoline. For a
given AFV type in Table 11, CER estimates are based on identical fuel price
assumptions. The assumptions, adopted from Wang (1993), are shown in Table 12.
CERs and prices are expressed in 1993 dollars.

The price adjustment can differ for each study, depending on the information reported
in a study. As an example, Appendix A discusses adjustment of a CER reported by
Congress (1989). The example shows that the adjusted price is near the center of the
price range considered in the Congress report.

Pollutant denomination -

All studies report reductions in hydrocarbon emissions, but many studies do not report
reductions in emissions of CO, NOx, and toxic air pollutants (TAPs). Table 11 places
CER estimates on the comparable pollutant denomination of hydrocarbons. Reactivity
adjustment corrections have been applied to results of Congress (1989) and Sierra (1994).
The reactivity adjustment factor assumptions, reported by Wang et al (1993) are shown
in Table 13. Reactivity adjustment for a Congress CER is discussed in Appendix A.’

Table 11 reports CER estimates derived on the average basis, because all studies report

average CER estimates or provide sufficient information for estimation of average CERs.
Only a few studies report incremental CER estimates.
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Table 10. Alternative fuel vehicle cost-effectiveness and assumptions

Study/ CER Pollutant
calculation technique (thousand
$/ton, 1993) Fuel price Incremental Emissions
(8, 1993y non-fuel cost reduction
(8, 1993)° (percent)
M85 fiv Wang, 1993/3a 8.05 HC,CO, 147 G) 339 17¢
(S. Ca)) NOx,TAP 1.04 D)
Fraas and 9.6 to 36 HC 0.81to 1.17 (G 368 35
McGartland, 1990/2b 0.65 to 0.77 )"
M85 ded Hahn, 1993/3b 11.9 HC 1.47 (G) 277 93
(S. Cal) 1.03t0 1.07 M)
Wang, 1993/3a 1.45 HC,CO, 1.47 (G) 113 244
(S. Cal) NOx,TAP 1.04 M)
Krupnick and Walls, 40.8 HC 1.33 (G® 0 50
1992/2b 1.17 (°
Fraas and 4.1t029 HC 0.81t0 1.17 (G 368 35
McGartland, 1990/2b 0.65t0 0.77 (M
Congress, 1989/2b 10to 78 HC 1.21 G) 589 30
0.75 to 0.99 (M)
M100 fiv Wang, 1993/3a 9.02 HC,CO, 147 G) 339 20°
(S. ca) NOx,TAP 1.04 M)
M100 ded Wang, 1993/3a 2.33 HC,CO, 147 (G) 113 29
(. Ca) | NOx,TAP 1.04 M)
Krupnick and Walls, 73.3 HC 1.66 (G)° 0 42
1992/2b 1.17 (°
Lareau, 1990/2b 2 to 1116 HC 1.13 (G) 365 6.9t0 75
0.63 to 0.94 (M)
Fraas and 4.7t0 9.6 HC 0.81t0 1.17 (G 0 80
McGartland, 1990/2b 0.65t0 0.77 M)
Congress, 1990/2b 3.7t0 26 BHC 121G 589 90
0.75 to 0.99 M)
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AFV type

Study/
calculation technique

CER
(thousand
$/ton, 1993)

Pollutant

Table 10. (continued). Alternative fuel vehicle cost-effectiveness and assumptions

Fuel price
(8, 1993y

Incremental
non-fuel cost
(3, 1993y

Emissions
reduction
(percent)

*Prices include taxes unless otherwise noted
(G): conventional gasoline gallon
(Qv): methanol gallon
(B): ethanol gallon price does not include renewable tax credit
(L): LPG gallon
(C): compressed natural gas price in $ per million BTUs
(X): electricity price in cents per kilowatt hour

NA: study assumed no fuel cost effects

YTaxes not included .

“Present value of vehicle and maintenance costs incremental to gasoline vehicle

Discounted life-cycle emissions reduction

ESS fiv ‘Wang, 1993/3a 16.2 HC,CO, 1.47 (G) 339 142
(cormn- (S. ca NOx,TAP 1.70 (B)
derived)
LPG df Wang, 1993/3a 7.36 HC,CO, 1.47 G) 1,131 36°
(8. Cab) NOx,TAP 1.07 1)
CNG df ‘Wang, 1993/32 0.65 HC,CO, 1.47 (G) 931 37
(S. Cal) NOx,TAP 10.7 ©)
Congress, 1989/2b 4.610 26 HC 1.21 G) 1,178 56
9.2 10 10.2 (C)
CNG ded Sierra, 1994/3a 24.2t0 24.6 | HC,NOx, NA 2,734 17¢
(Cal co
‘Wang, 1993/3a -0.72 HC,CO, 1.47 (G) 336 45¢
. cal) | Nox,TAP 10.7 (©)
Fraas and -13.7t0 1.88 HC,CO 1.77 G) 1,998 60
McGartland, 1950/2b 8.81012.1 (C) :
Congress, 1989/2b 1.9t0 17 HC 1.21 (G) 1,178 ]
9.2 0 10.2 (C)
EV Wang, 1993/3a 4.60 HC,CO, 1.47 (G) 13,260 87
(S. Cal) NOx,TAP 13K
ULEV to Sierra, 1994/3a 109 HC,NOx, NA 21,034 544
ZEV (Cal) CcO

o e e iR
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Table 11. Alternative fuel vehicle cost-effectiveness for comparable fuel price and pollutant

denomination assumptions
CER (thousand $/ton
hydrocarbon, 1993 dollars)
M85 ffv Wang, 1993 22.1 (S. Ca)
Fraas and McGartland, 1990 28.0
M85 ded Hahn, 1993 (average) 11.9 (S. Cal)
Wang, 1993 7.85 (S. Cal)
Krupnick and Walls, 1992 12.4
Fraas and McGartland, 1990 18.9
Congress, 1989 14.1
M100 ffv Wang, 1993 25.8 (S.Ca))
M100 ded Wang, 1993 12.4 (S. Cal)
Krupnick and Walls, 1992 61.8
Lareau, 1990 40.5
Fraas and McGartland, 1990 3.90
Congress, 1989 13.2
E85 ffv (corn-derived) Wang, 1993 67.6 (S. Cal)
LPG df Wang, 1993 12.1 (S. Cal)
CNG df (75 percent CNG Wang, 1993 4.44 (S. Cal)
operation) Congress, 1989 9.0
CNG ded Sierra, 1994 20.9 (Cal)
Wang, 1993 -5.29 (S. Ca))
Fraas and McGartland, 1990 9.02
Congress, 1989 3.7
EV Sierra, 1994 283 (Cal)
Wang, 1993 93.2 (S. Cal)
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Table 12. Reference motor fuel prices (Wang, 1993)

Price (in 1993 dollars per physical
gallon, or as noted)

Conventional gasoline 1.47

Methanol 1.04

Ethanol (corn-derived) 1.70

LPG 1.07

CNG 10.7 per million BTUs

Electricity 7.3 cents per kilowatt hour (2.9 cents
per mile)

Table 13. Reactivity adjustment factors (Wang et al, 1993)

Reactivity adjustment factor
(ratio of ozone grams to reactive
hydrocarbon grams for a fuel type)

. Conventional gasoline 1.00
Reformulated gasoline 0.98
M85 0.41
M100 0.37
CNG 0.18

- Figs. 1 and 2 compare the adjusted AFV CER estimates for hydrocarbon reduction. With one
exception,’ the studies agree with the order of increasing CER estimates:

CNG ded < CNG df < M85 ded < MI100 ded < M85 ffv < EV.

There are large differences in CERs for hydrocarbon reduction, with range overlaps for all AFV
options except E85 ffv (corn-derived) and EV.

*The Fraas and McGartland (1990) CER for M100 ded is the exception.
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To place CER estimates in a metric based on a more inclusive emission set, assumptions have
to be made for expanding the emissions denomination to a composite total for hydrocarbons (HC) + NOx
+ CO + TAP. Only Wang (1993) expresses CER in terms of a composite total of these emissions, and
only he describes an algorithm that could be used to expand the emissions denomination from partial
emissjons to the composite total.* Using the Wang algorithm to expand the pollutant denomination results
in the CERs of Table 14. The expansion includes extension of the CO season in Sierra (1994) to an
annual basis. Figs. 3 and 4 compare the AFV CER estimates for the expanded pollutant set. With the
exception of M100 ded,’ the studies appear to agree with the previously cited order of increasing CER
estimates.

The CER estimates for HC+NOx+CO+TAP reduction differ greatly, with range overlaps for
all AFV options. Contributors to CER variability include differences in non-fuel costs,® emissions
baselines and emissions reduction paths, discounting, and other assumptions. EV provides an example
of different perceptions about non-fuel costs. Sierra (1994) estimates the present value of non-fuel costs
for its California scenario to be about $21,000, but the Wang (1993) estimate appears to be about
$13,300. The non-fuel cost difference accounts for 35 percent of the difference in the two EV CERs.

‘In the Wang algorithm, life-cycle emissions reductions and life-cycle costs are estimated for vehicles
using reformulated gasoline, methanol, ethanol, LPG, CNG, and electricity. Vehicle emission estimates
include exhaust and evaporative emissions for hydrocarbons, CO, NOx, and toxic air pollutants (benzene,
formaldehyde, 1,3-butadiene, and acetaldehyde). Pollutants are weighted according to relative damage
factors. Emissions and emissions reductions credits (for the Los Angeles area) are not seasonalized.
Prices are mid-range values derived from other studies. The present value of vehicle life-cycle costs is
calculated as: : :

n
PV, = IP + T [(BC; + MC; +Misc)/(1 + 1)]

i=1
where
PVa = present value of vehicle life-cycle costs
= initial price of a new vehicle
n= vehicle lifetime
i= vehicle age
FC; = annual fuel cost
MG, = annual vehicle maintenance cost
Misc; = annual miscellaneous cost
I = real-term discount rate

A composite tonnage of emissions reductions is calculated from emissions reductions of the seven
pollutants. Relative damage values are used to calculate the weighting factor for each pollutant. For CO,
the damage value is assumed to equal the control cost. The present value of life-cycle emissions
reductions is calculated by discounting annual vehicle emission reductions.

*Estimates by Fraas and McGartland (1990) and Congress (1989) are the exceptions.

$"Non-fuel costs” are vehicle and maintenance costs incremental to a gasoline vehicle.
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With the assumption of constant present value of fuel costs, CER differences might be explained
by differences in the non-fuel cost and emissions components of CER cost estimation. Table 15 and Figs.
5 and 6 show the broad range of relative non-fuel costs and emissions reductions among the studies.”
With few exceptions, non-fuel costs are higher, emissions reductions are lower, and CER values are
higher, compared with Wang (1993). Correlation analysis suggests that region and year of study (i.e.,
a learning curve effect) do not account for differences in CER values.

3.3 COMPONENTS OF DIFFERENCES FOR COST-EFFECTIVENESS ESTIMATES
3.3.1 Cost and Emissions Reduction Components

If it is assumed that non-fuel costs are constant within an AFV type, CER differences might be
explained by differences in fuel costs and emissions reductions. Table 16 and Figs. 7 and 8 show the
broad range of relative fuel costs and emissions among the studies.®

If it is assumed that emissions reductions costs are constant within an AFV type, CER differences
might be explained by differences in fuel and non-fuel costs. Table 17 and Figs. 9 and 10 show the
broad range of relative costs among the studies.®

"With constant fuel cost equal to the Wang assumption: the relative value of non-fuel costs is known,
and the relative value of emissions reductions is derived so that the study CER value equals the CER
value of Wang. Suppose a study reports that CER = cer. To derive the relative emissions reduction for
that study, the present value of that study’s non-fuel costs is used in the Wang algorithm to compute CER
= cer’. The relative emissions reduction is the factor f by which the denominator must be multiplied to
match the study’s CER: cer=cer’/f.

*With constant non-fuel cost equal to the Wang assumption: the relative value of emissions reductions
is known, and the relative value of fuel costs is derived so that the study CER value equals the CER value
of Wang.

*With constant emissions reductions equal to the Wang assumption: the relative value of fuel costs is

known, and the relative value of non-fuel costs is derived so that the study CER value equals the CER
value of Wang.
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3.3.2 Regression Analysis

Regression analysis has been used to examine the predictability of CERs.* Figs. 11 through 16
suggest that the effects of costs and emissions reductions might sometimes be predictable across studies
for a given AFV type. Assume, for example, that a study of M85 ded uses the same fuel cost and
emissjons reduction of Wang (1993). If that study’s non-fuel costs are twice the non-fuel costs of Wang,
then Fig. 12 shows that the study’s estimated CER would be about $400 per ton higher than the CER
estimate of Wang. The problem in Fig. 12 is that two outliers are for CERs predicted with reported
values of independent variables (Krupnick and Walls, 1992; Lareau, 1990); all but three of the remaining
points in Fig. 12 are based on independent varjables which have been manipulated as described in
footnotes 7-9. With reported independent variable values, the models in Figs. 11 through 16 are poor
predictors of CERs for half the study cases.™

3.3.3 Methodological and Other Components

The CERs for a given AFV type can be expressed in a form similar to a truncated Taylor series,
providing estimates of components of differences. Let:

f = fuel costs relative to Wang

n = non-fuel costs relative to Wang

e = emissions reductions relative to Wang

i = a particular study for a given AFV type, with i = 0 for the Wang estimate

CER(f;,n;,e) = the cost-effectiveness ratio for a particular study for a given AFV type, expressed
as a function of the costs and emissions reductions of that study relative to Wang

Then
CER((f;,n;,e) = CERo(fo,00,€0) + (GCERY/IfO)(E; - f) + (8CERy/dn,)(m; - )

+ (3CER/de0)(e; - €9) + R..

The analysis used relative CERs for the originally reported costs and emissions reductions, plus the
relative CERs in Tables 15, 16, and 17.

" The models are poor predictors for M85 ded CER estimates reported by Krupnick and Walls (1992)
and Hahn (1993); for M100 ded estimates of Krupnick and Walls (1992) and Lareau (1990); for CNG
df estimates of Wang (1993) and Congress (1989); for CNG ded estimates of Wang (1994) and Sierra
(1994); and for EV estimates of Sierra (1994).
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The preceding equation expresses the CER for a study in terms of the CER(f,,n,,€,) estimate of
Wang and four components:

(0CERy/of)(f; - f,): the fuel cost component of difference;
(8CERy/0ny)(n; - ny): the non-fuel cost component of difference;
(OCER,/0e,)(€; - €p): the emissions reduction component of difference; and

R;: differences due to study methodologies, higher order terms which have been truncated, and
other approximations.

Appendix B illustrates the decomposition of CERs, and Fig. 17 shows the components of
difference for all studies. CER differences are explained largely by cost and emissions reduction
differences in only a few cases: M85 ded by Fraas and McGartland (1990); M85 ded by Congress
(1990); and M100 ded by Congress (1990). In most cases, differences due to methodologies and other
approximations make large contributions to CER differences. .

3.3.4 Application Precautions

Given the considerable effects of differences in costs, emissions reductions, and methodologies,
caution should be used in the application of CERs. Among AFVs, the CERs might provide an ordinal
sense of cost-effectiveness. For example, using Wang’s fuel cost assumptions, the average CERs fall into
the four groups shown in Table 18, with CNG ded/ CNG df/ LPG df/ M85 ded options in the group with
CERs less than $5,000 per ton.”? For quantitative analysis, upper and lower range values or the average
CER values might be used, but conservative and cautious interpretation of results is advisable.

“The transportation fuel price assumptions of Wang are different from the reference case forecast prices
of the Annual Energy Outlook 1995 (DOE, 1995). Appendix C shows how CER estimates for CNG and
EV systems differ with AEO prices. The Appendix also shows that the relative groupings in Table 18
for CNG vehicles and EVs are not changed with use of the DOE price forecasts.
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Table 14. Annualized alternative fuel vehicle cost-effectiveness for comparable fuel price
and total pollutant denomination

CER (thousand $/ton
HC+NOx+CO+TAP, 1993
dollars)
M85 ffv Wang, 1993 8.50 (S. Cal)
Fraas and McGartland, 1990 11.1
M85 ded Hahn, 1993 (average) 4.22 (S. Cal)
Wang, 1993 3.32 (S. Cal)
Krupnick and Walls, 1992 4.40
Fraas and McGartland, 1990 6.70
Congress, 1989 5.00
M100 ffv Wang, 1993 10.2 (S.Cal)
M100 ded Wang, 1993 4.63 (S. Cal)
Krupnick and Walls, 1992 19.3
Lareau, 1990 12.6
Fraas and McGartland, 1990 1.22
Congress, 1989 4.12
E85 ftv (corn-derived) Wang, 1993 17.8 (S. Cal)
LPG df Wang, 1993 3.03 (S. Cal)
CNG df (75 percent CNG Wang, 1993 1.3 (S. Cal)
operation) Congress, 1989 3.6
CNG ded Sierra, 1994 4.3 (Cal)
Wang, 1993 -1.44 (S. Cal)
Fraas and McGartland, 1990 5.60
Congress, 1989 0.91
EV Sierra, 1994 36.4 (Cal)
Wang, 1993 11.5 (S. Cal)
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Table 15. Cost and emissions differences in alternative fuel vehicle CER studies

(Constant present value of fuel costs)

AFV type Study Relative to Wang value for AFV type:
Region | CER Present Present | Emissions
value of | value of | reductions
fuel costs | non-fuel
costs
M85 ffv Wang, 1993 S. Cal 1 1 1 1
Fraas and McGartland, 1990 1.31 1 1.09 0.80
MB8S ded Hahn, 1993 (average) S. Cal 1.27 1 2.45 0.82
Wang, 1993 S. Cal 1 1 1 1
Krupnick and Walls, 1992 1.32 1 0 0.52
Fraas and McGartland, 1990 2.02 1 3.26 0.58
Congress, 1989 1.57 1 5.21 .96
M100 ffv Wang, 1993 S. Cal 1 1 1 1
M100 ded Wang, 1993 1 1 1 1
Krupnick and Walls, 1992 4.16 1 0 0.18
Lareau, 1990 2.72 1 3.23 0.38
Fraas and McGartland, 1990 0.26 1 0 2.85
Congress, 1989 0.89 1 5.21 1.35
E85 ffv (corn- Wang, 1993 S. Cal 1 1 1 1
derived)
LPG df Wang, 1993 S. Cal 1 1 1 1
i CNG af (75 Wang, 1993 1 1 1 1
percent CNG
operation) Congress, 1989 2.77 1 1.26 0.69
CNG ded Sierra, 1994 Cal -2.99 1 7.47 .93
Wang, 1993 S. Cal- 1- 1 1 1
Fraas and McGartland, 1990 -3.89 1 5.46 0.42
Congress, 1989 -0.63 1 3.22 0.55
EV Sierra, 1994 Cal 3.2 1 1.59 0.59
Wang, 1993 S. Cal 1 . 1 1 1
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Table 16. Cost and emissions differences in AFV CER studies

(Constant present value of non-fuel costs)

AFV type Study Relative to Wang value for AFV type:
Region | CER Present Present | Emissions
value of | value of | reductions
fuel costs | non-fuel
costs
M8S ffv Wang, 1993 S. Cal 1 1 1 1
Fraas and McGartland, 1990 1.02 0.61 1 0.62
M85 ded Hahn, 1993 (average) S. Cal 1.03 1.95 1 1.31
Wang, 1993 S. Cal 1 1 1 1
Krupnick and Walls, 1992 4.50 4.32 1 0.70
Fraas and McGartland, 1990 1.02 0.52 1 0.49
Congress, 1989 120 | 166 1 101
M100 ffv Wang, 1993 S. Cal 1 1 1 1
M100 ded Wang, 1993 1 1 1 1
Krupnick and Walls, 1992 5.31 3.86 1 0.56
Lareau, 1990 1.71 2.14 1 0.99
Fraas and McGartland, 1990 0.30 0.32 1 1.08
Congress, 1989 0.65 1.0 1 1.30
E85 ffv (corn- Wang, 1993 S. Cal 1 1 1 1
derived) .
LPG df Wang, 1993 S. Cal 1 1 1 1
CNG df (75 Wang, 1993 1 1 1 1
percent CNG
operation) Congress, 1989 2.84 -0.19 1 0.77
CNG ded Sierra, 1994 Cal -3.19 -0.62 1 0.47
Wang, 1993 S. Cal 1 1 1 1
Fraas and McGartland, 1990 14.6 12.9 1 1.26
Congress, 1989 -0.31 0.49 1 2.06
EV Sierra, 1994 Cal 0.68 3.32 1 0.65
Wang, 1993 S. Cal 1 1 1 1
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Table 17. Cost and emissions differences in AFV CER studies
(Constant present value of emissions reductions)

AFV type Study Relative to Wang value for AFV type:
Region | CER Present Present | Emissions
value of | value of | reductions
fuel costs | non-fuel
costs
M85 ffv Wang, 1993 S. Cal 1 1 1 1
Fraas and McGartland, 1990 0.65 0.60 0.74 1
M85 ded Hahn, 1993 (average) S. Cal 1.64 1 6.55 1
Wang, 1993 S. Cal 1 1 1 1
Krupnick and Walls, 1992 3.00 3.27 5.05 1
Fraas and McGartland, 1990 0.77 0.56 2.67 1
Congress, 1989 1.99 1.72 5.54 1
M100 ffv Wang, 1993 S. Cal 1 1 1 1
M100 ded Wang, 1993 1 1 1 1
Krupnick and Walls, 1992 2.78 1.18 22.0 1
Lareau, 1990 2.22 0.75 19.2 1
Fraas and McGartland, 1990 0.66 0.63 -2.53 1
Congress, 1989 1.23 1.12 4.53 1
ES85 ffv (corn- Wang, 1993 S. Cal 1 1 1 1
it derived)
LPG df Wang, 1993 S. Cal 1 1 1 1
CNG df (75 Wang, 1993 1 1 1 1
percent CNG
operation) Congress, 1989 4.03 0.63 6.23 1
CNG ded Sierra, 1994 Cal | -11.1 0 19.5 1
Wang, 1993 S. Cal 1 1 1 1
Fraas and McGartland, 1990 3.71 2.63 0.30 1
Congress, 1989* -2.96 0.50 6.49 1
EV Sierra, 1994 Cal 0.72 0 0.56 1
Wang, 1993 S. Cal 1 1 1 1
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Table 18. CER groups for pollutant reduction options

Cost-effectiveness range '
(per ton HC+NOx+CO+TAP, 1993 dollars)
Less than $5,000 CNG ded
CNG df
- LPG df
M85 ded
$5,000 to $10,000 M100 ded
M85 ffv
$10,000 to $20,000 M100 ffv
E85 ffv (corn-derived)
Greater than $20,000 EV
Low petroleum gasoline
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4. GREENHOUSE GAS EMISSIONS REDUCTIONS

Greenhouse gases (GHGs) impede the outward flow of infrared radiation more effectively than
they impede incoming solar radiation, causing the earth to be warmer than it would be in the absence of
GHGs. Some of the major GHGs which can be emitted by evaporation or combustion of fuels used by
light duty vehicles are water vapor, carbon dioxide, nitrous oxide, and methane. Human activity has
contributed to increased atmospheric concentrations of GHGs, which may increase average global
temperatures. The atmospheric concentration of carbon dioxide is about 25 percent greater than it was
prior to the Industrial Revolution (1750), and the concentration of carbon dioxide is increasing at about
0.5 percent per year. The concentration of methane is more than twice what it was in 1750, and rising
at a rate of 0.9 percent per year. Climatic models predict that an increase in GHG concentrations
equivalent to a doubling of the preindustrial level of carbon dioxide would cause global average
temperatures to increase by 1.9° to 5.2°C. Some of the radical changes that could result from increases
in global temperatures include:

As high-latitude tundra melts, methane could be released, accelerating greenhouse warming.

Increased runoff of fresh water in high latitudes and a reduced temperature differential from
equator to pole could result in changes in major ocean currents, leading to altered weather
-patterns.

There could be significant melting of polar ice, resulting in a sea level several meters higher than
it is today (NAS, 1992).

GHG emissions reductions can be among the benefits of AF use. Using the approach of Wang
et al (1993), a composite tonnage of emissions reductions has been calculated for HC, NOx, CO, TAP,
and GHG.” Weighting factors are based on the relative damage and control values shown in Table 19.

The damage value for GHGs is uncertain. Therefore, the weighting factors for GHGs are based
on a range of costs to control GHG emissions. Table 19 shows GHG weighting factors for two control
cost assumptions. A control cost of $10 per ton of CO, equivalent is at the upper end of the range
associated with halocarbon usage reduction. A control cost of $100 per ton of CO, equivalent is at the
upper end of the range associated with reforestation (NAS, 1992).

BAlternately, monetary benefits of GHG emissions reductions could be subtracted from AFV costs. CER
would be then be calculated without including GHG emissions reductions in the composite tonnage.
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Fig. 18 shows that, relative to gasoline vehicles, GHG benefits are provided by the CNG ded,
M85 ded, M100 ded, E85 (cellulosic ethanol), and EV systems (Finizza, 1991, and Singh, 1995). GHG
emissions are higher with the use of E85 (corn-derived ethanol). GHG emissions of cellulosic ethanol
are low because much CO, released during biomass conversion to ethanol and ethanol combustion will
be absorbed during the growth of new biomass materials to replace those used during conversions (DOE,
1993b). Other factors that could contribute to lower emissions of GHGs in the use of cellulosic ethanol
include reduced use of fertilizers, pesticides, tillage, and labor. Table 20 shows that CERs decrease for
EB5 (cellulosic) and electric vehicles, while there is a CER increase for E85 (corn-derived).

Fig. 18 shows that GHGs other than CO, account for a small (7 percent) fraction of gasoline
vehicle emissions. Since emissions of HCs and NOx increase over the life of a gasoline vehicle,
emissions of GHGs other than CO, could increase with time. Because of the apparently small
contribution of vehicle GHG emissions other than CO, and uncertainty about its time profile, it has been
assumed that total GHG emissions per mile are constant over the life of the vehicle. Discounting is
applied to GHG emissions reductions, as for the reduction of other pollutants.

In addition to the damage values for GHGs, the future cost and availability of cellulosic ethanol
is uncertain. Fig. 19 presents CERs for E85 (with both corn-derived and cellulosic ethanol) for a range
of GHG damage values, and over a range of cellulosic ethanol prices (Perlack, 1995). CERs increase
as the CO, value increases for E85 (corn-derived). However, CERs for E85 (cellulosic) fall below
$5,000 per ton at the intermediate price assumption of $1.00 per gallon of ethanol, and benefits increase
as the CO, value increases. The cellulosic results are speculative because they assume that cellulosic
ethanol (a long-term technology possibility) is available for the nearer-term emissions evaluation period
of 1995 to 2007.
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Table 19. Pollutant weighting factors

Pollutant Value Weighting Weighting factor
factor derivation
HC $18,600/ton 1 :
Value (damage)
CO $9,300/t0n 0.49 relative to HC
NOx $24,400/ton 1.4
Greenhouse gas (carbon $10/ton 5.38 x 10* | Value (control cost)
dioxide equivalent) $100/ton 5.38 x 10° relative to HC
Pollutant Unit risk Residence Weighting Weighting factor
time (hour) factor derivation
-  — |
Benzene 8.3x 10°¢ 198 - 10 Wang assumption
1,3-Butadiene 2.8x 10* 5.5 9.37 Product of Unit
] risk and residence
Formaldehyde 1.3x10° 16.5 . 1.31 time, relative to
Acetaldehyde 2.2 x 10 225 0.31 product for benzene

Table 20. Alternative fuel vehicle cost-effectiveness impact of greenhouse gas emissions
reductions®

AFV type CER (thousand $/ton CER (thousand $/ton
'HC+NOx+CO+TAP, HC+NOx+CO+TAP+GHG, 1993
1993 dollars) dollars)
GHG at $10/ton GHG at $100/ton

M85 ded 33 33 3.3
M100 ded 4.6 4.6 4.6
CNG ded -1.4 -1.4 -1.3
E85 (corn-derived ethanol 17.8 182 23.5
@ $1.50/gal)

E85 (cellulosic ethanol 4.5 4.0 2.0
@ $1.00/gal))

EV 11.5 11.4 10.5

" *CERs calculated with algorithm of Wang (1993), modified to include provision for GHG benefits "
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5. REFORMULATED GASOLINE

5.1 THE CLEAN AIR ACT AMENDMENTS OF 1990

The CAAA mandate the use of Phase I reformulated gasolines (RFGs) beginning January 1, 1995,
in nine areas with extreme or severe ozone pollution problems. Other cities with less-than-severe ozone
problems may "opt-in" to the RFG program. The law specifies RFG formulas with restrictions for
oxygen, benzene, and additives; and regional performance standards for emissions of NOx, volatile
organic compounds (VOCs),* and TAPs, as shown in Table 21 (DOE, 1994a). Phase Il RFGs will be
required beginning in year 2000.

Table 21. Emissjons performance standards for federal reformulated gasolines

Pollutant Phase I CAAA standards Phase IT EPA final rule standards
Volatile Organic | Must be reduced by at least 15 Moust be reduced during the
Compounds percent during the summer high- summer by 25.9 percent on a per-

ozone season, compared with the gallon basis or by 27.4 percent on
calculated VOC emissions from the | an averaged basis.* A greater
use of the statutory baseline percentage reduction is required in
gasoline. Southern states.
Toxic Air Must be reduced by at least 15 Must be reduced year-round by 20
Pollutants percent during the entire year, percent on a per-gallon basis or by
compared with calculated TAP 21.5 percent on an averaged basis.
emissions from the use of the
statutory baseline gasoline.
Nitrogen Oxides | Must not increase relative to the Must be reduced during the

emissions of the statutory baseline
gasoline.

summer by 5.5 percent on a per-
gallon basis or by 6.8 percent on
an averaged basis. Must not
increase during the winter on a per-
gallon basis and must be reduced
by 1.5 percent on an averaged
basis.

*For the per-gallon standard, every gallon of every batch of RFG produced at the refinery must
meet the same emissions-performance requirements. For the averaged standard, different
batches may vary within limits, as long as the refinery’s total RFG output meets the specified
average emissions performance requirement.

“VOCs are hydrocarbons (including or excluding methane and ethane, depending on definition) and
oxyhydrocarbon compounds. This reports assumes that VOCs are NMOGs, which are converted to HCs

by the reactivity adjustment factors in Table 13.
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The Environmental Protection Agency (EPA) used the negotiated rule making (Reg-Neg) process
to allow parties who would be affected by the CAAA gasoline programs to negotiate an approach to the
Phase I RFG requirements. The CAAA require a formal fuel certification procedure for demonstrating
the emissions performance of a fuel. During the Reg-Neg workshop on fuel certification, the concept
of emissions modeling was discussed. Emissions modeling provides a means for predicting the emissions
performance of a gasoline, given other physical and chemical properties of the gasoline. In August,
1991, an agreement in principle established two emissions models: the Simple Model and the Complex
Model.

The Simple Model is a set of equations that predicts emissions of VOCs and TAPs in terms of
a gasoline’s Reid vapor pressure (RVP), benzene, oxygen by type of oxygen source, and aromatics
contents. EPA’s final Complex Model is a set of equations that predicts emissions in terms of a
gasoline’s RVP, E200, E300, benzene, oxygen by type of oxygen source, sulfur, aromatics, and olefins
contents. Gasoline producers may use either the Simple Model or the Phase I Complex Model to certify
the emissions performance of RFGs manufactured between January 1, 1995, and December 31, 1997.
After December 31, 1997, only the Complex Model will be used.

The areas in the extreme and serious ozone nonattainment categories currently comprise about
25 percent of the nation’s gasoline market. Besides requiring RFG in the covered ozone nonattainment
areas, the CAAA requires that gasoline in all other areas not be any more polluting than it was in 1990.
Without this "anti-dumping" provision, the potential exists for emissions from conventional gasoline to
worsen as polluting fuel components are removed from gasoline to be sold as RFG (Hadder, 1994).

5.2 THE ENERGY POLICY ACT OF 1992

EPACT was enacted to provide a comprehensive national energy policy. With a goal to increase
U.S. energy security in ways that are both cost-effective and environmentally prudent, one EPACT
objective is to decrease U.S. dependence on foreign oil. To meet this objective, Section 502 of EPACT
requires the Secretary of Energy to determine the feasibility of reducing imported oil by 30 percent by
the year 2010.

Reductions in foreign oil dependence could be achieved by reducing the consumption of petroleum
fuels by light duty motor vehicles, through the use of alternative and replacement fuels. A replacement
fuel is substantially not petroleum, but it replaces only a portion of a petroleum-derived motor fuel. For
example, ethanol is a replacement fuel in a gasoline containing 10 percent ethanol (but ethanol mixed with
less than 20 percent gasoline is an alternative fuel). EPACT requires the Secretary of Energy to
determine the feasibility of producing sufficient replacement fuels to replace at least 30 percent of the
projected consumption of motor fuels by light duty vehicles in the year 2010. In its marriage with
petroleum-derived fuels, the replacement fuel concept depends on the continuing existence and technical
development of the petroleum refining infrastructure. Replacement gasolines are referred to as "low
petroleum gasolines.” Like all highway gasolines, low petroleum gasolines must comply with CAAA
requirements for reformulation and anti-dumping.
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5.3 COST-EFFECTIVENESS OF REFORMULATED GASOLINES

A number of studies have estimated the CERs of regional REGs. Other studies have not reported
CERs but have presented cost and emissions results from which CERs can be derived. RFG production
costs are typically estimated with refinery linear programs. For example, the Oak Ridge National
Laboratory Refinery Yield Model (ORNL-RYM) is a refinery linear program which tracks octane, RVP,
oxygen content, sulfur, benzene, aromatics, total olefins, distillation points, VOC, TAP, and NOx on
more than 200 gasoline component streams. The regional refinery representations in ORNL-RYM can
include up to 50 refining processes, which can be used to produce 40 different products from more than
100 crude oils. The ORNL-RYM investment module provides for the addition of processing capacity.

Table 22 shows that there can be substantial differences in reported CERs for RFG. The
differences in the CERs of Table 22 are due partly to inconsistencies in (1) pollutant denomination; (2)
the increment of derivation (average or incremental); and (3) the baseline gasoline (for example, cost and
pollutant reduction effects may be calculated relative to conventional gasoline or to Phase I gasoline).
‘Where possible, average Phase II CERs have been recomputed relative to Phase I emissions of HC +
NOx + CO + TAP. The recomputed Phase I CERs are shown in Table 23, which also includes CERs
derived from cost and emissions results of recent studies which do not explicitly report average CER
estimates (DOE, 1994a; API, 1993; and NPRA, 1992). Table 23 and Fig. 20 show close agreement for
RFG CERs in Petroleum Administration for Defense Districts I (U.S. East Coast) and II (U.S. Gulf
Coast). There are substantial differences in RFG CERs for California.

CER variability for California RFG can be explained by differences in reformulation costs and
the emissions reductions. Figs. 21 and 22 show the range of relative reformulation costs and emissions
reductions among studies of California RFG. Given the considerable differences in the relative
reformulation costs and emissions reductions, caution should be used in the application of these California
CERs. RFG CERs are shown with AFV CERs in Fig. 23. For consistency, the CERs in Fig. 23 have
are expressed relative to Phase I gasoline.” In the CER groups of Table 24, RFGs for PADDs I and IIT
fall between the dedicated methanol AFVs; the CER for California RFG is slightly less than the CER for
E85 ffv (corn-derived); and low petroleum gasoline has the highest CER of all options.

BStudies with conventional gasoline baselines are Fraas and McGartland (1990), Hahn (1993), and
Congress (1989). Given the comparable fuel price change (the fuel price change is relative to Phase I
gasoline), Phase I gasoline air pollutants are assumed to be about 15 percent less than conventional
gasoline. Therefore, the CERs for these studies are further adjusted by dividing by 0.85.
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CER (thousand
$/ton, 1993)

Table 22. RFG cost-effectiveness issue treatment

Issue treatment

Vehicle technology advancement

Bmissions denomination

Benefit discounting
Cost discounting
Seasonality
Regionality
Incremental
derivation
Baseline
emissions
DOE, 0to 120 NOx Incremental o e|o®|@®|O O
1994a, (PADDs I and summer ton
by ity
ORNL
Lareau, 11.8 t0 24.5 | VOC,CO,NOx | Average summer ® ®@|O|e@®]| O
1994 : ton, year 2005
Sierra, 7.4 (Cal) HC,NOx,CO Cal RFG L ®|O| @
1994
5.2 (Ca)) HC,NOx,CO Federal RFG [ Cl|l e
1| AP, 7 to 80 voc Incremental o e|loeje|O O
1993 PADD I) summer ton
13t0 20 NOx Incremental ® e|O®j@® )| O O
PADD 1) summer ton
610 40 voc Incremental ® || ® | O O
(PADD III) summer ton
7 to 26 NOx Incremental [ ] e|o®{e@®| O O
(PADD 1) summer ton

@® - O - blank cell: indicates decreasing degree of treatment

38




Table 22 (continved). RFG cost-effectiveness issue treatment

CER (thousand Pollutant Comments Issue treatment
$/ton, 1993)
. Vehicle technology advancement
Emissions denomination
Benefit discounting
Cost discounting
Seasonality
Regionality
Incremental
derivation
Baseline
emissions
NPC, 7.6t0 18 VOC,NOx | Average summer o ®|@®]O @]
1993 (PADD ]) ton, relative to
CG
4.8 to 47 VOC,NOx Incremental ® ®| 00| O (@)
(PADD J) summer ton
9.4 to 16 VOC,NOx | Average summer o ®o|®| O O
(PADD I) ton, relative to
CG
6to 62 VOC,NOx Incremental ® | |e®|O O
(PADD I) summer ton
8.1t0 26 VOC,NOx | Average summer { e|®| O @]
(PADD 1IV) ton, relative to
CG
17 to 56 VOC,NOx Incremental @ o|l®| @] O (@]
(PADD IV) summer ton.

® - O — blank cell: indicates decreasing degree of treatment
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Table 22 (continued). RFG cost-effectiveness issue treatment

CER (thousand Pollutant Comments Issue treatment
$/ton, 1993)
Vehicle technology advancement
Emissions denomination
Benefit discounting
Cost discounting
Seasonalit)"
Regionality
Incremental
derivation
Baseline
emissions
l| Wang, 4.09 (Cal) HC,CO, )
1993 NOx,TAP
Sierra, 61 (Cal) HC,NOx Federal RFG, @ )]
1991 -incremental to
Calgo 1
65 (Cal) HC,NOx RFG cost knee, ® O
incremental to
Calg 1l
76 (Cal) HC,NOx CARB ¢ 2, o 0]
incremental to
Calo 1
91 (Cal) HC,NOx CARB ¢ 2 ® 0]
actual,
incremental to
1 Calgo 1l
71 (Cal) HC,NOx EC-X, [ O
incremental to
Calg 1
CARB, | 810182 (Cal){ VOC,NOx, Cal ¢ 2, ° o)
1991 CO,S0, incremental to
Calg 1

® — O -»blank cell: indicates decreasing degree of treatment
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Table 23. Phase 2 RFG cost-effectiveness, incremental to Phase 1, with comparable

pollutant denomination

Comments

CER (thousand $/ton
HC+NOx+CO+
TAP, 1993 dollars)

PADD 1 DOE, 1994a, by ORNL 6.8 percent NOx 6.3
reduction in ¢ 2
API, 1993, by TMC? 6.8 percent NOx 7.2
reduction in ¢ 2
PADD 11 DOE, 1994a, by ORNL 6.8 percent NOx 52
reduction in ¢ 2
API, 1993, by TMC? 6.8 percent NOx 59
reduction in ¢ 2
DOE, 1994a, by ORNL Low petroleum 26.7
gasoline with 31
percent non-petroleum
California Sierra, 1994 6.7
Wang, 1993 4.1
NPRA, 1992, by TMC CARB-2 54
Sierra, 1991 Federal RFG 26
Sierra, 1991 RFEG cost knee 30
Sierra, 1991 CARB ¢ 2 36
Sierra, 1991 CARB ¢ 2 actual 51
Sierra, 1991 ECX 36
CARB, 1991 15.9
Cross- Lareau, 1994 Year 2005 17.2
regional

*NPC (1993) reports on work completed before Phase II emissions requirements were
defined. The contractor who performed the NPC refinery analysis subsequently
estimated the cost and pollutant reduction impacts of the final Phase II standards in
work for the American Petroleum Institute (API, 1993). Instead of the NPC results, the
API results are reported in this table because of the latter work’s treatment of the Phase
I NOx requirement.
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Table 24. CER groups for RFG and AFV pollutant reduction options
(relative to Phase I gasoline)

Cost-effectiveness range Option
(per ton HC+NOx+CO+TAP, 1993 dollars)
Less than $5,000 CNG ded
CNG df
LPG df
E8S5 ffv (cellulosic)*
$5,000 to $10,000 M85 ded .
PADD Il RFG
PADD I RFG
M100 ded
$10,000 to $20,000 M100 ffv
M85 ffv
Cal RFG
E85 ffv (corn-derived)?
Greater than $20,000 EV

Low petroleum gasoline

|I *Cellulosic ethanol: $1.00/gallon. Corn-derived ethanol: $1.50/gallon. "
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6. COST-EFFECTIVENESS OF BEST-DESIGNED ALTERNATIVE FUEL VEHICLES

AFV CERs could be lower if AFV technologies evolve with greater-than-anticipated emissions
reductions, relative to the evolving conventional vehicle technologies. Some recent test programs have
observed reported emissions reductions somewhat greater than the reductions assumed by Wang (1993).
Southwest Research Institute (SWRI) reports E85 exhaust emissions for standard Ford Taurus ffvs (Dodge
et al, 1994). These vehicles were designed to run as M85 ffvs, but they run well on E85 without
modifications. Table 25 compares SWRI test emissions with the emissions profile assumed by Wang.
If the Wang algorithm is used to calculate the CER for the E85 ffv with SWRI emissions reductions, the
CER is 12 percent lower than the original CER. Further reduction of emissions in the SWRI test vehicles
may be achieved at additional cost with proposed aftertreatment devices and engine modifications.

Table 25. ES85 exhaust emissions and CER

Reactivity adjustment factor (RAF) 0.63 0.67
HC = NMOG x RAF (gm/mi) in year 1 0.160 0.107
Reduction of HC (percent) |- <30 53
Formaldehyde (weight percent in NMOG emissions) 1.86 0.96
Acetaldehyde (weight percent in NMOG emissions) 7.82 8.04
CER per Wang algorithm (thousand $/ton 17.8 15.6

HC+NOx+CO+TAP, 1993 dollars)

Emissions characteristics of "best-designed” AFVs and gasoline vehicles have been summarized
by Wang et al (1993). Table 26 shows the exhaust emissions reductions of best-designed AFVs relative
to counterpart gasoline vehicles. These AFVs were configured to minimize pollutant emissions, whereas
the counterpart gasoline vehicles were designed simply to satisfy emissions standards. Therefore,
emissions reductions for the best-designed AFVs may be overstated, and the incremental costs may be
understated. The Wang algorithm has been used to calculate CERs for the tabulated emissions reductions
of the best-designed AFVs. Best-design CERs are compared in Fig. 24. i
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|| Table 26. Exhaust emissions of best-designed vehicles “

AFV Emissions basis Emissions reductions (percent) CER
option (thousand $/ton
HC Co NOx HC+NOx+CO+TAP,
1993 dollars)
—_— e
CNG ded | Average, Wang, -90 -40 -10 -1.44°
1993
Best-design, -98.5 -65.8 -86.7 -0.79

Wang et al, 1993

M85 ded | Average, Wang, -65 -15 -10 3.32
1993
Best design, -86.3 20.8 -63.9 1.79

Wang et al, 1993

*With a cost savings, the CER is greater with greater reduction of emissions (-.79 > -1.44).
Therefore, the greater CER is more cost-effective.

AFV CERs could be substantially lower than estimated if on-road emissions of conventional
vehicles have been underestimated (Wang, 1993). Measurements of VOC concentrations near roadways
and in tunnels, as well as ambient measurements of specific VOCs in urban areas indicate that VOC
emissions from mobile sources have been underestimated. The discrepancy in mobile-source emissions
is probably a result of several factors in current emissions models. It is likely that the fleets used in
dynamometer testing to determine emissions factors are not representative of on-road vehicles, that speed
correction factors and-estimates of evaporative emissions are inaccurate, and that the Federal Test
Procedure does not adequately simulate actual driving behavior (NRC, 1991).




7. COST-EFFECTIVENESS IN CONTEXT

AFVs, RFG, low petroleum gasoline and other measures to control mobile source emissions are
grouped by CER categories in Table 27. Pollutant control options are listed in order of increasing CER
in the table. CERs for the other measures (shown in bold in the table) have been derived from Sierra
(1994) for California control programs relative to vehicles with emissions that satisfy Phase I gasoline
standards.

The category with CER less than $5,000 per ton (not counting GHG benefits) includes measures
for evaporative control of gasoline emissions, and four AFVs: CNG ded, CNG df, LPG df, and E85 ffv
(with cellulosic ethanol at an intermediate price). If a $10/ton credit is given for GHG reduction benefits
for the AFVs in this category, the CERs would change very little, and the listing order would not change.

The E85 ffv system CER is much less attractive (in the $10,000 to $20,000 per ton category) if
corn-derived ethanol is used. Furthermore, the CER for E85 (corn-derived) is higher with higher damage
values for GHG emissions.

Total potential bepefits and relative costs are important in selection of an option. Table 27
suggests that programs to encourage scrappage of high emitter vehicles could be more cost effective than
EVs, California RFG and several alcohol-based AFVs. Of course, the incremental benefits of vehicle
scrappage programs would be exhausted when all high emitter vehicles had been scrapped.

The California Phase 2 RFG program will be implemented before significant market penetration
by AFVs. CERs could be substantially greater if they are calculated incremental to the Phase 2 RFG
program, instead of the Phase 1 RFG program. Relative to Phase 2 RFG, the Wang algorithm shows
that the incremental CER for EV is 25 percent higher than the CER relative to Phase 1 RFG. Relative
to Phase 2 RFG, E85 ffv (corn-derived) emissions increase, and E85 ffv (corn-derived) is an unreasonable
option.

This report has attempted to explain the differences among CER study results by estimating the
effects of different assumptions for costs, emissions reductions and methodologies. For example, the fuel
price difference has been removed to reveal the relative differences in non-fuel costs and emissions
reductions of AFVs. Different assumptions across studies can sometimes have predictable effects on the
CER estimate for a particular AFV type. However, the relative differences in cost and emissions
reduction assumptions can be large, and the effect of these differences on the CER estimate is often not
predictable. Decomposition of CERs suggests that methodological differences can make large
contributions to CER differences among studies.' Resolution of differences might require the community
of analysts and policy makers to establish methodological ground rules and to agree on specific premises
for determination of critically important characteristics such as vehicle emissions profiles. Consistent
premises for analysis of refinery operations may underlie the close agreement between DOE and API
CERs for RFGs. In these RFG cases, DOE and API used very specific study premises that had been
developed by committee in a lengthy government-industry evaluation process (NPC, 1993).

1Wang (1994) has identified methodological differences that create CER results which cannot be
compared.
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Table 27. Cost-effectiveness groups for pollutant reduction options
(relative to Phase I gasoline)

Cost-effectiveness range Option (in order of increasing CER)

(per ton HC+NOx+CO+TAP, 1993 dollars)

Less than $5,000 Enhanced Inspection/Maintenance
Stage II vapor recovery
Fuel volatility control/
Enhanced evaporative controls®
Onboard refueling vapor recovery
CNG ded
CNG df
LPG df
E85 ffv (cellulosic)>®

$5,000 to $10,000 M85 ded”
PADD III RFG
PADD I RFG
Vehicle scrappage
M100 ded®

$10,000 to $20,000 M100 ffv®
M85 ffvb
Onboard diagnostics?
Cal RFG
E8S ffv (corn-derived)>®

Greater than $20,000 EV®
‘ Low petroleum gasoline

Transportation control measures®
|———-—_—_____{

“The CAAA directed EPA to promulgate new evaporative standards and test
procedures to control running loss emissions and multi-day diurnal emissions under
summer ozone-forming conditions.

®Assumes constant present value of AFV fuel costs
“Cellulosic ethanol: $1.00/gallon. Corn-derived ethanol: $1.50/gallon.

%On-board diagnostics systems will identify and cause to be repaired all those
vehicles that are capable of being identified with an enhanced Inspection/Maintenance
test.

“Transportation control measures include trip reduction ordinance; parking
management; flexible/staggered work hours; telecommumcatlons park and ride lots;
and off-peak goods movement.
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APPENDIX A
ADJUSTMENT OF COST-EFFECTIVENESS RATIO ESTIMATES

The process of adjustment of .price and pollutant denomination differs for each study. For
example, the adjustment approach for M100 reported by Congress (1989) follows. The information
provided by Congress (1989) is:

General cost-effectiveness is CER, = $3,200 to CER2 = $22,000 per ton.

The levelized (annualized) added cost for the vehicle is C, = $0 to C, = $150.

The price of M85 is $1.15 to $1.51 per gasoline gallon equivalent.

The price of gasoline is $1.025 per gallon.

The vehicle averages 10,000 miles per year and 26.2 miles per gasoline equivalent gallon.

A 90 percent reduction in emissions of volatile organic compounds can be achieved with M100.

With the above information, the cost-effectiveness equation can be solved for the annual tons of
HC emissions reductions (AT), assuming that HCs = volatile organic compounds:

CER = (levelized added cost for vehicle + annual added fuel cost)/AT
CER, = $3,200/ton = [0 + (10,000 miles)/26.2 miles/gallon)($1.15/gallon - $1.025/gallon)}/AT
Therefore, AT = 0.0149 tons..
The Price Adjustment
In 1990 dollars, Wang’s price increase for M100 versus gasoline is:

(Physical price of methanol)*(energy content of gasoline/energy content of methanol)*(mpg
benefit) - price of gasoline =

($0.92/gallon)*[(115,000BTU/gallon)/(56,800 BTU/gallon)]*(.85) - $1.30/gallon = 0.283/gallon
in 1990 dollars or $0.272/gallon in 1989 dollars of the Congress study. This price increase is
within the sensitivity range of the Congress study ($0.125 < $0.27 < $0.49).

With the revised pricing, the price-adjusted CERs become:

CER, = [0 + (10,000 miles)/26.2 miles/gallon)($0.272/gallon)]/0.0149 tons = $6,970/ton

CER,, = [150 + (10,000 miles)/26.2 miles/gallon)($0.272/gallon)]/0.0149 tons = $17,000/ton
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Converted to 1993 dollars with the factor (1.0418),* the adjusted CER range is:
$8,210/ton to $20,000/ton
The Reactivity Adjustment

Congress assumes that a 90 percent reduction in HC emissions can be achieved with M100.
Therefore, the HC emissions of M100 = (0.1)*(HC emissions of gasoline).

From Table 13, the reactivity adjustment factor (RAF) for gasoline is 1.00, and the RAF for
M100 is 0.37. So reactivity adjusted HC emissions of M100 = (0.37)*(0.1)*(HC emissions of gasoline)
= 0.037*(HC emissions of gasoline).

Therefore, relative to gasoline, the reactivity adjusted emissions reduction for M100 is (1 -
0.037)*100 percent = 96.3 percent. CER, and CER, were calculated for a 90 percent reduction in
HCs, without reactivity adjustment. With the reactivity adjustment, the emissions reductions are greater
by a factor of (0.963)/(0.9) = 1.07. The reactivity and price adjusted CERs become:

CER,,, = CER,/1.07 = $8,210/ton/1.07 = $7,670/ton.

CER,, = CER,/1.07 = $20,000/ton/1.07 = $18,700/ton.

In Table 11, the average of CER,, and CER,, is reported = $13,200/ton.
Total Pollutant Denomination

\ In the Wang (1993) algorithm for M100, the present value of the reduction of HC emissions is
0.0883 tons. For Wang’s conditions, the present value of the reduction in composite emissions of
HC+NOx+CO+TAP is 0.2830 tons. For each ton of HC reduction, there are 0.2830/0.0883 = 3.205
tons of reduction of composite emissions. If it is assumed that the ratio of composite emissions reduction
to HC reduction is about the same for both studies, then the estimated CER based on composite emissions
is $13,200/ton/3.205 = $4,120/ton, as shown in Table 14.

The ratio (3.205) of composite emissions reduction to HC reduction is somewhat in error because
baseline gasolines differ in Congress and Wang. This error cannot be corrected with confidence because
gasoline properties are not sufficiently reported. In a sensitivity examination for which RVP is the major
difference in baselinie gasolines (9 psi RVP is reported by Congress; 7.8 psi is assumed for Wang; and
emissions reductions are computed with the EPA final Complex Model), the ratio of composite emissions
reduction to HC reduction is 2.75, and the estimated CER based on composite emissions is
$13,200/ton/2.75 = $4,800/ton.
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APPENDIX B
DECOMPOSITION OF COST-EFFECTIVENESS RATIO

Decomposition of the cost-effectiveness ratio is illustrated for the M85 ffv estimate of Fraas and
McGartland (1990). - '

The CER:s for a given AFV type can be expressed in a form similar to a truncated Taylor series,
providing estimates of components of differences. Let:

f = fuel costs relative to Wang
n = non-fuel costs relative to Wang
e = emissions reductions relative to Wang
i = a particular study for a given AFV type, with i = 0 for the Wang estimate
CER((f;,n;,e;) = the cost-effectiveness ratio for a particular study for a given AFV type, expressed
as a function of the costs and emissions reductions of that study relative to Wang
Then
CERy(f,n,¢) = CER(fo,n0,8,) + (BCER(/OL)(f; - f,) + (OCER/dny)(m; - ny)
+ (8CERy/dey)(e; - &) + Ry

The preceding equation expresses the CER for a study in terms of the CERy(f,,n,,e,) estimate of
Wang and four components:

(OCERy/of,)(f; - f,): the fuel cost component of difference;
(0CERy/0dny)(m; - ny): the non-fuel cost component of difference;
(OCERy/0e,)(€; - €,): the emissions reduction component of difference; and

R;: djfferences due to study methodologies, higher order terms which have been truncated, and
other approximations.

The algorithm of Wang (1993) is used to construct Tables B-1 and B-2. Partial derivatives are
estimated with the values in these tables.
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Table B-1. Data for estimation of partial derivatives for M85 ffv
(Costs and CERs in 1990 dollars)

10 percent

Case Present Present Present CER per
value of fuel value of value of algorithm of
costs, $ non-fuel emissions Wang
' costs, $ reductions, (1993),
tons $/ton
e |
Base 1,012 300 0.1698 7,724
Increase AF cost by 10 1,513 300 0.1698 10,675
percent
Increase non-fuel cost by 10 1,012 330 0.1698 7,901
percent
Increase AF emissions by 1,012 300 0.08848 14,823

Table B-2. Converted data for estimation of partial derivatives for M85 ffv
(CERs in 1993 dollars)

10 percent

Case Relative to Base CER per
algorithm of
Wang
Present ~ Present Present (1993),
value of fuel value of value of $/ton
costs non-fuel emissions
costs reductions
_ ———————  — —  — — —  — — —— ——¥—/—/}1¥/——— |
Base 1 1 1 8,734
Increase AF cost by 10 1.495 1 1 12,071
percent
Increase non-fuel cost by 10 1 1.1 1 8,934
percent
Increase AF emissions by 1 1 0.5211 16,761

From Table B-2:

(ACER,/03fy) = (12,071 - 8,734)/(1.495 - 1) = 6,736

(OCER,/on,) = (8,934 - 8,734)/(1.1 - 1) = 1,998
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(0CER,/de,) = (16,761 - 8,734)/(0.5211 - 1) = -16,761
The Frass and McGartland CER function for M85 ffv is:

CER(f;,n;,6) = CER(0.6,1.09,0.62) = $8,840/ton
The Wang CER function for M85 ffv is:
CER(fo,0,€0) = CER((1,1,1) = $8,500/ton
The fuel cost component of difference is:
(OCER/of)(f; - £) = (6,736)(0.6 - 1) = -$2,695/ton
The non-fuel cost component of difference is:
(OCERy/0n,)(n; - ny) = (1,998)(1.09 - 1) = $180/ton
The emissions reduction component of difference is:
(OCER,/0e)(e; - €)) = (-16,761)(0.62 - 1) = $6,369/ton .

The difference due to study methodologies, higher order terms which have been truncated, and
other approximations is:

R; = 8,840 - 8,500 + 2,695 - 180 - 6,369 = -$3,514/ton

Fig. 17 shows the decomposition of the M85 ffv CER estimate of Fraas and McGartland.
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CERs have been recomputed with transportation fuel price forecasts reported in DOE (1995).
Price assumptions are shown in Table C-1. Table C-2 shows the CER estimates for the price assumptions
of Table C-1. With DOE prices, the CERs are lower. However, CERs based on DOE price forecasts
would not change the relative positions for CNG vehicles and EVs in Table 27. DOE (1995) does not

'APPENDIX C
COST-EFFECTIVENESS RATIO ESTIMATES BASED ON DOE FUEL PRICE FORECAST

provide price forecasts for methanol, ethanol, and LPG.

" Table C-1. Transportation fuel prices ||

Fuel

1995 Price (in 1993 dollars per physical gallon, or as noted)

Wang (1993) DOE (1995) Reference Case
Year 1995 Year 2000
kw1
Conventional gasoline 1.47 1.17 1.38
CNG $10.7 per million | $5.14 per million | $8.67 per million
BTUs BTUs BTUs

Electricity 7.3 cents per 5.1 cents per 5.4 cents per

kilowatt hour kilowatt hour kilowatt hour

Table C-2. Anmualized alternative fuel vehicle cost-effectiveness for different fuel price assumptions

CER (thousand $/ton HC+NOx+CO+TAP, 1993 dollars)

Wang price assumption DOE price assumption
CNG df (75 percent CNG 1.3 (S. Cal) 2.78
operation) 3.6 0.24
CNG ded 4.3 (Cal) 0.48
-1.44 (S. Cal) -4.86
5.60 -1.45
0.91 -0.92
EV 36.4 (Cal) 33.9
11.5 (S. Cal) 11.2
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