12879

ORNL/TM

Changes in
ies

ing
Ser

ime

A Method for Detect
Long Ti

T
o
i

e

ey
i

e
,g%mf,%
-

o
e

ing

Darryl J. Downi
w F

ins
IS

George Ostrouchov

Lawki
Morr

lliam

.
-

e
G

Max D

i

o

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED 85




This report has been reproduced dirsctly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Techni-
cal Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615)
§76-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product, or process dis-
closed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily consti-
tute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.




ORNL/TM-12879

Computer Science and Mathematics Division

Mathematical Sciences Section

A METHOD FOR DETECTING CHANGES IN LONG TIME SERIES

Darryl J. Downing
William F. Lawkins
Max D. Morris
George Ostrouchov

Mathematical Sciences Section
Computer Science and Mathematics Division
Oak Ridge National Laboratory
P. O. Box 2008, Bldg. 6012, MS-6367
Oak Ridge, Tennessee 37831

Date Published: September 1995

Research supported by the Applied Mathematical Sciences Research
Program of the Office of Energy Research, U. S. Department of Energy.

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
managed by
Lockheed Martin Energy Systems, Inc.
for the
U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

MASTER







Contents

, 1. Introduction . . ... .. . 1
2. Statistical Change Point Problems . . . ......... ... ... .. ... . ... ... ... 1
3. Statistical Model . . ... .. ... e 3
4. Basic Method . ... ... .. . .. e e 3
5.Reference Values for § . . . ... ... . L e 6
6. Computational Issues . . . ... ... ... e 7
7. Trends . .. .o e e 9
8. Example: A Computer-Generated Time Series . .......................... 9
9. Example: A Physical Time Series . ......... ... ... . . ..., 14
10. Extension to Multivariate Series . ... ... ... .. ... . ... e 16

iii




Figure 1:
Figure 2:

Figure 3:

Figure 4:
Figure 5:

iv
Figure Titles

Window Arrangement for Change Point Detection Procedure

Computer-Generated Time Series (a), and Results of Proposed Analysis on .
Original Data (b) and First-Order Differences (c).

Computer-Generated Time Series (a), and Results of CUSUM Analysis of Original

Data (b) and First-Order Differences (c).

Sunspot Time Series (a), and Frequency Polygon of Data Values (b).

200-Point Neighborhoods Around Four Most Significant Changes in Sunspot Data.




A Method for Detecting Changes in Long Time Series
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Abstract
Modern scientific activities, both physical and computational, can result in time series of many
thousands or even millions of data values. Here we describe a statistically motivated algorithm
for quick screening of very long time series data for the presence of potentially interesting but
arbitrary changes. The basic data model is a stationary Gaussian stochastic process, and the
approach to detecting a change is the comparison of two predictions of the series at a time point
or contiguous collection of time points. One prediction is a "forecast”, i.e. based on data from
earlier times, while the other a "backcast”, i.e. based on data from later times. The statistic is
' the absolute value of the log-likelihood ratio for these two predictions, evaluated at the observed
data. A conservative procedure is suggested for specifying critical values for the statistic under
the null hypothesis of "no change".

’ *Research supported by the Applied Mathematical Sciences Research Program of the Office of
Energy Research, U. S. Department of Energy, under contract DE-ACO05- 84OR214OO with
Lockheed Martin Energy Systems, Inc.




1. Introduction

By "time series”, we generally mean a sequence of data values indexed sequentially in time,
usually spaced at equal time increments. Statistical methods for the analysis of time series data
have generally been developed under the assumption that the series to be analyzed consists of tens,
hundreds, or perhaps thousands of such data values. Analytical techniques have been proposed
for inferring the structural form (or model) of a time series, estimation of model parameters, and
prediction of values for time frames not yet observed. Another more specialized form of analysis
is the detection or location of changes in the series, i.e. time frames at which the basic structure
of the generating process appears to be altered.

In recent years, improvements in measurement and computational technologies have made possible
the collection or generation of time series data sets which are very much larger than those of
interest a few decades ago. Examples include time series generated in speech recognition, weather
monitoring, and satellite imaging problems. In addition to these physical measurement systems,
computer models have been developed which simulate physical systems and often produce output
in the form of time series. Computer models which simulate molecular dynamics, engineered
structures under stress, and global climate are examples of current interest to the DOE.

Modern scientific activities, both physical and computational, can result in time series of many
thousands or even millions of data values. Because of the sheer quantity, particularly in
computational activities, animated graphic techniques are often used to generate a "movie" for
visual analysis. Of major interest to the scientific investigator is the question of where changes
may occur in the time series, where the nature of these changes may not be well defined. A
related problem is that of detecting "outliers” or "transients” which may not be associated with
a permanent change in the state of the system, but are in some sense meaningfully different from
other output values nearby in time.

For very long time series, however, visual inspection by animated graphics can be unsatisfactory
due to the length of the presentation which must be viewed by the investigator. The purpose of
the research reported here is to develop a statistically motivated algorithm to screen very long time
series data for the presence of potentially interesting changes and outliers. If successful, such an
algorithm would be of considerable value, since it would allow physical and computational
scientists to concentrate most of their effort on inspecting relatively short data segments of
potentially greater scientific interest.

2. Statistical Change Point Problems

Within the statistical literature, the detection of change in an ordered sequence of observations,
including time series, is often referred to as the "change point problem." Some of the earliest
statistical work in change point problems can be credited to Page (1954,1955,1957) who
developed change point detection schemes for the situation in which observations are statistically
independent over time, the pre- and post-change distributions are known, and all that must be
determined is the time of change. This corresponds in some cases to CUSUM procedures, and
was an important contribution to the development of control charts. Chernoff and Zacks (1964)
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also examined data assumed to be independent realizations, where each distribution is Gaussian
and the change is a shift of known direction but unknown magnitude in the mean. Hinkley
(1970,1971) derived the maximum likelihood estimate of the time of an unknown change in the
mean under a model of independent Gaussian measurements. James et al. (1987) compared the
performance of some of these and other procedures developed under models of independent
Gaussian observations. Most work described in the literature relies on the assumption of
independent observations; an exception is Box and Tiao (1965), who considered detection of a
shift in the mean of a nonstationary integrated moving average process. Three examples of more
recent treatments of change point detection methods are given by Yao (1988), Gordon and Smith
(1990), and Barry and Hartigan (1993).

A recent book by Brodsky and Darkhovsky (1994) presents a summary of work done on change
point problems. They present an argument (pp 15-16) showing that for an arbitrary change in a
stochastic process model, a transformation of the process exists so that in the transformed process,
the change affects the expectation. They interpret this as justification for concentrating effort on
procedures which detect changes in the mean, but this argument may be primarily of theoretical
value.

Most of the methods which have been described seem to be inappropriate for our purposes for at
least one of the following reasons:

(1) The changes for which these methods have been developed are generally changes in the mean
of the stochastic process only; the variance of the data is assumed to be constant throughout the
time series, and all observations are usually modeled as mutually independent random variables.

(2) Existing methods developed for analysis of all data simultaneously generally require algorithms
with computational complexity of O(N?) or greater, where N is the length of the time series.

(3) Control chart methods are ordinarily designed for sequential operation as the data are being
generated, where the aim is to detect changes as quickly as possible after their occurrence.

Because we are interested in more general classes of change than simple changes in mean over
time (e.g. deviations from established trends, changes in variability, et cetera), (1.) seems an
unacceptable restriction for our purposes. For practical reasons, (2.) is very undesirable because
our intended applications will often involve quite large values of N. Finally, although control
chart techniques may be of some use for our problem, (3.) is an unnecessary restriction in our
setting and may limit the performance characteristics of control charts relative to what may be
done with access to more data. Because of these problems with existing methods, we have begun
development of a different approach, as described below.




3. Statistical Model

Our basic data model is a stationary Gaussian stochastic process. Letting y, represent the data
variate generated at the  th time step, a stationary Gaussian model is then completely defined by:

n=Ely]
B(d)=Cov[y,.y], d=|i-j|

A change point is defined as any time at which the mean or covariance function changes, and a
potential outlier is one or a very few contiguous data points which would have very low
probability under models which fit the surrounding data well.

We use a Gaussian process for computational convenience, and because it provides a realistic class
of models for many interesting time series. However, some series may require transformation
before analysis, e.g. series which are always positive and relatively more variable when series
values are relatively great may benefit from a logarithmic or similar transformation. This
statistical model is usually not based on physical or mathematical knowledge about how the data
are generated. Rather, it may more realistically be said to reflect idealized "uncertainty” about
the time series. Given this interpretation, a Bayesian view of the issue of change point and outlier
detection may be most appropriate.

4. Basic Method

Let y, denote the collection or vector of data values generated in a contiguous "window" of time
steps, i.e.P = [i,jl,i <j represents the window comprised of the i th, i + 1st, i + 2nd,...,j th
time steps. A "prediction” or "forecast" of y,, based on data which are located before P in time,
can be constructed via the commonly used conditional approach to Gaussian time series. For
specified parameter values, a commonly used forecast based on data from a conditioning window
C with C < P (i.e. C occurring before P in time) is the mean of the conditional Gaussian density

(b(Yp l yc)-

sometimes called the predictive density in Bayesian applications. (The notation capital Y is used
to denote the random vector of which y is the corresponding realization.) A fully Bayesian
approach could begin with placing a subjective prior on the process parameters and generating a
corresponding (generally) non-Gaussian predictive density for y,. Here we shall take a more
expedient route (similar in spirit to the approach described in Currin et al. (1991)), estimating the
parameters from an estimation window of data £ < P, not necessarily the same as- C, resulting

in a predictive Gaussian density
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¢ (Yo | ye).

A measure of the quality of this prediction is its evaluation at the observed data value, i.e.
bz 0p | Yo

The basic idea behind our approach to detecting a change point is the comparison of two
predictions y,, one a "forecast" as described above, and the other a "backcast” that is based on
data from windows which are subsequent to P in time. Formally, for a window P of data, we also
select windows: .

C, <P E <P

and
C,>P,E,>P

The statistic is then defined as the log of the ratio of the larger to the smaller evaluated predictive
densities, or equivalently

S(P) = | log &g (p | ¥c) - log &g (¥p | ¥c) | 1)

Without the absolute value, this is the statistic associated with the likelihood ratio test where one
hypothesis is that the distribution of Y, corresponds to the parameters estimated from E;, given
Ye, » and the other is that the distribution of Y, corresponds to the parameters estimated from E,,
Yc,given .

Figure 1 displays graphically the relationships which exist between these windows. Although in
principle C, could appear anywhere before P in time, the predictor is most strongly influenced by
the conditioning data if the two windows are close together since correlations between data in the
two windows are usually strongest in this case. Also, it is reasonable that the estimation windows
should be relatively large, since parameter estimates should be reliable. Finally, because our
approach assumes that the forecast and backcast should be equally reliable when changes or
outliers do not occur, symmetry of size and placement of the estimation windows and conditioning
windows around P is desirable.




time
E E, 3 E E, ]
—C,— —C,—
F—P—

Figure 1. Window Arrangement for Change Point Detection Procedure
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When the time series is "well behaved” without change points or outliers, values of S should be
small since both forecast and backcast would be expected to predict about equally well. On the
other hand, if a change point exists in £, (E,), i.e. the mean or covariance function changes
somewhere in this window, the forecast (backcast) should suffer due to loss of accuracy in the
process parameters. Similarly, if an outlier exists in C; (C,), the forecast (backcast) should also
lose accuracy. Both predictions will be relatively poor if the change point or outlier is actually
in P, but this would not necessarily affect the comparative form of S. Hence a large value of
S(P) should be interpreted as evidence for a change or outlier in at least one of the five data
windows.

The procedure described above is used by "sliding" the arrangement of 5 windows through the
entire time series, evaluating S at each time-step increment. The result is a second time series
consisting of the values of S generated. Intervals of time over which S is relatively large are
flagged as containing potential change points or outliers, and subsequently reviewed graphically
by the investigator to characterize their meaning in the context of the problem.

The approach described here for detecting changes is different from that which motivates control
chart methodology. In control chart applications, the goal is generally to detect changes or
outliners sequentially, as the data are actually generated. A common approach to control charting
for correlated data is to examine predictive residuals -- in our case, the difference between
predictions of the data in P based on data appearing before it, and their observed values, eg.
Alwan and Roberts (1988). An "out of control" signal is issued if the absolute value of the
predictive residual exceeds some specified value. In contrast to this, we are not limited to using
data from before P, but have access to later data from which our backcast is formed. If a change
occurs in the series just before P, the backcast should more reliably predict y, than the forecase.
Similary, if a change occurs in the series just after P, the forecast should more reliably predict
yp than the backcast. In either case, S(P) will tend to be larger than it would be if no changes
occur within any of the windows. Using data on both sides of a potential change should produce
a more effective detection method than one based simply on data preceding the potential change.
In addition, we conjecture that using two predictions in this manner should make this method
somewhat less dependent on the Gaussian assumption. Any prediction method based on the
Gaussian assumption may be prone to erroneous predictions when changes are not actually
present; this can seriously damage the effectiveness of a control chart procedure. However, by
comparing two such predictions, some of this effect may be "canceled out" -- S(P) may be less
sensitive to non-Gaussian behavior than a statistic based on a single prediction.

5. Reference Values for S

Here we will assume that the conditioning windows are of equal size, the estimation windows are
of equal size, and the window arrangement is symmetric about the center of P as depicted in
Figure 1. Consider the "signed" version of S(P), i.e. without the absolute value: -




Ss,g,,(P) = IOg ¢E,(yP ‘ ycl) - log ¢52(yp ‘ yCz)

=-172 [log| . (P | C)| + 0p = 5, (P | C)Y Eg (P | €)' (=i (PIC)) -
log |, (P | C)I + 0p ~ B (P 1 G B (P | O (3p-Bp(PIG) ] (g

where i and ¥ denote estimates, based on data indicated by their subscripts, of the conditional
mean vectors and variance matrices indicated by their arguments. Under the "null hypothesis”
of no change in process parameters, and assuming that the parameter estimates are consistent, the
two determinants are asymptotically equal as n,, the common width of the estimation windows,
increases:

lim S,,,(P) = 12 [0 (P ] C)) - 0 (P ] )] 3)

E

where Q(P | C,) and Q(P | C,) are the quadratic forms shown in (2) with true parameter
values substituted for estimates associated with £, and E,, respectively. Under the model of no
change, each quadratic form has a x,z,p distribution, where n, is the width of P. Hence,

E[Q(P | C)]l =E[Q (P ]| C)] = n,
Var[Q(P | C))] = Var[P |C,)] = 2np

It follows immediately that the distribution of §

sign(P) 1s symmetric about zero. Complete

specification of the distribution is difficult because the two quadratic forms are correlated.
However, an upper limit on the variance is 2n, which would be achieved only when the

covariance of @ (P | C,) and Q (P | C,) is as small as possible. Hence, an upper bound on

"k standard deviations" of §

sign

is k \/2n,, and deviations of more than this from the mean of
S..., correspond to values of S greater than k ,/2n,. Conservative values of k can be selected

sign

based on Chebyshev's inequality; the probability & critical value by this bound is J2n, [ o

6. Computational Issues

Parameter Estimation: In the early stages of this research, we attempted to use reasonable
parametric forms for B and apply the method of maximum likelihood to estimate process
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parameters within each of £, and E, but this appeared to be too computationally demanding for

our purposes. We have also used simple closed-form estimators which are popular in are time
series literature, e.g.

n 1
Mg = _Zyi

nE E
R 1 . .
B (d) = dE O = BV~ Figs)
Ng@ E )
where
A 1 A 1
o ¥, Bpgn = —— ¥,
l nE _dElaw et nE —dEhigh

and E,,, and E,,, are subwindows of E, containing its first and last n; -d values, respectively.
Although somewhat less precise than MLE's derived under an appropriate parametric model of
covariance, these estimators can be quickly computed and easily updated as the windows slide
over the data stream. However, a disadvantage of these estimators is that they can result in
estimated variance matrices which are not positive definite, especially when C and/or P are large
windows and the output is a smoothly varying function of time.

In order to avoid numerical problems associated with parameter estimation, we currently use a
different covariance estimator:

Bd) = 230, - i), - i) 5)
nE E

where

i+d, if i+de F

i+d-ng otherwise

. %

1 =

This "circular" estimator is not as appealing as (4), but is consistent as n, increases relative to
ne+np  As a more practical matter, let 71Y,] represent the n, -element vector whose i th element
is the i - 1st element of Y, i = 2, 3, ..., ng, and whose first element is the 7:th element of Y.
Then it can be shown that (5) results in estimated covariance matrices which are positive definite
so long as there are not exact linear dependencies among Yy, T{Y ] T2[Y,],....T ¢" "[¥,], and the
ng -element column vector of 1's.
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Computational Effort: The procedure as described above requires calculation of O(N) . For each
evaluation of S(P) , a large portion of the effort goes into calculating the determinant and inverse
of the estimated conditional variance matrices of Y,. For conditioning and prediction windows
of width n. and n,, respectively, this effort is of O( (nc+np)3).

7. Trends

As with most "omnibus” tests designed to detect a condition which is not narrowly defined (e.g.
"change" in our case), there are some relatively simple data patterns which can yield problems.
One such pattern is response data which contain a simple linear trend in time, e.g.

y, =a + bi +g b =0

where € is now a realization of a stationary Gaussian process. As n; becomes large relative to
nc + np, the estimated covariances of interest, B (d), all increase, and apparent correlations
between values separated by d, d < n. + n,, all approach 1. As a resuit the variance matrices
required to calculate likelihood become ill-conditioned, or even "numerically singular”.

A simple solution to this problem, and one we advocate at this point, is transformation of y by a
difference operator. In this case, the first order difference transformation of the time series, i.e.
the series y,,,-y, is stationary and in many cases leads to fewer numerical problems in our
algorithm. Similarly, quadratic trends can be addressed by the second-order difference operator,
Yiea ™2V, 1Y, and so forth.

Finally, note that even though we have spoken of y as if it were a realization from a stochastic
process Y, this is mainly conceptual. The actual data may be generated by a deterministic process,
as with a non-stochastic computer model. A simple example of this is the above linear trend
without a random component, i.e. an exact linear trend in time. In this case, first-differences are
(numerically) even worse than the original series for our algorithm, since all estimated covariances
will be exactly zero. However, in this case the situation is at least easy to detect, variance
estimates of zero indicate that the data are constant if a difference transformation has not been
made, or exactly follow an r th degree polynomial in time if » th differences are being analyzed.
Since deterministic computer models may produce output which approaches a steady state reflected
by such a simple function in time, implementations of this procedure should probably include a
check for zero variances.

8. Example: A Computer-Generated Time Series

A simple nonlinear difference model which is often encountered in the biological literature as an
empirical description of density-limiting population growth is defined by the equation:

Vi = My, (1+ay)?
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whereA, a, b > 0; e.g. Hassell (1975). Here, we shall add a stochastic component to this model
by letting @ vary from time step to time step as an autoregressive Gaussian process. Specifically,
our test model will be defined by:

A=11  b5=10
Ela] = n, Var[a] = o}

Corrla,a] = i

Beginning with the initial value y, = 1, a series of 20,000 observations was generated. Changes
were introduced by altering the parameters of the series g; at the 5,000th, 10,000th, and 15,000th
time points, as detailed in the following table:

Time Steps M, o] P,

0- 4,999 0.100 0.001 | 05
5,000 - 9,999 0.101 0.001 | 0.5
10,000 - 14,999 0.101 0.002 | 0.5
15,000 - 20,000 0.101 0.002 | -0.5

The series is plotted in Figure 2(a).

The analysis described above was performed on the series, using window sizes n,=400, n.=10,
and np = 10. Values of S generated by analyzing the data and first order differences of the data
are shown in Figures 2(b) and 2(c), respectively, where S(P) is plotted against the center of P.
Following the argument of Section 5, a conservative 0.05 upper critical value for S is 20.0, and
a corresponding 0.01 value is 44.7.

The change caused by increasing the variance of a, (10,000th time step) was most clearly detected
in the analysis of both the original and differenced data. The change involving p, (15,000th time
step) is more clearly seen in the analysis of the first differences; this is probably due to the special
relationship between differencing and autoregressive series, even though the series g; are not being
directly analyzed here. The change caused by altering the expectation of a; (5,000th time step)
is least clear, although there are several "spikes" in S based on the undifferenced data in the
vicinity of i = 5,000. This is probably due to the dampening caused by the difference equation
-- even though the mean of ¢ changes abruptly, the change is more gradual in y. Larger values
of n. and n, might help here, but would slow the algorithm down. Another possibility, where
gradual changes are expected, would be to analyze, say, every 5th or 10th data value rather than
the entire sequence.
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on Original Data (b) and First-Order Differences (c).
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Finally, analysis of the same time series was performed with a CUSUM statistic, to provide a
limited comparison of how these two approaches might be expected to perform in at least this one
demonstration case. Even thought the form of CUSUM test used is actually intended for detecting
changes in mean level, it is of interest to see to what extent this computationally very easy
technique might also detect the three changes embedded in this data set.

The one-sided CUSUM statistic for detecting an upward shift in the series is defined, for time
index i, as

C.’= max (0,C,.,-1-ko)

where p and o are the assumed mean and variance of the series up to time index i and C, = 0.
In practice, these values are usually estimated from data; in this calculation, we estimated them
using the preceding 400 data values (chosen to match 7 in the calculations described above), i.e.
Yigo through y,,. This is a slight departure from usual control chart practice, where the estimates
are generally not changed, and are thought of as representing an "in control” process state. The
one-sided CUSUM statistic for detecting a downward shift in the series is defined, for time index
[, as

C,; =max(0,C,_, +u+ko).

Finally, in this analysis, we shall use
C=max (C;,C,)

as the CUMSUM statistic to indicate change, i.e. as a possible competitor for S. In this exercise,
the CUSUM parameter k£ was set to the value of 1; other values were also tried with similar
results.

Figure 3 displays the result of the CUSUM analysis. As in Figure 2, panel (a) is a plot of the data
series, panel (b) is a plot of the CUSUM statistic calulated as described for these data, and panel
(c) is the CUSUM series calculated on the first order differences of the data. While the change
at i = 10,000 might be detected using this approach, the changes at i = 5,000 and 15,000 are not
associated with particularly large values of C. It would appear, at least for this example, that use
of the proposed method more clearly suggests the location of the 3 changes than this
implementation of a CUSUM procedure.
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9. Example: A Physical Time Series

The daily sunspot data set, a time series of 52,320 data values, is maintained and made available
by the National Center for Atmospheric Research via ftp server (ncardata.ucar.edu/datasets/
ds834.0/daily _data). The following description is provided with the data.

"In 1848 the Swiss astronomer Johann Rudolph Wolf introduced a daily measurement of sunspot
number. His method, which is still used today, counts the total number of spots visible on the
face of the sun and the number of groups into which they cluster, because neither quantity alone
satisfactorily measures sunspot activity.

"An observer computes a daily sunspot number multiplying the number of groups he sees by ten
and then adding this product to his total count of individual spots. Results, however, vary greatly,
since the measurement strongly depends on observer interpretation and experience and on the
stability of the Earth's atmosphere above the observing site. Moreover, the use of Earth as a
platform form which to record these numbers contributes to their variability, too, because the sun
rotates and the evolving spot groups are distributed unevenly across solar longitudes. To
compensate for these limitations, each daily international number is computed as a weighted
average of measurements made from a network of cooperating observatories.

"How do sunspot numbers in these tables compare with the largest values ever recorded? The
highest daily count on record occurred December 24 and 25, 1957. On each of those days the
sunspot number totaled 355. In contrast, during years near the minimum of the spot cycle, the
count can fall to zero. Today, much more sophisticated measurements of solar activity are made
routinely, but none has the link with the past that sunspot numbers have."

The dataset analyzed contains the daily sunspot numbers recorded from January 1, 1850 through
March 31, 1993. A plot of the data over time is shown in Figure 4(a), and Figure 4(b) displays
a frequency polygon of the values in the series. While the time scale of Figure 4(a) is such that
local features cannot be identified, it does clearly demonstrate that the series has a strong periodic
component; the dominant period is approximately 10 years, however previous investigators have
indicated that the frequency of this pattern is not constant. A second characteristic which is clear
from Figure 4 is that the relative frequency of 0's is quite high, while those of most of the other
values less than 10 is relatively low. (All data are non-negative integers.) This may have
something to do with the special use of the value 10 in computing the sunspot number, as
indicated in the above description. This distribution of sunspot values is clearly skewed in a
positive direction, and the time series plot show that segments of relatively large averages have
relatively great variablility as well.

Although the data are clearly not normally distributed, and our changepoint method is developed
based on an assumption that a Gaussian stochastic process is an appropriate model for the
observed process, it is of interest to see how well the method might be expected to work. The
algorithm
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was applied to the square-root of the actual data. This transformation seems reasonable given the

apparent relationship between the mean and variability of the series. Additionally, some
preliminary calculations indicated that this transformation approximately eliminated the local
(blocks of 100 observations) skewness from the dataset. Window sizes of n; = 100, n. = 10, and
np, = 10 were used. No detrending was performed prior to analysis; the changepoint algorithm
as used here analyzes segments of 210 contiguous points, which is a small interval relative to the
major periodic pattern in the data.

For analysis of the transformed data, statistic values S exceeded 10 in 216 separate intervals of
time. (The number of time steps at which the statistic was greater than 10 was much larger than
this -- here we’ve reduced each such interval to the single time point at which the statistic reached
its greatest value.) About half of these may be attributed to the “interesting” behavior of the series
when the values drop below approximately 10. After eliminating all those times which were
within 15 time intervals (i.e. the width of the conditioning window plus half the width of the
prediction window) of an observed data values of 10 or less, this left 99 intervals in which the
statistic value exceeded 10. Figures 5(a) - 5(d) display segments of 200 time-steps around each
of the 4 time points for which the statistic was largest.

The “change” most apparent at the middle of Figure 5(a) may be one of variability, which seems
to decrease dramatically at approximately day 38670. A change in variability, or perhaps serial
correlation, may also be the feature detected in Figure 5(b). Figures 5(c) and (d) appear to
involve changes in level of the time series. Of course, the scientific significance of these or other
apparent changes in the time series would require expert interpretation. However, this example
does serve to indicate that the method can successfully identify segments over which the series
visually appears to change.

10. Extension to Multivariate Series

Current and near-future work in this area will concentrate on generalizing the above method to
multivariate data, or cases in which several data values representing different quantities are
calculated for each time step. The basic model here will be one of parallel, correlated time series.
However, a full multivariate analysis of the output will likely not be practical because of the
computational effort which would be required. Our efforts will be in trying to find a highly
structured (restricted) multivariate model which can support a quick analysis, but which has
enough flexibility to capture many important kinds of changes which are not apparent in the
individual data streams when examined separately.
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