ORNL/TM-12853

Engineeri ng Physi cs and Mathematics Division

BOUNDS FOR DEPARTURE FROMNORMALITY AND
THE FROBENI US NORMOF MATRI X EI GENVALUES

Steven L. Lee

Mathematical Sciences Section
Oak Ridge National Laboratory
P.O Box 2008, B dg. 6012
Ok Ridge, TN37831-6367

na. sl ee@na-net. ornl . gov

Date Publi shed: Decenber 1994

Research was supported by the Applied Nathematical
Sciences Research Programof the Office of Energy Re-
search, U.S. Departnent of Energy.

Prepared by the
ek Ri dge National Laboratory
ek Ri dge, Tennessee 37831
managed by
Mirtin Mirietta Fnergy Systens, Inc.
for the

U.S. DEPARTVENT OF ENFRGY

under Contract No. DE- ACD5- 840R21400



Content s

1

[

Introduction... . . . . . . ..
Prelimmnaries ... . . . . . ..
Bounds for eigenval ues and departure fromnormality ... . . ..
3.1 Inmprovedlower bounds . . . . .. ... ... ... .. ......
3.2 Inproved upper bounds . . . .. .. .. ... ...
Minresults . .. o o0

—_

Discussionand summary . . . . . . . . . ... .
References .. . . . . . .

O O =1 ~1 O i b —

—_

- 111 -



BOUNDS FOR DEPARTURE FROMNORMALI TY AND
THE FROBENI US NORMOF MATRI X EI GENVALUES

Steven L. lee

Abstract

New lowe r and upper boundsfor the departure fromnormal it yand the
Frobeni us normof the eigenval ues of a matrixare given. The sign
properties of these bounds are also described. For example, t]
bound for matrix ei genval ues i mproves upon the one derived by
de Vries and Wegmann in [Lin. Alg. Appl., 8(1974), pp. 109-120]. Th
upper bound for departure fromnormalityis sharp for any matri:
eigenval ues arecollinear inthe complex plane. Moreover, thela
is apractical estimate that costs (at most) 2mmultiplications,
the number of nonzeros inthe matrix. Interms of applications, tl
can be used to bound fromabove the sensitivity of ei genval ues t
perturbations or bound frombel owthe conditi on number of the ei

of amatrix.



1. Int roduct ion

The departure frommornalityof amatrix, 1ike the condition nunber of a matrix,
is areal scalar that can be used to conpute various natrix bounds. If Ais an

nxnmtrix, its departure fromnornality (inthe Frobenius norm is defined to

be [§]
depp( A= (14 & 1A12)", (1)

where Ais a diagonal matrix whose entries are the eigenyalafesd Xhis
neasure of matrixnonnornalitycanbe usedto boundthe spectral normof matrix
functions [P, the sensitivity of eigenval ues to natrix perturbhtiand |8
the distance to the closest nornmal natri§ [ f®r exanple. It is inpractical
to conpute dep (A if As large andits eigenval ues are unknown. This diffeul ty
notivates us to seek lower and upper bounds f¢if defphat are practical to
conpute or optinal in sone sense.

Interns of eigenval ues, bounds f i depan be used to obtain lower and

upper bounds for
IAIE [IRe (A) lf, and [[Tm(A) [, (2)

where Re(A) and InpA) are the real and inaginary parts of A In particular,
suchresul ts can be obtained by substitutinglower and upper boungdsA or dep
into [13

Al = 14 dep%(f) (3)
[Re (N[ = [IM][F - 2depF(A (4)
[T = N~ jderb( 3 (5)

where |
§(A+A ) (6)

and |
N= §(ATA ) (7)

are the Hermtian and skew Hermtian part of 4 respectively. Upper bounds
for ||[Af can be used to bound the spectral radifisapd5the spread of a
natrix [[l. Bounds for ||[Alcan also be used to conpute or estimate lower
bounds for the condition nunber of the eigenbasis pf A 11
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The outline of this paper is as foll o2w wd gifve t he notation, definitions,
and observations that will be neededinlater sect3omse pkrsent various
bounds for ||[A} and depj(A, and show how they can be inproved. T#,§
we describe the significant properties of the newly i nproved bolndse In §
group the currently known a priori bounds férafjd||dep;( 4 into two nain

categories, and then showthat the newbounds are anong the best avail able.

2. Preli minari es

Let A= (a ;) be an nxnmatrix with conjugate transpose? &(a;;) and

Irobeni us norm

1A B =D s . (8)

Y]

Al'so, recall that Ais normal if andonlyif (iff), for ¢xanple, [7
(9a) Ahas a conplete, orthogonal set of eigenvectors,

(OB »=lAl 7 =2 | X[?, or

(9c)AFA M H =0.

The set of nornal matrices includes the Hermtian, skew Hermtian, and unitary
matrices and, ingeneral, any natrixthat is unitarilysimlar toa diagonal matri x
[t is easily seen thaty(d¢pis invariant with respect to conplex shifts and

rotations. That is,
depp( A =dep p('( A-al)) (10)

for any conpl ex scal ar aand 0 < 6 < 2. For the Frobeni us norm we note that
le= (A || »=|Adl & (11)
and
[(Aal)  H( A-d) —( A=) ( A=d]) e =lATA-4 Hlp (12)

The sinplificationin (12) also holds when A-dis replaced Wi H«l).
It is also easy to show that the quadratic function [Arsdlii nim zed
for a= trE%A), where td is the trace of A I{A4r=0, we shall say Ais a
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centered matri x. Centered matrices such as

A=A tI(nA] (13)
and
A=A— tI(nA] (14)

will be denoted with a tilde accent. Finally, we give a lenma that relates the
normof the shifted matrices A-d and A—d to the normof the centered

matricesd and A, respectively.

Lemma 2 .1For any nxnmatrix Aand complex scalar «

a3 =) g+ DL (15)

and

Ad =] A3+ DL (16)

Proof: TFirst, we relate the normof Ao the novimdfor o :“(H—A), we have

05 Al = g s A ()
= > (lal’) =X (lai0]?) (18)
= > (dla) —Z[(au—a) H(au—a)] (19)
= Y(dlai) =3 [afaii—a o —o Ta; o To]  (20)
= oy (d}) +a"" Y (a) —w Mo (21)
= My O g | ()
e s
_ e -

If we nowreplace Awith A-d on the right-hand side of (17) and (24), we

obtain
2

el 3 aan D DL

n

F
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and the second termcan be sinplified via

2
‘A—d— tldd) g g LA te(d)], (26)
n - n -
2
N UL L (27)
n no ||
2
_ e Uy (28)
C
— Al (29)
to obtain (15). The second equality (16) can also be provedin this manner. m

3. Bounds for eigenval ues and departure from normality

We nowpresent several bounds fork|pd dep;-( 4, al ong wi ththeir i nportant
properties. An upper bound for#|i gi ven by Kress, de Vries, and Wegnann

in [P. Mreover, the authors exhibit nonnornal matrices for which the bound
is sharp, and prove that the upper bound is the best possible in terns of ||A4
and ||AHA-A  H||p.

The ore m 3. [B,. Thm. 1] For nonnormal Athere holds

1 1/2
115 < (14 5 — Jlataa ) (30)

with equality iff
A=y (vw H—I—rwvH), (31)

where ~ is a nonzero complex scalar, 0 < r <l is a real scalar, and where v, w

are orthonormal vectors.

Apractical 1ower bound for /A ,
[teA) ] < A, (32)
cones fromthe triangle inequality appliedto the ei genval ues of A

[HEA)] = [rEa) ] =30
A2+ a2

= A2 a2
=Ml 4 A =N (34)

IA
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The 1 ower bound is sharp iff 0 and the ei genval ues of Aare collinear. Mreover,
the bound is cheap to conpute since only the diagonaliefnekeded. This
di agonal can be conputed with (at nost) m nmultiplications, where m is the

nunber of nonzeros in A

The 1 ower bound [ [[7and t he upper bound ] For deg A4,

1 1/2
15— (14 4= A TIE) < derb(A <A -4, (35)

can be obtained by substituting (30) and (32) into (1). The upper bound in (35)
is sharpiff 0 and the ei genval ues of Aare collinear, andit can be conputed with
(at nost) 2m mul tiplications. The lower bound is?yrc6Mputation that is
sharp if Ais normal, or satisfies condition (31). This lower bound inherits the
properties of the upper bound (30) via (1); thus, it is the best possible in terms
of || 4 and ||AHA-HA H|F.

In §.1, we will strengthen the lower bounds frAdepd ||Al|% in (35)
and (34). In3§2, these inproved lower bounds will be substituted into (3)
and (1), respectively, to obtain tighter upper boundsahdrdipf( A.

3. Il.mprove d lowe r b ounds

The val ue of dep( 4 is invariant withrespect tothe shift paraneter g see (10).
We nowshowhowthis free paraneter can be used to nmaxi mze the 1 ower bound

in (35). For nornal matrices, the l ower bound

1/2
facdll b (Il f - LAt PE) < depi(Ad) =dep 3
(36)
is zero for any choice of @ For nonnornal matrices, however, there is a uni que
val ue of athat maximzes (36). Inparticular, by substituting (15) into (36), we

seek to maxi mze the function

9 1/2
F((a) =(8422(a) = [(8 +27(9) "~ K] (37)

where )



and
B =l Allf, K*=Afam TG > 0. (39)
By sol ving
—-1/2
jf =2z (1 —(B*+27%) [(ﬂZ +22)% — ;K?] ) =0, (40)
z

we find that the uni que solution 2 =01s a gl obal naxi mimsince

dzf B 62
o (0)=2 (1_(3‘—%1&’2)1/2) Q. (41)

By sol ving )|
g = ALy (12)

we find that the lower bound is naxi mzed for Pé%”.

Le mma 3. Bor any nxnmatrix 4
2 2 R w2 )’
deph(d > ] 3 (el b Jaaa TIE) L (13)

where the lower bound is maximized for a= “(H—A).
Proof: 'The lemma follows via (37)—(42). m

An inproved lower bound for [[A]lis less troubl esone to obtain.

Le mma 3. Bor any nxnmatrix 4

2 = Jeedn | LA (14)

n

where A =A- AT

n

Proof: As in (33)—(34), we begin by applying the triangle inequality to the

eigenval ues df?,

[6¢A%) | =[teA?) | < N[l =] AllE- (45)
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The lemma is obtained by substituting this lower bouunk|}dmijo

; [t¢4]
A13 = A+ AL (46)
Note that (46) is the sane as (16) with a=0. [

3. 2l.mprove d uppe r b ounds

For the ||Af- upper bound, we have

A = 14 5 —dep3(4 (47)
N N 1/2
145 - (141 - (g - jlamaa "3)" ). G

IA

Equation (15), with a=0, shows that 4| A||% sinplifies t'&tal(ni)ﬁ.

Le mma 3. Hor any nxnmatrix 4

. 1 1/2 |t |2
Il < (BAIE - plaraa ) 4 AL (19)

n

where A =A- AT

n

For the dep( A upper bound, we cansubstituth|} > |t¢A2?)| into
depi( 4 =dep 1(A) =| Al —l Al (50)
to obtain the following | enma.
Le mma 3. Bor any nxnmatrix 4
depp(4 < | AllF —t2(A%) ], (51)

where A =A- AT

n

4. Mainresults

Inthis section, we establish the significant properties of the four bounds give

in §.1 and §.2. To begin, recall that the lower bound f¢ridepd, in
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turn, the upper bound for fAffere optimized via the conpl ex shiftiéé—l.
Mreover, thelatter derivation (47)-(48) shows thatfi(fAthevéepbound i s
sharp thensois the fAlipper bound. The dep( 4 lower boundin (35) is sharp
for any nonnormal matrix that satisfies condition (31). The i npfévkd dep
lower bound (43) is unaffected by conplexshifts; thus, it is sharp for

A=~y (vw H 4w H) —al (52)

for any choice of the scalar 0. Note that we have

tl(’y(vtﬁ +rewv H) —ol) _

n

-, (53)

and that the shift ain (43) cancels the arbitrary shift o. The i nproved bound

is al so unaffected by rotations. We summarize the above resul ts as follows.

The ore m 4. For any nxnmatrix A

» » 1 1/2
deh(A = AR = (Al - Slama-a 72) (54)
and s ,
. 1 t
Il < (BAIE - plaraa ) 4 AL (55)

where A = A~ “(H—A)]. The bounds are sharp iff
A=e Ty (vl 4rwv ) —ol), (56)
where~, r and o are complex scalars, 0 < § 2w and wherev, w are orthonormal

vectors.

We will nowprove that the other two bounds (44) and (51) are sharp iff the
ei genval ues of Aare collinear in the conplex plane. Before doing so, we nust
establish a natural neasure of the noncollinearity of matrix eigenvalues. One

approach is to define “departure fromcollinearity” as

depcol 4 : =3 |2 (57)

where || is the perpendicul ar distance ftonthe total 1east squares (TLS)
fit of the ei genval ues of A4 Recall that a TLS fit m ni mzes the sumof the squares
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of the perpendicul ar distances fromthe points to the fitted i€, ¢ifd t hat
is the TLS error][.6G ven the definition (57), we find defpctod be a sensible
netric for quantifying departure fromcollinearity, especiall(ysiztte depcol
i ff Ahas collinear eigenval ues.

Auseful result concerning TLS error and departure fromcollinearity follows

from[12 Thm 2.2].

The ore m 4. Ziiven the complex numbers z., k =1,- - ;n let z = %sz SO
that
gk :Zk—iZ. (58)

The error for the total least squares fit is

Y ldl = (XAl - Xz

where | d| is the perpendicular distance from g to the fit.

). (59)

[N

In the context of nmatrix eigenval ues, (59) yields

(IAIE =T t1(A%))). (60)

[N

depcol 4 =

[f we arrange (60) as

1Al =1 6:(A%) | +2 depedl ., (61)

and substitute into (46) and (50), we obtain

AL =10 | 42 depeat + AL (62)

and
deph (4 =[] Allf — (| £¢4%)] +2 depeold) . (63)

Note that the bounds in Lemmas 3.3 and 3.5 are special cases of (62) and (63).

The ore m 4. For any nxnmatrix A

2 = Jeedn | AL (64)

n
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and
depi( 4 < || A7 —|t(A%)], (65)

where A = A- %I. The bounds are sharp iff the eigenvalues of Aare collinear

in the complex plane. Moreover,

A1~ fuean| 0 (66)
and
depp(4 ~ || Ay~ (%) (67)

iff the eigenvalues of Aare relatively close to being collinear.

Proof: The bounds (64)—(65) are obtained from(62)—(63) by dropping the
term2 depcol 4. These bounds are sharp iff dejpehl=0; that is, iff the
ei genval ues of Aare collinear. Finally, the bounds are good estinates when the

neglected termdep¢o] is relativelysmll. [

5. Discussion and summary

To the best of our knowl edge, a priori bounds flemd\{Hep;( A fall into

one of two distinct categories. 'The bounds in the first category are based on
conputing t he Frobeni us normof the commtat&4AM  H[3481417. The

bounds in the second category are based on inequalities that are sharp iff the
eigenval ues of Ahave a certain alignnent in the conplex pl3neHor each

of these categories, we nowgive the best avail able bounds known to us at this

t1ne.

Bounds based on |44 g

n3_n 1/2
M3 2 13- () (amaea i) (65)
. 1 V2o A7
I3 < (BAIE - piataa Hg) g (69)

» » 1 1/2
deb(A = AN - (1A% - Slaa-a 7)) (70)
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3

nd —n \'/*
dert(a = (") (a1 (11)

REMARKS. The lower bound (68) is the counterpart to the upper bound (71) of
Henrici [8Thm 1]. The bounds (69)—(70) are givenin Theorem4.1. Note that
Sun’s 1 ower bound (35) is the best possiblein teriudl ||A||r and |4 F;

thus it is stronger than the bounds4i n [Be bound (70) i nproves upon Sun’s

lower bound, and it is also stronger than the ohe in [ 14

Bounds b ase d on e ige nva lue alignme nt

A2 = 6] 42 depedtd + LA 5 iy fLHAL )

depi (A = JAI3 — (| t¢A%)] +2 depcoaA) < HAHF—|u<A2>| (73)

Y

REMARKS. The new bounds (72)—(73) are sharp iff the eigenval ues of Aare
collinear. In contrast, note that f—"%’@,ome have [ 1,3 Thm 3. 2]

depi(A < 2 nin {|M —Re (9 1|3, |N-iIm (g 1|3} (74)
and its (unsinplified) counterpart
IAI > |4 % =2 nin {|[M —Re (91|}, [N=iTm (91|} (75)

Unfortunately, the bounds (74)—(75) are sharp only when the eigenval ues are
horizontallyor verticallyalignedinthe conplex plane. Furthernore, the bounds
n(72)-(73) are half as expensive to conpute as those in (74)—(75). Despite these
shortcomngs, the l atter bounds are useful and have sone noteworthy properties.
In particular, the bounds in (72)-(73) and those in (74)—(75) yield the sane
values if Ais areal natrix. We also renark that (74) explicitly bounds matrix
nonnormalityin terns of the nonsymetry of A

Besides their practicality, the estimates (72)—(73) are also appealing becaus
they sonetines enable us to precisely conputie 4| depp( 4 for matrices

with extrenel y sensitive ei genval ues. For exanple, consider the nxnmtrix
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where W, is dense and unitarily simlar to the Wilkinson napgd 9Q]18

2 n
1

where n=20. The eigenval ues W, are real, and the interior ei genval ues are
notoriously diffcult to conpute for n>> 20. Thus, we cannot directly com
pute ||AE for, saflso due to these eigenvalue sensitivities. However, we can
accuratel y obtain fMnd depy( 4 for Wi vi a (72)—(73) since the sharpness of
these formuil as (nodul o roundi ng errors) only depends upon ei genval ue collinear-
ity — not eigenval ue sensitivity.

To summarize, we have developed several new and inproved bounds for
depi( A and ||A| %2, and described their significant properties. We have also
grouped these and the other known a priori bounds figrddaepd ||A|| % into
two categories. Within each category, we have given the best available bounds.
The bounds based on ||AA-M  H]||p have an i nportant property: they reduce
tozeroif Ais nornal. Unfortunately, such bounds are often weak, and i npracti -
cal to conputeif Ais large. Onhthe other hand, the bounds based on ei genval ue
alignnent are often good estimntes (e,glabl €31]), and they are practical
to conpute if Ais large and sparse. A mmnor drawback is that these bounds
only reduce to zero for normal natrices with collinear eigenvalues (e.g., Hermni-
tian and skew Hermtian matrices). Theorem4.1, Theorem4. 3 &hdn| 8]
describe the nonnormal nmatrices for which the bounds in (68)—(73) are sharp.

The significance of our results are descrilhed in §
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