
ORNL/TM-12743

Engineering Physics and Mathematics Division

Mathematical Sciences Section

DONIO: DISTRIBUTED OBJECT NETWORK I/O LIBRARY

E.F. D'Azevedo
C.H. Romine

Mathematical Sciences Section

Oak Ridge National Laboratory

P.O. Box 2008, Bldg. 6012

Oak Ridge, TN 37831-6367

Date Published: November 1994

Research supported by the Applied Mathematical Sci-
ences subprogram of the O�ce of Energy Research, U.S.
Department of Energy

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831

managed by
Martin Marietta Energy Systems, Inc.

for the
U.S. DEPARTMENT OF ENERGY

under Contract No. DE-AC05-84OR21400

Contents

1 Introduction : 1
2 Distributed Object Network I/O Library (DONIO) : : : : : : : : : : : 1
3 Distributed Object Library (DOLIB) : : : : : : : : : : : : : : : : : : : 3
4 User Interface : 4
5 Implementation Details : 14
6 Experimental Results : 15
7 PVM Implementation : 23
8 Summary : 23
9 Obtaining the Software : 23
10 Appendix : 25
11 References : 30

- iii -

List of Figures

6.1 DONIO on small problem. : 18
6.2 NX on small problem. : 19
6.3 DONIO on medium problem. : 20
6.4 NX on medium problem. : 21
6.5 DONIO on large problem. : 22

- v -

DONIO: DISTRIBUTED OBJECT NETWORK I/O LIBRARY

E.F. D'Azevedo

C.H. Romine

Abstract

This report describes the use and implementation of DONIO (Distributed

Object Network I/O), a library of routines that provide fast �le I/O ca-

pabilities in the Intel iPSC/860 and Paragon distributed memory parallel

environments. DONIO caches a copy of the �le in memory distributed across

all processors. Disk I/O routines (such as read, write, and lseek) are re-

placed by calls to DONIO routines, which translate these operations into

message communication to update the cached data. Experiments on the

Intel Paragon show that the cost of concurrent disk I/O using DONIO for

large �les can be 15{30 times smaller than using standard disk I/O.

- vii -

1. Introduction

Multi-megabyte disk input/output operations are commonly a major bottleneck

in large application codes on distributed memory parallel supercomputers. This

report describes the �rst version of the Distributed Network I/O (DONIO) li-

brary routines, which provide fast parallel �le input/output capabilities on Intel

iPSC/860 and Intel Paragon supercomputers. DONIO dramatically reduces the

disk I/O time on the Paragon. The disk I/O time in a groundwater modeling

code on 32 processors of a Paragon on a 52,000 node problem took 24 seconds

using DONIO, as compared to 1212 seconds using the Intel pfs and native NX

I/O calls. On a larger 1.3Million node problem running on 256 processors of the

Paragon, the I/O time using DONIO grew to only 160 seconds.

This new Network I/O library (DONIO) provides fast operations by cacheing

a copy of the disk �le in memory distributed across all processors. Disk I/O

requests are then translated into message communication to exploit the high

network bandwidth for moving data. Actual disk operations are performed in

large blocks using a few I/O processors to take advantage of RAID 0 striping

across multiple disks.

2. Distributed Object Network I/O Library (DONIO)

DONIO is designed to speed up the I/O for distributed-memory parallel applica-

tions where all processors open a large multi-megabyte shared �le for simultane-

ous access. To access a shared �le, each processor relocates its own private copy

of the �le pointer with lseek's to speci�c places in the �le and then performs in-

put/output operations. (Simultaneous output to overlapping regions in a shared

�le is nondeterministic; therefore, we assume that output operations do not over-

lap among processors). Such �le access patterns are common in �nite element

codes that are based on subdomain decomposition. For example, the data for

material properties or boundary conditions are commonly stored in shared �les.

This arrangement provides
exibility in solving the same problem with varying

- 2 -

numbers or con�gurations of processors without rearranging the data �les.

A disadvantage of large shared �les is that the overhead induced by many

processors attempting to access the disk �le concurrently can be quite large.

Machines like the Intel i860 and Paragon attempt to support simultaneous access

through a special �le system (CFS for the i860, PFS for the Paragon). Even

with this support, the cost for concurrent access to the same �le can signi�cantly

degrade the performance of a parallel program. The performance of the current

generation of Intel's CFS and PFS �le systems is hampered by strict adherence to

the OSF/1 standard. This in e�ect serializes the I/O to prevent any anomalous

behavior of the �le system.

DONIO o�ers a UNIX-like interface consisting of the `C' callable primitives

do open, do read, do write, do lseek, do lsize, do flush and do close, which

are similar to the open, cread, cwrite, lseek, lsize, flush and close routines

provided by the Intel NX operating system. A Fortran callable interface, (e.g.,

DOREAD for do read), is also provided. Section 4 describes the use of these DONIO

primitives in more detail. Changing the names of the I/O subroutines called in

an application program from the NX version to the DONIO version (leaving the

parameters untouched) and then linking in the DONIO library is generally all that

is required to use the package. An important note: DONIO operates only on UNIX

compatible binary �les, which may be incompatible with Fortran unformatted

�xed-size record �les.

DONIO uses the simple idea of caching the entire disk �le into the memory

on the multiprocessor. Each processor has a limited amount of memory, so the

cached data must be distributed among all processors. do read and do write

access the cached copy in the aggregate memory instead of the disk �le. Actual

disk operations in DONIO are performed only during do open for read-only and

read-write �les, and do close for read-write and write-only �les. For simplicity,

DONIO only provides support for read-only, read-write and write-only �les, e.g.,

�les that have been opened with
ags O RDONLY, O RDWR and O WRONLY, respec-

tively. The O CREAT
ag is required for opening �les that do not yet exist. Unlike

- 3 -

the UNIX open call, opening a write-only �le in DONIO will overwrite the �le if it

already exists.

Most parallel supercomputers support a high performance parallel disk par-

tition where disk records are striped across multiple disk for fast access. On the

Intel machines, disk requests are serviced by dedicated I/O processors. Any ac-

tual disk I/O that is performed by DONIO operates on large blocks of contiguous

data using the available I/O processors to take full advantage of RAID 0 striping

across multiple disks. Note that the largest �le permitted in the �le system pro-

vided with Intel OSF/1 using the standard routines is 2 gigabytes. A 2 gigabyte

�le can be comfortably stored in DONIO with 4 megabytes each on 512 processors.

The (emulated) shared memory support in DONIO is provided by the Dis-

tributed Object Library (DOLIB) [1]. DOLIB is a set of library routines that allow

dynamic creation (and destruction) of large global shared arrays on distributed

memory environments, where these arrays are stored as \Distributed Objects"

across all processors. DONIO stores the cached disk �le as a one-dimensional ar-

ray in global shared memory. DONIO translates disk operations such as do read

and do write into DOLIB gather/scatter operations on the global array. In

section 3, we provide a quick overview of the capabilities provided by DOLIB. For

further details on the implementation of distributed objects using DOLIB, we refer

the reader to [1].

3. Distributed Object Library (DOLIB)

A key component in DONIO is the transparent access to disk blocks cached in glob-

ally shared memory that is provided by the distributed-object library (DOLIB).

DOLIB enables all processors to operate directly on any part of a distributed global

array through explicit calls to gather and scatter. Advantages of using DOLIB

include: dynamic allocation and freeing of huge (gigabyte) distributed arrays,

both C and Fortran callable interfaces, and the ability to mix shared-memory

and message-passing programming models for ease of programming and optimal

performance.

- 4 -

DOLIB views a large global array as composed of �xed size pages stored in a

block wrapped fashion across all processors. These pages can be easily malloc'ed

or free'ed. Currently, DOLIB is implemented using the IPX (Inter Process eXe-

cution) [3] system developed at Brookhaven National Laboratory.1 DOLIB (and

IPX) relies heavily on a reliable interrupt mechanism provided by hrecv on Intel

multiprocessors. If a processor makes a call to gather, DOLIB �rst determines

where (on which other processors) the requested data reside. For example, sup-

pose that processor A requires data residing on processors B and C. The gather

causes processor A to send message requests that interrupt processors B and C

from regular computation. These processors package the requested data and send

reply messages back to Processor A. They then exit this \interrupt" mode and

resume regular computation. A similar sequence of messages is generated in a

scatter operation.

The important facility provided by Intel's hrecv primitive is that all such

signals are caught. For example, if processor B in the example above receives

another interrupt while processing the one from processor A, the new interrupt is

queued and then processed before processor B returns to normal execution mode.

In section 7, we discuss how to implement DOLIB in the absence of such reliable

signal handling.

For more details on the use of DOLIB as a programming paradigm for dis-

tributed memory multiprocessors, we refer the reader to [1].

4. User Interface

The following pages provide details on the syntax and behavior of each of the

DONIO primitives. They form the manual pages for the eight procedures.

1IPX is available by anonymous FTP from the site msg.das.bnl.gov under the directory

/pub/ipx.

- 5 -

do nio

do nio initializes the DONIO system. do nio must be called prior to opening

any �les with do open. In C, do nio returns 0 on success, -1 on failure.

Synopsis

int do nio(int myid, int nproc)

subroutine donio(myid, nproc)

integer myid, nproc

Input parameters

myid { myid is the id number of the calling processor.

nproc { nproc is the total number of processors executing.

Discussion

do nio initializes the DONIO network I/O library. do nio sets up inter-

nal data structures and initializes the DOLIB and IPX subsystems. Calling

do nio is required before any other calls to DONIO routines. Failure to do

so will result in an error.

- 6 -

do open

do open returns a non-negative descriptor on success. On failure, it returns

-1. An implicit global synchronization is performed.

Synopsis

#include <sys/fcntl.h>

int do open(char *path, int flags, int mode)

include 'fnx.h'

integer function doopen(path, flags, mode)

character*(*) path

integer flags, mode

Input parameters

path { path is a null-terminated string that contains the path-

name of the �le.

flags { flags contains the access
ags. Currently three ac-

cess modes are supported: O RDONLY=0 for read-

only access, O WRONLY=1 for write only access, and

O RDWR=2 for read-write access. The latter two modes

can be combined with O CREAT=512 (e.g., (O WRONLY |

O CREAT)=513 or (O RDWR | O CREAT)=514) if the �le

does not exist.

mode { mode is the �le permission (see chmod(2)) used in cre-

ating the output �le. mode is ignored if the �le already

exists.

Discussion

The routine emulates the UNIX open (see open(2) in the UNIX manual),

which opens the named �le speci�ed by path for read-only, write-only or

- 7 -

read-write access, as speci�ed by the flags argument, and returns a de-

scriptor for that �le. For write-only or read-write access, if the �le does

not exist, it is created with permission mode mode (see chmod(2)). Note

that do open di�ers from UNIX open if the write-only �le already exists.

In that case, the �le is �rst truncated (see truncate(2)) to an empty �le and

then rewritten.

All processors must participate in the do open call. An implicit global

synchronization is performed.

For read-only and read-write access, the entire �le is read into global shared

memory. This shared memory is deallocated on do close. do open may

fail due to lack of memory. For write-only or read-write access, do open

should be followed immediately by a call to do lsize that estimates the

size of the output �le. See the manual page for do lsize for further details.

A Fortran example of the use of do open is given below:

c ---

c --- mode is set to octal 666,

c --- full read-write permission

c ---

mode = 8*8*6 + 8*6 + 6

rflags = 0

c ---

c --- be sure path is null terminated

c ---

path = '/pfs/infile' // char(0)

fd = doopen(path, rflags, mode)

- 8 -

do lsize

do lsize estimates the size of the write-only or read-write output �le as-

sociated with �le descriptor fd. Calling do lsize is required after the �le

has been opened with do open and prior to any call to do write involv-

ing the �le. In C, do lsize returns nbytes on success. An implicit global

synchronization is performed.

Synopsis

int do lsize(int fd, int nbytes)

subroutine dolsize(fd, nbytes)

integer fd, nbytes

Input parameters

fd { fd is the �le descriptor obtained from do open.

nbytes { nbytes is the estimated �le size in bytes.

Discussion

do lsize allocates the requested space before starting write operations.

Underestimation of �le size will lead to an error condition. Overestimation

will lead to unnecessarily high memory use but the actual �le generated on

disk will be of correct/minimal size. do lsize should be called immediately

after do open for write-only and read-write �les. Calling do lsize for �les

opened for read-only access results in an error.

All processors must participate in the do lsize. An implicit global syn-

chronization is performed.

- 9 -

do lseek

do lseek sets the (local) seek pointer of the open �le associated with the �le

descriptor and returns the new seek position.

Synopsis

#include <unistd.h>

int do lseek(int fd, int offset, int whence)

include 'fnx.h'

integer function dolseek(fd, offset, whence)

integer fd, offset, whence

Input parameters

fd { fd is the �le descriptor obtained from do open.

offset { offset is the o�set in bytes.

whence { whencedetermines the computation with o�set. whence

is one of SEEK SET=0, SEEK CUR=1 or SEEK END=2.

Discussion

do lseek sets the seek pointer associated with the open �le speci�ed by the

descriptor fd according to the value supplied for whence. whence must be

one of SEEK SET=0, SEEK CUR=1, SEEK END=2 de�ned in <unistd.h> (see

lseek(2)).

If whence is SEEK SET, the seek pointer is set to offset bytes. If whence

is SEEK CUR, the seek pointer is set to its current location plus offset. If

whence is SEEK END, the seek pointer is set to the size of the �le plus offset.

do lseek(fd, 0, SEEK END) returns the size (in bytes) of the opened

�le associated with fd.

- 10 -

do read

do read performs a read operation into the speci�ed bu�er. In C, do read

returns the number of bytes read.

Synopsis

int do read(int fd, void *buf, int nbytes)

subroutine doread(fd, buf, nbytes)

integer fd, buf(*), nbytes

Input parameters

fd { fd is the �le descriptor obtained from do open.

buf { buf is the bu�er.

nbytes { nbytes is the number of bytes to be read.

Description

do read attempts to read nbytes bytes of data from the �le referenced by

the descriptor fd into the bu�er buf (see read(2)).

This is a synchronous call. The calling process waits (blocks) until the

request is completed. Note that reading past the end of �le causes an error.

Calling do read to read from a write-only �le causes an error. The seek

pointer is updated to point to the next byte in the �le.

- 11 -

do write

do write performs a write operation from the speci�ed bu�er. In C, do write

returns the number of bytes written.

Synopsis

int do write(int fd, void *buf, int nbytes)

subroutine dowrite(fd, buf, nbytes)

integer fd, buf(*), nbytes

Input parameters

fd { fd is the �le descriptor obtained from do open.

buf { buf is the bu�er.

nbytes { nbytes is the number of bytes to be written.

Description

do write attempts to write nbytes bytes of data to the �le referenced by

the descriptor fd from the bu�er buf (see write(2)).

This is a synchronous call. The calling process waits (blocks) until the

request is completed. Note that writing past the estimated size of �le

determined in do lsize causes an error. Calling do write before do lsize

has been called causes an error. Calling do write to write to a read-only

�le causes an error. The seek pointer is updated to point to the next byte

in the �le.

- 12 -

do flush

do flush forces DONIO to write the cached �le associated with the given

�le descriptor to the disk. In C, do flush returns 0 on success and -1 on

failure. An implicit global synchronization is performed.

Synopsis

int do flush(int fd)

subroutine doflush(fd)

integer fd

Input parameters

fd { fd is the �le descriptor obtained from do open.

Discussion

do flush forces an immediate write of the speci�ed cached �le to disk.

do flush is provided to support checkpointing, since in the event of a ma-

chine malfunction, all data written to the cached �le will be lost. DONIO

automatically keeps track of the largest byte addressed with do write, so

the disk �le will have the correct size. However, unwritten bytes (i.e., gaps)

in the �le will contain garbage. Subsequent calls to do flush with the same

argument will overwrite the disk �le, rather than appending to it. How-

ever, if no changes have been made to the cached �le since the last call to

do flush no disk I/O will take place.

All processors must participate in the do flush call. An implicit global

synchronization is performed.

- 13 -

do close

do close closes the �le associated with the �le descriptor and deallocates

global shared resources. do close must be called to ensure that any writes

are saved to disk. In C, do close returns 0 on success and -1 on failure.

An implicit global synchronization is performed.

Synopsis

int do close(int fd)

subroutine doclose(fd)

integer fd

Input parameters

fd { fd is the �le descriptor obtained from do open.

Discussion

do close deallocates the global shared resources used for cacheing the �le

data associated with the �le descriptor fd. For write-only and read-write

�les, do close �rst initiates the actual disk operations, if necessary, to write

out the cached data to the disk �le before resources are deallocated. (If no

changes have been made to a read-write �le, no disk I/O is performed).

Important note: Unlike the UNIX routines, no implicit do close calls are

performed when the program terminates. Hence, if the user fails to call

do close for a given �le, any writes to the �le will be lost upon program

termination! All processors must participate in the do close call. An

implicit global synchronization is performed.

- 14 -

5. Implementation Details

DONIO is designed to emulate, in large part, the UNIX �le I/O routines. In this

section, we discuss several design decisions that lead to di�erences between them.

DONIO uses DOLIB to implement a cached disk �le as a globally distributed

array of bytes. DOLIB provides bounds checking on such global arrays; conse-

quently, the size of an array in DOLIB (and hence the size of a �le in DONIO) is

determined at creation time. For read-only �les, the size is determined from the

disk �le. For write-only or read-write �les, DONIO requires the user to specify

the eventual maximum �le size by calling do lsize. Attempting �le access be-

yond the speci�ed maximum results in a reference to a nonexistent DOLIB array

element, which is
agged as an error.

In many applications, it may be di�cult for the user to ascertain in advance

the exact eventual size of the �le being written. However, DONIO automatically

keeps track of the highest address actually used. If the user overestimates the

�le size in do lsize then the correct (exact) size �le will be written to disk.

Overestimating the �le size means only that the (unused) extra allocated memory

will be unavailable for the user's application.

In DONIO all processors must participate concurrently in do open, do lsize

do flush and do close. The processors are synchronized when opening a shared

�le with do open so that DOLIB can set up common data structures. Processors

are synchronized when specifying the �le size with do lsize, which determines

how much memory each should allocate. They are synchronized in do flush and

in do close to ensure that there are no outstanding read/write requests.

When DONIO opens an existing disk �le with write-only access, there is no

guarantee that DONIO will have read permission on the �le, so the current con-

tents cannot be cached across the processors. For simplicity, we have decided to

truncate the �le to zero length. Existing �les that are to be updated using DONIO

should be opened with read-write access.

DONIO does not support an APPEND mode for �le I/O. APPEND mode is most

often used for writing out intermediate computational results such as results

- 15 -

for each time-step in a time-dependent calculation. If write-only mode is used

instead, the eventual size of the �le may be so large that it is impractical to

allocate memory for it. We recommend that the user open separate �les for each

logically separate set of data, e.g., a separate �le for each time-step.

We have demonstrated that DONIO has signi�cant advantages over the stan-

dard I/O routines for concurrent I/O. However, unlike the standard routines,

actual disk I/O is performed during do open and do close depending on the �le

access
ags. Hence, the cost of these routines may seem unusually high compared

to the UNIX routines open and close.

6. Experimental Results

In this section we present a rough comparison of disk performance by DONIO

versus native NX routines. The Fortran source code is included in the Appendix.

The code is a contrived example that simulates the disk I/O common in �nite

element codes by performing multiple direct access lseek's, read's and write's.

This example generates the element-to-vertex list for a three dimensional nnx�

nny � nnz grid. The elements are assumed to be ordered with z-index varying

fastest, then x then y. Elements along the vertical direction are grouped in bu�er

mibuf before writing, to obtain better disk performance. Note that the element-

to-vertex list �le is independent of the number of processors. The same �le is

later read again.

Since operating system patches and compiler upgrades are regularly applied

to the 512-processor Paragon at Oak Ridge National Laboratory and DONIO is

currently undergoing performance tuning, the performance numbers listed should

be taken only as approximate and re
ect only the current state of a�airs.

Three problems were used for testing: a small 41� 41� 31 (48,000 elements)

problem, a medium 81 � 81 � 61 (384,000 elements), and a large 121 � 121 � 91

(1,296,000 elements) problem. Timings for NX native routines on the largest

problem were over 1,000 seconds. These times were highly variable since the

machine was not dedicated to our application, and hence they are not reported.

- 16 -

Table 6.1: DONIO routines on 41� 41 � 31 grid, �le size is 1,536,000 bytes.

processor wopen write wclose ropen read rclose

4 0.55 2.45 3.04 2.30 14.67 0.01
8 0.58 1.39 3.06 2.35 8.19 0.01
16 0.59 0.85 2.86 2.69 3.70 0.01
32 0.60 0.55 3.13 2.36 1.81 0.01
64 0.62 0.37 2.64 2.50 1.10 0.02

Table 6.2: NX routines on 41 � 41 � 31 grid, �le size is 1,536,000 bytes.

processor wopen write wclose ropen read rclose

4 1.95 60.03 0.24 1.19 34.97 0.24
8 4.02 54.11 0.45 2.24 43.41 0.45
16 6.86 60.74 0.71 6.07 39.47 0.71
32 14.23 59.15 0.93 17.70 41.11 1.25
64 53.81 65.10 2.86 44.53 42.56 3.05

Tables 6.1{6.5 list the runtimes obtained from dclock(). wopen (wclose) de-

notes the time for opening (closing) a �le for write-only access; similarly, ropen

and rclose apply to read-only access. Note that time consuming actual disk

operations are performed in DONIO during wclose and ropen. Only 4 I/O pro-

cessors were used in DONIO, hence actual disk I/O time is largely insensitive to

the total number of processors.

Figures 6.1{6.5 present graphical views of the results. Note that read and

write times in DONIO decrease with the addition of more processors; since as

more processors are used, fewer messages per processor are generated. On the

other hand, NX disk operations are handled by 6 dedicated I/O processors. For

a given problem the total number of disk requests is �xed, and hence I/O times

do not decrease with more processors.

We see that on all test cases, total time for DONIO is over 15 times faster than

using native NX routines.

- 17 -

Table 6.3: DONIO routines on 81 � 81 � 61 grid, �le size is 12,288,000 bytes.

processor wopen write wclose ropen read rclose

4 0.72 13.53 13.05 20.76 67.56 0.01
8 0.57 7.33 13.53 11.72 31.51 0.01
16 0.59 3.85 10.85 14.98 16.30 0.01
32 1.09 2.15 8.80 10.86 8.55 0.01
64 0.66 1.29 8.84 12.07 4.87 0.01

Table 6.4: NX routines on 81 � 81 � 61 grid, �le size is 12,288,000 bytes.

processor wopen write wclose ropen read rclose

4 1.71 241.02 0.25 1.75 182.80 0.18
8 4.24 237.12 0.46 3.31 162.70 0.46
16 9.52 231.62 0.78 9.54 179.01 0.74
32 16.95 247.22 1.32 23.92 185.91 1.05
64 51.18 239.68 3.12 45.47 182.56 2.79

Table 6.5: DONIO routines on 121 � 121 � 91 grid, �le size is 41,472,000 bytes.

processor wopen write wclose ropen read rclose

8 0.95 20.69 46.13 56.91 77.19 0.01
16 0.81 10.79 41.44 47.00 36.32 0.01
32 0.61 5.65 36.97 40.80 21.16 0.01
64 0.64 3.03 41.64 42.67 11.57 0.01
128 0.65 1.80 33.05 39.22 6.90 0.02

- 18 -

0

5

10

15

20

25

4 8 16 32 64
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
AAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
AAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
AAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
AAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
AAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
AAAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

write
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

wclose
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

ropen
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

read

DONIO routines
41x41x31, filesize 1,536,000bytes

Figure 6.1: DONIO on small problem.

- 19 -

0

50

100

150

200

250

tim
e

in
 s

ec
on

ds

4 8 16 32 64
processor

wopen write wclose
ropen read rclose

NX routines
41x41x31, filesize 1,536,000bytes

Figure 6.2: NX on small problem.

- 20 -

0

20

40

60

80

100

120

4 8 16 32 64
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
AAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
AAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
AAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
AAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
AAAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AA
AAAAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

write
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

wclose
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

ropen
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

read

DONIO routines
81x81x61, filesize 12,288,000bytes

Figure 6.3: DONIO on medium problem.

- 21 -

0

100
200
300

400
500

600

tim
e

in
 s

ec
on

ds

4 8 16 32 64
processors

wopen write wclose
ropen read rclose

NX routines
81x81x61, filesize 12,288,000 bytes

Figure 6.4: NX on medium problem.

- 22 -

0

50

100

150

200

250

8 16 32 64 128
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
AAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
AAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
AAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
AAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
AAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
AAAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

A
A
A
A

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AAAAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

write
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

wclose
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

ropen
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

read

DONIO routines
121x121x91, filesize 41,472,000bytes

Figure 6.5: DONIO on large problem.

- 23 -

7. PVM Implementation

PVM, or Parallel Virtual Machine, is currently one of the most widely used message-

passing paradigms [2]. A well-written distributed-memory parallel code using

PVM will run on a wide class of machines, from supercomputers to heterogeneous

collections of workstations. We intend to take advantage of this portability by

creating versions of DONIO and DOLIB that use PVM for message-passing.

Unfortunately, the interrupt capabilities of PVM are limited to unreliable UNIX

signals. There is no guarantee that signals will not be lost. Under PVM, we propose

to have DOLIB periodically poll for pending messages. PVM's signal handler will

be used only to induce a process to check its message queue.

For further discussion of how DOLIB should be implemented under PVM, the

reader is referred to [1].

8. Summary

We have described DONIO, a fast �le I/O emulation library for the Intel iPSC

and Paragon distributed memory multiprocessors. DONIO provides an easy to use

interface that, with minimal change to the source of an iPSC/860 or Paragon

parallel program, can speed up �le I/O by a factor of 15 to 30 times. DONIO

creates a copy of the disk �le in the aggregate memory of the multiprocessor.

Disk I/O operations are replaced with the matching DONIO routines, which e�ect

memory updates to this copy. DONIO relies on the underlying library DOLIB,

which supports the creation, use and destruction of globally shared arrays in

distributed-memory environments.

9. Obtaining the Software

To obtain the source code for DONIO the reader should send email to the authors:

efdazedo@msr.epm.ornl.gov or rominech@ornl.gov.

- 24 -

Acknowledgements

The authors would like to express appreciation to Bob Marr, Ron Peierls and Joe

Pasciak for the IPX package, which simpli�ed the development of DONIO. We also

thank David Walker and Pat Worley for suggesting improvements both to DONIO

and to this report.

- 25 -

10. Appendix

In this appendix, we list the Fortran source code used in comparing the perfor-

mance of DONIO and NX disk operations. Note that either DONIO or NX routines

can be selected by a
ag at compile time.

program ex1

c---

c--- a simple example to illustrate the use of DONIO

c---

include 'fnx.h'

#ifdef USE_NX

c---

c--- note: fd is defined as a constant unit number

c---

integer fd

parameter(fd=16)

#define IOINIT(myid,nproc)

#define LSEEK lseek

#define ROPEN(fd, filename) open(fd,file=filename,form='unformatted')

#define WOPEN(fd, filename) open(fd,file=filename,form='unformatted')

#define LSIZE(fd, newsize) ierr = lsize(fd, newsize, SIZE_SET)

#define CREAD(fd, ibuffer,nbytes) call cread(fd,ibuffer,nbytes)

#define CWRITE(fd, ibuffer, nbytes) call cwrite(fd, ibuffer, nbytes)

#define CCLOSE(fd) close(fd)

#define GSYNC gsync

#else

integer rflags,wflags,mode

parameter(rflags=0,wflags=(512+1),mode=(8*8*6+8*6+6))

integer doopen, doread, dowrite, dolseek

external doopen, doread, dowrite, dolseek

external doclose,dolsize

c---

c--- note: fd is declared as a variable

c---

integer fd

#define IOINIT(myid,nproc) call donio(myid,nproc)

#define LSEEK dolseek

- 26 -

#define ROPEN(fd, filename) fd = doopen(filename, rflags,mode)

#define WOPEN(fd, filename) fd = doopen(filename, wflags,mode)

#define LSIZE(fd, newsize) call dolsize(fd, newsize)

#define CREAD(fd, ibuffer,nbytes) call doread(fd, ibuffer, nbytes)

#define CWRITE(fd, ibuffer, nbytes) call dowrite(fd, ibuffer, nbytes)

#define CCLOSE(fd) call doclose(fd)

#define GSYNC dogsync

#endif

integer indev,outdev,sizeint,nvertex,maxnez

parameter(indev=5,outdev=6,sizeint=4,nvertex=8,maxnez=1024)

double precision tstart,tend

character*80 filename

integer i, ix,iy,iz, nnx,nny,nnz, nex,ney,nez

integer mbuf(nvertex,maxnez)

integer nbytes,totalbytes, myid,nproc

integer mi,i,ierr,offset, iwork

logical ismine

c---

c--- 8 vertices of an hexahedral brick element

c---

integer dx(nvertex),dy(nvertex),dz(nvertex)

data dx /0,1,1,0, 0,1,1,0/

data dy /0,0,1,1, 0,0,1,1/

data dz /0,0,0,0, 1,1,1,1/

integer ijk2mi,ijk2ni

ijk2mi(ix,iy,iz,nex,ney,nez) = iz+(ix-1)*nez+(iy-1)*nez*nex

ijk2ni(ix,iy,iz,nnx,nny,nnz) = iz+(ix-1)*nnz+(iy-1)*nnz*nnx

c---

c--- code begins

c---

myid = mynode()

nproc = numnodes()

IOINIT(myid, nproc)

nnx = 0

nny = 0

nnz = 0

if (myid .eq. 0) then

- 27 -

write(outdev,*) 'enter nnx,nny,nnz '

read(indev,*) nnx,nny,nnz

write(outdev,*) 'nproc, nnx,nny,nnz ', nproc,nnx,nny,nnz

endif

call gisum(nnx,1,iwork)

call gisum(nny,1,iwork)

call gisum(nnz,1,iwork)

nex = nnx - 1

ney = nny - 1

nez = nnz - 1

totalbytes = (nex*ney*nez)*nvertex*sizeint

call GSYNC()

tstart = dclock()

#ifdef USE_NX

filename = '/pfs/nxex.bin'

#else

c---

c--- IMPORTANT NOTE: string MUST be null terminated

c---

filename = '/pfs/ex.bin' // char(0)

#endif

WOPEN(fd, filename)

c---

c--- ESSENTIAL to call dolsize

c---

LSIZE(fd, totalbytes)

call GSYNC()

tend = dclock()

if (myid .eq. 0) then

write(outdev,*) ' open/lsize takes ', tend-tstart,' sec'

write(outdev,*) ' total file size is ', totalbytes,' bytes'

endif

c

nbytes = nvertex*sizeint

call GSYNC()

tstart = dclock()

do ix=1,nex

do iy=1,ney

ismine = (mod(ix+(iy-1)*nex, nproc) .eq. myid)

if (ismine) then

- 28 -

do iz=1,nez

do i=1,nvertex

mbuf(i,iz)=ijk2ni(ix+dx(i),iy+dy(i),iz+dz(i),nnx,nny,nnz)

enddo

enddo

mi = ijk2mi(ix,iy,1, nex,ney,nez)

offset = (mi-1)*nvertex*sizeint

ierr = LSEEK(fd, offset, SEEK_SET)

nbytes = nez*nvertex*sizeint

CWRITE(fd, mbuf(1,1), nbytes)

endif

enddo

enddo

call GSYNC()

tend = dclock()

if (myid .eq. 0) then

write(outdev,*) ' write takes ', tend - tstart,' sec'

endif

call GSYNC()

tstart = dclock()

CCLOSE(fd)

call GSYNC()

tend = dclock()

if (myid .eq. 0) then

write(outdev,*)' close for write takes ',tend-tstart,' sec'

endif

c ---

c --- read the element list back

c ---

call GSYNC()

tstart = dclock()

ROPEN(fd, filename)

call GSYNC()

tend = dclock()

if (myid .eq. 0) then

write(outdev,*)' open for read takes ', tend-tstart,' sec'

endif

nbytes = nvertex*sizeint

call GSYNC()

- 29 -

tstart = dclock()

do ix=1,nex

do iy=1,ney

ismine = (mod(ix+(iy-1)*nex, nproc) .eq. myid)

if (ismine) then

mi = ijk2mi(ix,iy, 1, nex,ney,nez)

offset = (mi-1)*nvertex*sizeint

ierr = LSEEK(fd, offset, SEEK_SET)

nbytes = nez*nvertex*sizeint

CREAD(fd, mbuf(1,1), nbytes)

endif

enddo

enddo

call GSYNC()

tend = dclock()

if (myid .eq. 0) then

write(outdev,*) ' all reads take ',tend-tstart,' sec'

endif

call GSYNC()

tstart = dclock()

CCLOSE(fd)

call GSYNC()

tend = dclock()

if (myid .eq. 0) then

write(outdev,*) ' close for read takes ', tend-tstart,' sec'

endif

stop

end

- 30 -

11. References

[1] E. F. D'Azevedo and C. H. Romine, DOLIB: Distributed object library,

Tech. Report ORNL/TM-12744, Oak Ridge National Laboratory, 1994.

[2] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and

V. Sunderam, PVM 3 user's guide and reference manual, Tech. Report

ORNL/TM-12187, Oak Ridge National Laboratory, 1993.

[3] B. Marr, R. Peierls, and J. Pasciak, IPX { Preemptive remote pro-

cedure execution for concurrent applications, Tech. Report, Brookhaven Na-

tional Laboratory, 1994.

