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ABSTRACT

This report identifies an appropriate thermal stabilization temperature for 233U oxides.
The temperature is chosen principally on the basis of eliminating moisture and other residual
volatiles.  This report supports the U. S. Department of Energy (DOE) Standard for safe storage
of 233U (DOE 2000), written as part of the response to Recommendation 97-1 of the Defense
Nuclear Facilities Safety Board (DNFSB), addressing safe storage of 233U.

The primary goals in choosing a stabilization temperature are (1) to ensure that the
residual volatiles content is less than 0.5 wt % including moisture, which might produce
pressurizing gases via radiolysis during long-term sealed storage;  (2) to minimize potential for
water readsorption above the 0.5 wt % threshold; and (3) to eliminate reactive uranium species.
The secondary goals are (1) to reduce potential future chemical reactivity and (2) to increase the
particle size thereby reducing the potential airborne release fraction (ARF) under postulated
accident scenarios.

The prevalent species of uranium oxide are the chemical forms UO2, UO3, and U3O8.
Conversion to U3O8 is sufficient to accomplish all of the desired goals.  The preferred storage
form is U3O8 because it is more stable than UO2 or UO3 in oxidizing atmospheres.  Heating in an
oxidizing atmosphere at 750°C for at least one hour will achieve the thermal stabilization desired.
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1. INTRODUCTION

The purpose of this report is to select a thermal stabilization temperature to treat 233U
oxides.  This report supports the U. S. Department of Energy (DOE) Standard for the safe storage
of 233U (DOE 2000), written in response to Recommendation 97-1 of the Defense Nuclear
Facilities Safety Board (DNFSB) (DNFSB 1997).

The existing prevalent 233U oxide powder species present are UO2, UO3, and U3O8.  The
merits and deficiencies of different temperatures for the treatment of each species will be
discussed.  The U:O systems discussed are stoichiometric ratios that indicate the 3 major
crystalline phases (with some variation in stoichiometry depending on oxygen potential).

For reasons that will be detailed further in this report, the desired final stabilized form for
the uranium oxides is U3O8 powder.  Moisture and residual volatiles content will be less than
0.5 wt  %.  Reactive uranium species will have been eliminated; and for some starting materials,
the particle size should be increased and the specific surface area reduced.

The primary goal of thermal stabilization is to eliminate moisture and other residual
volatiles that could potentially produce pressurizing gases via radiolysis during long-term sealed
storage.  This goal can be accomplished while converting the material to the most stable form,
U3O8.  Stabilization also minimizes the potential for water readsorption above the 0.5 wt %
threshold, stabilizes reactive uranium species, and increases particle size (reduces specific surface
area) for some starting species.  These characteristics will enable the safe long-term storage of
233U-bearing materials.
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2. URANIUM OXIDE PROPERTIES

2.1 THERMAL CONDUCTIVITY

Because of the relatively low thermal conductivity of UO2, UO3, and U3O8, the
temperature for heating the uranium material in this document refers to the temperature of the
material itself instead of the oven temperature.  Table 1 is a compilation of the uranium oxide
thermal conductivities.

Table 1. Uranium oxide thermal conductivities

Uranium oxide Thermal conductivity (W m-1 °C-1 )

UO2 0.705a

U3O8  0.0838b

 aPrepared from Mallinckrodt pressurized-water reactor (PWR)-grade powder; 85% theoretical density,
1400 K (Touloukian 1967).
bPressed at 100 psi, 775 K (Touloukian 1967)

For comparison, the thermal conductivity of aluminum metal is 240 W m-1 ºC -1 at 100ºC
(McCabe, Smith, and Harriot 1993).  Because of the relatively low thermal conductivity of
uranium oxides, measurement of the material temperature (or compensation for thermal
conductivity), rather than relying solely on the oven temperature, is required.

2.2 PARTICLE SIZE

By increasing particle size, the inhala tion hazard from uranium oxide powders is reduced.
It is generally expected that particle size will increase upon heating (Belle 1961).  Heating UO3

powder to form U3O8 has been shown to reduce the surface area, indicating larger particles.  This
effect seems to be more significant at temperatures in excess of 500°C (Harrington and Ruehle
1959).  Heating UO2 powder at 800°C also decreased the surface area (Smith and Leitnaker
1971).

Much of the current Oak Ridge National Laboratory (ORNL) inventory of 233U oxides
was prepared by heating pregranulated ammonium diuranate (ADU) for 6 h at an oven
temperature of 800°C.  The particle size distribution for these powders shows that greater than
90% of the particles have less than 10 microns equivalent of spherical diameter (Parrott, Sr. et al
1979).  Therefore, the magnitude of particle size increase may be significantly more dependent on
the characteristics of the starting material than on temperatures in the 500-800°C range.
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2.3 STABILITY

Conversion to U3O8 creates a more stable chemical form of uranium than other oxides.
Upon heating in an oxidizing atmosphere above 650°C, all other uranium oxides (and many other
uranium compounds) decompose or convert to U3O8.  Furthermore, oxygen lost from heating
U3O8 above 800°C is rapidly replaced upon cooling (Katz, Seaborg, and Morss 1986).  Because
of this chemical stability, U3O8 is the preferred storage form.
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3.  HEATING EFFECTS ON VOLATILES

3.1 MOISTURE

There has been a continuing concern that moisture and other volatiles theoretically can
produce pressurizing gases during long-term, sealed storage via radiolysis.  Reduction of this
potential source of pressurization is a primary reason for treating the uranium oxides.  Heating
uranium oxide will reduce moisture content to less than 0.5 wt % and similarly reduce equivalent
quantities of residual species (e.g., hydrates), which might produce pressurizing gases.  The
0.5 wt % specification is a generally accepted limit that is reasonable to achieve and for which no
negative affects have been identified.  Reducing the amount of moisture present also reduces the
potential for and rate of container corrosion.

Free water is eliminated during heating at temperatures above 100°C (i.e., simple
evaporation in a vented vessel).  The three principal uranium oxides (UO2, UO3, and U3O8) all
form hydrates.  However, UO2 and U3O8 form hydrates only when prepared via a precipitation
reaction.  On the other hand, UO3 can form hydrates directly through reaction with H2O between
temperatures of 5 and 75°C (Vdovenko 1960).  Heating above 400°C converts hydrated UO3 to
dry UO3 by driving off all waters of hydration (Harrington and Ruehle 1959).  The UO2 powders
fabricated at Oak Ridge National Laboratory (ORNL) have moisture contents between 0.10 and
0.36 wt %, which is below the specified 0.5 wt % (Parrott, Sr. et al. 1979).

The potential for moisture readsorption (during prolonged interim ambient storage before
packaging) is reduced by heating.  The potential for moisture readsorption is proportional to the
surface area.  When oxides are stabilized at higher temperatures, the surface area tends to be
reduced, thus reducing the potential for readsorption.  For stabilized UO2 and U3O8, moisture
does not tend to be readsorbed in significant amounts.  However, UO3 hydrates may be able to
reform under direct exposure to H2O below 60°C (Harrington and Ruehle 1959).

3.2 OTHER VOLATILES

Uranyl nitrate, UO2(NO3)2,  which generally appears with multiple waters of hydration
(up to six), is the principle intermediary for the purification of 233U oxides from thorium fuel
(Storch 1999).  Above 300°C, the uranyl nitrate is denitrated.  Since all 233U oxides produced by
this method were treated above 300°C, no uranyl nitrate is expected to be present.  The
conversion to U3O8 will eliminate any postulated residual uranyl nitrate.

With the exception of materials existing as part of the packaging (e.g., elastomeric
gaskets in container lids, plastic bagging around closed inner containers, or plastic inner
containers), there is no known significant quantity of organics in existing 233U materials.  If
moisture and organics are eliminated, then radiolytic gases cannot be generated.
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4.  HEATING EFFECTS ON SELECTED URANIUM OXIDES

4.1  233UO2

233UO2 is one of three prevalent, stable, uranium oxides that is present in the inventory. In
an oxidizing atmosphere, starting from 300°C, UO2 can be oxidized to form U3O8 via the
following reaction (Belle 1961, Bowie 1970, and Katz, Seaborg, and Morss 1986):

3UO2 + O2  → °C700 - 300  U3O8

The rate of this reaction is a function of particle size, and the temperature requirement
will change accordingly.  Generally, the reaction rate is fast, and UO2 may even be pyrophoric
when the particle size is very fine.  When the particle size is large, the O:U ratio steadily
increases as a function of exposure time to oxygen. UO2 with particle size diameters of 0.05–0.08
µm can take up appreciable amounts of oxygen, while at particle diameters above 0.2–0.3 µm,
controlled reaction can be maintained while oxidizing UO2  to U3O8 (Katz, Seaborg, and Morss
1986).

4.2  233UO3

Five distinct crystalline modifications (structural isomers) of 233UO3 have been found.  In
Table 2, these five crystalline modifications are shown along with several of their properties.

Table 2. Crystalline uranium trioxides

Phase Color Structure UO3 decomposition
temperature in air (°C)

α Brown Hexagonal 450

β Red, orange Orthorhombic 530

γ Yellow ? 650

δ Reddish-brown Cubic 400

ε Red ? 400
 Source: Belle 1961

The decomposition of ADU at 450–500°C is the mechanism by which β–UO3 is formed
(Hoekstra and Siegel 1961).  Since the UO3 currently in inventory was formed by this method
(Burney 1966), the β–UO3 crystalline modification is of primary interest.  The β–UO3 begins to
decompose from the 3.0 U:O ratio at 530°C, but it does not completely convert to the 2.67 U:O
ratio of U3O8 until it approaches about 650°C (Hoekstra and Siegel 1961).  Since the β–UO3
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predominates the current inventory, a temperature of at least 650°C is needed for conversion to
U3O8.

The rate of the reaction

3UO3 →  U3O8 + ½O2

is rapid at elevated temperatures.  Figure 1 shows the theoretical rate based on reported rate
constants for the range 600-650°C (Harrington and Ruehle 1959).  At 650°C, the reaction is
essentially complete in 1 hour.  Based on the trend with temperature, the reaction should be even
faster at higher temperatures.

4.3  233U3O8 AND OTHER OXIDES

Heating 233U3O8 drives off any existing free water.  However, there is an upper limit as to
what temperature U3O8 can be heated.   At atmospheric pressure, U3O8 is stable up to about
800°C; above this temperature, oxygen is gradually lost, favoring U8O21 ± x (Hoekstra, Siegel, and
Gallagher 1970) having a stoichiometry range of about UO2.61 to UO2.67.  Other work considers
this latter phase to be substoichiometric U3O8-x (Cordfunke 1969, Ackerman and Chang 1973).

A melting point of U3O8 cannot be determined because when U3O8 melts, oxygen is
evolved.  At higher temperatures in an oxidizing atmosphere, starting at 925°C, U3O8 may
“vaporize” (presumably, this means measurable vapor pressure), forming mainly monomeric
gaseous UO3, an undesirable product (Powers, Welch, and Trice 1949 and 1961).

Though it is unlikely that any significant amount of higher uranium oxides are present, it
is useful to note that all higher uranium oxides and many other uranium compounds decompose
to U3O8 above 650°C (Katz, Seaborg, and Morss 1986).
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Fig. 1. Rate of decomposition of UO3 to U3O8 in air.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

Time (min)

F
ra

ct
io

n
 U

O
3

600C

610C

620C

650C

ORNL DWG 2000-05326





11

5.  SELECTION OF A STABILIZATION TEMPERATURE

Figure 2 illustrates a thermal profile of selected uranium oxides.  It is a summary of the
reactions of the uranium oxides when heated for conversion to U3O8.  The standard boiling point
of water is used as a baseline.

Heating at a temperature of 700°C is sufficient to convert both the UO2 and UO3 to the more
stable U3O8.  However, since some UO2 may still be present at 700°C, a higher temperature of
750°C is chosen to ensure a more complete reaction within a reasonable heating time.  From a
practical perspective, this might translate into an operating specification of 750 ± 25°C to ensure
that the material is exposed to a greater than 700°C environment.

Since U3O8 is stable up to 800°C, existing U3O8 will not be affected by this heating— except
for the release of moisture, other residual volatiles, and the elimination of residual reactive
uranium species.  It also will serve to convert any other uranium oxides to U3O8.  Heating U3O8

above 800°C for further stabilization introduces undesirable U3O8-x oxygen-deficient species into
the system.  Therefore, the range 750 ± 25°C achieves all the desired stabilization conditions
while avoiding undesirable conditions.
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Fig. 2. Thermal profile of selected uranium oxides.
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