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ABSTRACT

This report identifies an appropriate thermal stabilization temperature for ***U oxides.
The temperature is chosen principally on the basis of €liminating moisture and other residual
volatiles. Thisreport supportsthe U. S. Department of Energy (DOE) Standard for safe storage
of 2**U (DOE 2000), written as part of the response to Recommendation 97-1 of the Defense
Nuclear Facilities Safety Board (DNFSB), addressing safe storage of **U.

The primary goals in choosing a stabilization temperature are (1) to ensure that the
residual volatiles content is less than 0.5 wt % including moisture, which might produce
pressurizing gases via radiolysis during long-term sealed storage; (2) to minimize potential for
water readsorption above the 0.5 wt % threshold; and (3) to eliminate reactive uranium species.
The secondary goals are (1) to reduce potential future chemical reactivity and (2) to increase the
particle size thereby reducing the potential airborne release fraction (ARF) under postul ated
accident scenarios.

The prevalent species of uranium oxide are the chemical forms UO,, UO;, and UsOg.
Conversion to U;Og is sufficient to accomplish al of the desired goals. The preferred storage
form is U;Og because it is more stable than UO, or UO; in oxidizing atmospheres. Heating in an
oxidizing atmosphere at 750°C for at least one hour will achieve the thermal stabilization desired.
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1. INTRODUCTION

The purpose of this report is to select a thermal stabilization temperature to treat **U
oxides. This report supports the U. S. Department of Energy (DOE) Standard for the safe storage
of ***U (DOE 2000), written in response to Recommendation 97-1 of the Defense Nuclear
Facilities Safety Board (DNFSB) (DNFSB 1997).

The existing prevaent ***U oxide powder species present are UO,, UOs, and U;Os. The
merits and deficiencies of different temperatures for the treatment of each species will be
discussed. The U:O systems discussed are stoichiometric ratios that indicate the 3 major
crystalline phases (with some variation in stoichiometry depending on oxygen potentid).

For reasons that will be detailed further in this report, the desired final stabilized form for
the uranium oxides is U;Og powder. Moisture and residua volatiles content will be less than
0.5wt %. Reactive uranium species will have been eliminated; and for some starting materials,
the particle size should be increased and the specific surface area reduced.

The primary goa of thermal stabilization is to eliminate moisture and other residual
volatiles that could potentially produce pressurizing gases via radiolysis during long-term sealed
storage. Thisgoa can be accomplished while converting the material to the most stable form,
U30g. Stabilization also minimizes the potential for water readsorption above the 0.5 wt %
threshold, stabilizes reactive uranium species, and increases particle size (reduces specific surface
area) for some starting species. These characteristics will enable the safe long-term storage of
#3U-bearing materials.






2. URANIUM OXIDE PROPERTIES

21 THERMAL CONDUCTIVITY

Because of the relatively low thermal conductivity of UO,, UG;, and UsOg, the
temperature for heating the uranium material in this document refers to the temperature of the
material itsalf instead of the oven temperature. Table 1 is a compilation of the uranium oxide
thermal conductivities.

Tablel. Uranium oxide thermal conductivities

Uranium oxide Thermal conductivity (W m* °C™*)
uo, 0.705°
U4Os 0.0838

#Prepared from Mallinckrodt pressurized-water reactor (PWR)-grade powder; 85% theoretical density,
1400 K (Touloukian 1967).
®Pressed at 100 psi, 775 K (Touloukian 1967)

For comparison, the thermal conductivity of aluminum metal is 240 W m* °C™ a 100°C
(McCabe, Smith, and Harriot 1993). Because of the relatively low thermal conductivity of
uranium oxides, measurement of the material temperature (or compensation for thermal
conductivity), rather than relying solely on the oven temperature, is required.

22PARTICLE SIZE

By increasing particle size, the inhalation hazard from uranium oxide powders is reduced.
It is generally expected that particle size will increase upon heating (Belle 1961). Heating UO;
powder to form U;Og has been shown to reduce the surface area, indicating larger particles. This
effect seems to be more significant at temperatures in excess of 500°C (Harrington and Ruehle
1959). Heating UO, powder at 800°C a so decreased the surface area (Smith and Leitnaker
1971).

Much of the current Oak Ridge Nationa Laboratory (ORNL) inventory of ***U oxides
was prepared by heating pregranulated ammonium diuranate (ADU) for 6 h at an oven
temperature of 800°C. The particle size distribution for these powders shows that greater than
90% of the particles have less than 10 microns equivaent of spherical diameter (Parrott, Sr. et al
1979). Therefore, the magnitude of particle Size increase may be significantly more dependent on
the characteristics of the starting material than on temperatures in the 500-800°C range.



23 STABILITY

Conversion to U;Og creates a more stable chemical form of uranium than other oxides.
Upon heating in an oxidizing atmosphere above 650°C, al other uranium oxides (and many other
uranium compounds) decompose or convert to UsOg.  Furthermore, oxygen lost from hesating
U305 above 800°C is rapidly replaced upon cooling (Katz, Seaborg, and Morss 1986). Because
of this chemica stability, U;Os isthe preferred storage form.



3. HEATING EFFECTSON VOLATILES

3.1 MOISTURE

There has been a continuing concern that moisture and other volatiles theoretically can
produce pressurizing gases during long-term, sealed storage viaradiolysis. Reduction of this
potential source of pressurization is a primary reason for treating the uranium oxides. Heating
uranium oxide will reduce moisture content to less than 0.5 wt % and similarly reduce equivalent
quantities of residua species (e.g., hydrates), which might produce pressurizing gases. The
0.5 wt % specification is a generally accepted limit that is reasonable to achieve and for which no
negative affects have been identified. Reducing the amount of moisture present also reduces the
potential for and rate of container corrosion.

Free water is eliminated during heating at temperatures above 100°C (i.e., Smple
evaporation in avented vessdl). The three principa uranium oxides (UO,, UO;, and U;3Gg) dl
form hydrates. However, UO, and U3Og form hydrates only when prepared via a precipitation
reaction. On the other hand, UO; can form hydrates directly through reaction with H,O between
temperatures of 5 and 75°C (Vdovenko 1960). Heating above 400°C converts hydrated UO; to
dry UO; by driving off al waters of hydration (Harrington and Ruehle 1959). The UO, powders
fabricated at Oak Ridge National Laboratory (ORNL) have moisture contents between 0.10 and
0.36 wt %, which is below the specified 0.5 wt % (Parrott, Sr. et a. 1979).

The potential for moisture readsorption (during prolonged interim ambient storage before
packaging) is reduced by heating. The potential for moisture readsorption is proportiona to the
surface area. When oxides are stabilized at higher temperatures, the surface area tends to be
reduced, thus reducing the potential for readsorption. For stabilized UO, and U;Og, moisture
does not tend to be readsorbed in significant amounts. However, UO; hydrates may be able to
reform under direct exposure to H,O below 60°C (Harrington and Ruehle 1959).

3.20THER VOLATILES

Uranyl nitrate, UO,(NQOs),, which generally appears with multiple waters of hydration
(up to six), is the principle intermediary for the purification of ***U oxides from thorium fuel
(Storch 1999). Above 300°C, the uranyl nitrate is denitrated. Since al ***U oxides produced by
this method were treated above 300°C, no uranyl nitrate is expected to be present. The
conversion to U;Og will eliminate any postulated residua uranyl nitrate.

With the exception of materials existing as part of the packaging (e.g., elastomeric
gasketsin container lids, plastic bagging around closed inner containers, or plastic inner
containers), there is no known significant quantity of organicsin existing **U materials. If
moisture and organics are eliminated, then radiolytic gases cannot be generated.






4. HEATING EFFECTSON SELECTED URANIUM OXIDES

4.1 U0,

280, is one of three prevalent, stable, uranium oxides that is present in the inventory. In
an oxidizing atmosphere, starting from 300°C, UO, can be oxidized to form U;Ogviathe
following reaction (Belle 1961, Bowie 1970, and Katz, Seaborg, and Morss 1986):

3U02 + 02 3/4%2?3]40%@) Ugog

The rate of this reaction is a function of particle size, and the temperature requirement
will change accordingly. Generally, the reaction rate is fast, and UO, may even be pyrophoric
when the particle size is very fine. When the particle sizeis large, the O:U ratio steadily
increases as a function of exposure time to oxygen. UO, with particle size diameters of 0.05-0.08
mm can take up appreciable amounts of oxygen, while at particle diameters above 0.2-0.3 mm,
controlled reaction can be maintained while oxidizing UO, to U;Og (Katz, Seaborg, and Morss
1986).

4.2 *2U0;

Five distinct crystalline modifications (structural isomers) of ***UQ; have been found. In
Table 2, these five crystalline modifications are shown along with severa of their properties.

Table2. Crysalline uranium trioxides

Phase Color Structure U0, de°°mp°$'“2”
temperaturein air (°C)
a Brown Hexagonal 450
b Red, orange Orthorhombic 530
g | Ydlow ? 650
d Reddish-brown Cubic 400
e Red ? 400
Source: Belle 1961

The decomposition of ADU at 450-500°C is the mechanism by which b—UQ; is formed
(Hoekstraand Siegel 1961). Since the UO; currently in inventory was formed by this method
(Burney 1966), the b—UQO; crystalline modification is of primary interest. The b—UQO; beginsto
decompose from the 3.0 U:O ratio at 530°C, but it does not completely convert to the 2.67 U:O
ratio of U;Og until it approaches about 650°C (Hoekstraand Siegel 1961). Since the b—UG;



predominates the current inventory, atemperature of at least 650°C is needed for conversion to
U30s.

The rate of the reaction

3UO3 3/§/4@> U308+ 1/202

israpid at elevated temperatures. Figure 1 shows the theoretical rate based on reported rate
constants for the range 600-650°C (Harrington and Ruehle 1959). At 650°C, the reaction is
essentially completein 1 hour. Based on the trend with temperature, the reaction should be even
faster at higher temperatures.

4.3 ?2U303 AND OTHER OXIDES

Heating ***U,0; drives off any existing free water. However, there is an upper limit asto
what temperature U;Os can be heated. At atmospheric pressure, U;Og is stable up to about
800°C; above this temperature, oxygen is gradualy logt, favoring UgO,; .« (Hoekstra, Siegel, and
Gallagher 1970) having a stoichiometry range of about UO, ¢; to UO, ;. Other work considers
this latter phase to be substoichiometric U;Os., (Cordfunke 1969, Ackerman and Chang 1973).

A mdlting point of U3Og cannot be determined because when UsOg melts, oxygen is
evolved. At higher temperatures in an oxidizing atmosphere, starting at 925°C, U;Og may
“vaporize” (presumably, this means measurable vapor pressure), forming mainly monomeric
gaseous UQO;, an undesirable product (Powers, Welch, and Trice 1949 and 1961).

Though it is unlikely that any significant amount of higher uranium oxides are present, it
is useful to note that al higher uranium oxides and many other uranium compounds decompose
to U3Og above 650°C (Katz, Seaborg, and Morss 1986).
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5. SELECTION OF A STABILIZATION TEMPERATURE

Figure 2 illustrates a thermal profile of selected uranium oxides. It isasummary of the
reactions of the uranium oxides when heated for conversion to UsOg. The standard boiling point
of water is used as abasdline.

Heating at a temperature of 700°C is sufficient to convert both the UO, and UG; to the more
stable U;0s. However, since some UO, may still be present at 700°C, a higher temperature of
750°C is chosen to ensure a more complete reaction within a reasonable heating time. From a
practical perspective, this might trandate into an operating specification of 750 £ 25°C to ensure
that the material is exposed to a greater than 700°C environment.

Since U;Og is stable up to 800°C, existing UsOg will not be affected by this heating— except
for the release of moisture, other residua volatiles, and the elimination of residua reactive
uranium species. It aso will serve to convert any other uranium oxidesto UsOg. Heating U;Og
above 800°C for further stabilization introduces undesirable U;Og « OXygen-deficient species into
the system. Therefore, the range 750 + 25°C achieves all the desired stabilization conditions
while avoiding undesirable conditions.

11
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