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ON OPTIMAL BILINEAR QUADRILATERAL MESHES

E. F. D’Azevedo

Abstract

The novelty of this work is in presenting interesting error properties of two types of

asymptotically “optimal” quadrilateral meshes for bilinear approximation. The first type

of mesh has an error equidistributing property where the maximum interpolation error

is asymptotically the same over all elements. The second type has faster than expect-

ed “super-convergence” property for certain saddle-shaped data functions. The “super-

convergent” mesh may be an order of magnitude more accurate than the error equidis-

tributing mesh. Both types of mesh are generated by a coordinate transformation of a

regular mesh of squares. The coordinate transformation is derived by interpreting the

Hessian matrix of a data function as a metric tensor. The insights in this work may have

application in mesh design near corner or point singularities.

- ix -



1. Introduction

This paper presents the theoretical effectiveness of two types of “optimal” bilinear quadri-

lateral meshes. The novelty of this work is in presenting interesting error properties of t-

wo types of asymptotically “optimal” quadrilateral meshes for bilinear approximation. The

first type of mesh has an error equidistributing property where the maximum interpolation

error is asymptotically the same over all elements. The second type has faster than expected

“super-convergence” property for certain nonconvex saddle-shaped data functions. The “super-

convergent” mesh may be an order of magnitude more accurate than the error equidistributing

mesh. Both types of meshes are generated by a coordinate transformation of a regular mesh of

squares. The coordinate transformation is derived by interpreting the Hessian matrix of a data

function as a metric tensor. This work is a basic study on optimal meshes with the intention

of gaining insight into the more complex meshing problem in surface approximation and finite

element analysis especially near corner or point singularities.

For simplicity, we consider the problem of interpolating a given smooth data function with

continuous piecewise bilinear quadrilaterals over a domain to satisfy a given error tolerance. A

mesh that achieves this error tolerance with thefewestelements is defined to be optimally effi-

cient. Intuitively, one would expect smaller and denser elements in regions where the function

has sharp peaks or large variations.

Provably optimal triangular meshes [2, 4] have been produced by anisotropic mesh trans-

formation. Anisotropic mesh transformation is emerging as an effective technique for unstruc-

tured grid generation where the vertex distribution is highly non-uniform. The central idea is

to control the element shapes and sizes by specifying a symmetric metric tensor that measures

the approximation error. The metric tensor determines the corresponding anisotropic trans-

formation. The anisotropic mesh is then the image of a uniform mesh of optimal shape ele-

ments under the anisotropic transformation. Simpson [9] gives a survey on anisotropic meshes.

Nadler [6], D’Azevedo and Simpson [3][4], and D’Azevedo [2] have studiedlocal anisotrop-

ic transformation for generating optimally efficient triangular meshes. Numerous works such

as Borouchaki [1], Peraire [7], and Shimada [8], have used the Hessian matrix as a metric

tensor for anisotropic mesh generation. In this paper we apply a similar analysis to bilinear

approximation on quadrilateral patches.

An outline of the paper follows. In§2, we present a simple local quadratic model for

error analysis and introduce the coordinate transformation to the “isotropic” space. In§3 we
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show that a square over the isotropic space is the most efficient shape to minimize the ratio

of Error/Area. A regular mesh of squares over the isotropic space would correspond to an

optimally efficient mesh in the original space. Section 4 states a classical result in differential

geometry on the conditions for finding the anisotropic transformation[x̃(x, y), ỹ(x, y)] for a

general data function. Results of numerical experiments are presented in§5 to demonstrate the

error equidistributing property and the effectiveness of the super-convergent meshes.

2. Quadratic model

We shall consider a local analysis where we assume that the data functionf(x, y) in the neigh-

borhood of(xc, yc) is well approximated by its quadratic Taylor expansion,

f(x, y) = f(xc + dx, yc + dy)

≈ f(xc, yc) +∇f(xc, yc)[dx, dy] +
1
2
[dx, dy]H[dx, dy]t . (1)

The function is convex ifdet(H) > 0 and saddle-shaped ifdet(H) < 0. The key insight in [2]

is in interpreting the Hessian matrixH in (1) as a symmetric metric tensor. Let the symmetric

Hessian matrix be diagonalizable as

H = Qt

 λ1 0

0 λ2

Q = St

 1 0

0 ε

S, whereε = sign(det(H)), (2)

S =

 √|λ1| 0

0
√|λ2|

Q, andQ is orthogonal,QtQ = I .

Note that transformationS is essentially a rotation to align eigenvectors along the coordi-

nate axes then followed by a simple scaling. Under this transformationS, the expression

[dx, dy]H[dx, dy]t reduces to(dx̃)2 + ε(dỹ)2, where[x̃, ỹ]t = S[x, y]t. Over the transformed

space(x̃(x, y), ỹ(x, y)), the Hessian matrix is reduced to a simple form (2), with no preference

for any direction. We shall call this transformed space the “isotropic” space. We shall use a

quadratic data function to derive a simple model for deriving the maximum interpolation error

over a bilinear quadrilateral patch.
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3. Quadrilateral patch

The bilinear interpolant over a quadrilateral element is given by the isoparametric formulation

(commonly used in finite element analysis) over the normalized(p, q)-space on the unit square,

0 ≤ p, q ≤ 1. Basis functions are

φ1(p, q) = (1− p)(1− q), φ2(p, q) = p(1− q),

φ3(p, q) = pq, and φ4(p, q) = (1− p)q ,
(3)

which satisfyφi(xj , yj) = δij and sum to one,1 =
∑i=4

i=1 φi(p, q).

Mapping from(p, q) to the original(x, y)-space is by

x(p, q) = x1φ1(p, q) + x2φ2(p, q) + x3φ3(p, q) + x4φ4(p, q) (4)

y(p, q) = y1φ1(p, q) + y2φ2(p, q) + y3φ3(p, q) + y4φ4(p, q) ,

which maps vertex(0, 0) to (x1, y1), vertex(1, 0) to (x2, y2), (1, 1) to (x3, y3) and(0, 1) to

(x4, y4). The bilinear interpolant (over(p, q)-space) is given by

pb(x(p, q), y(p, q)) =
i=4∑
i=1

f(xi, yi)φi(p, q) . (5)

The error function for quadratic interpolation over aparallelogramcan be shown by direct

algebraic expansion (see the Appendix) to be

EQ(p, q) = pb(x(p, q), y(p, q)) − f(x(p, q), y(p, q))

= EQ − 1
2

(
µ1(p− pc)2 + µ2(q − qc)2

)
, (6)

with centroid at[pc, qc] = [12 , 1
2 ], where

EQ = EQ(pc, qc) =
1
8

(µ1 + µ2) ,

0 =
∂

∂p
EQ(pc, qc) =

∂

∂q
EQ(pc, qc) , (7)

[ux, uy] = [x2 − x1, y2 − y1] , [vx, vy] = [x4 − x1, y4 − y1] ,

µ1 = [ux, uy]H[ux, uy]t , µ2 = [vx, vy]H[vx, vy]t .
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For a convex function (det(H) > 0), µ1 andµ2 are positive, hence the maximum error is

attained at the centroid[pc, qc].

For the case of a general convex quadrilateral, the error expression is more complicated.

However, we can show that a square over the isotropic space is of optimal shape by minimizing

the efficiency ratio (Error/Area). Since the isoparametric bilinear interpolant (5) exactly fits

linear functions [5], the error attained at the centroid(xc, yc) can be written as

EM =
1
4

(
i=4∑
i=1

1
2 [xi, yi]H[xi, yi]t

)
− 1

2 [xc, yc]H[xc, yc]t (8)

=
1
8

(
i=4∑
i=1

(
[xi, yi]H[xi, yi]t − [xc, yc]H[xc, yc]t

))
[xc, yc] = [(x1 + x2 + x3 + x4)/4, (y1 + y2 + y3 + y4)/4] . (9)

This expression can be further simplified over the isotropic space whereH is the identity

EM =
1
8

(
i=4∑
i=1

(
(x̃2

i + ỹ2
i )− (x̃2

c + ỹ2
c)
))

=
1
8

(
(x̃2

1 + x̃2
2 + x̃2

3 + x̃2
4)− 4x̃2

c + (ỹ2
1 + ỹ2

2 + ỹ2
3 + ỹ2

4)− 4ỹ2
c

)
=

1
8
(L2

1 + L2
2 + L2

3 + L2
4), with L2

i = (x̃i − x̃c)2 + (ỹi − ỹc)2,

where[x̃i, ỹi]t = S[xi, yi]t and[x̃c, ỹc]t = S[xc, yc]t are the corresponding coordinates over

the isotropic space. The area of this transformed convex quadrilateral is (see Figure 1)

Area =
1
2

(L1L2 sin(θ1) + L2L3 sin(θ2) + L3L4 sin(θ3)− L4L1 sin(θ1 + θ2 + θ3)) .

Since the isotropic transformationS in (2) is a rotation followed by a rescaling of coordinate

axis, the area of quadrilateral over the isotropic space is scaled by
√|λ1λ2| =

√|det(H)|
(intrinsic toH). By calculus, we can show that this ratio ofEM /Area is minimized andattained

by a square withL1 = L2 = L3 = L4 andθ1 = θ2 = θ3 = π/4. Hence the most efficient

shape among allgeneralconvex bilinear quadrilaterals is a square over the isotropic space with

an efficiency ratio of1/4.

If f(x, y) is saddle-shaped(det(H) < 0), the error expression for a parallelogram is still

EQ(p, q) =
1
8
(µ1 + µ2)− 1

2
(µ1(p− pc)2 + µ2(q − qc)2) .
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(x̃c, ỹc)

(x̃1, ỹ1)

(x̃2, ỹ2)

(x̃3, ỹ3)

(x̃4, ỹ4)

L1

L2

L3

L4

θ1

θ2

θ3

FIG. 1: Convex quadrilateral over isotropic space.

Under the anisotropic transformationS,

µ1 = ũ2
x − ũ2

y, µ2 = ṽ2
x − ṽ2

y , and

 ũx ṽx

ũy ṽy

 = S

 ux vx

uy vy

 . (10)

For a square over the isotropic space, we have

[ux, uy] = [L, 0], [vx, vy] = [0, L], µ1 = L2, µ2 = −L2 , and

EQ(p, q) = −1
2
(L2(p− 1

2 )2 − L2(q − 1
2)2) =

L2

2
((q − 1

2)2 − (p− 1
2)2) .

The maximum error isL2/8 and is attained at(p, q) = (1
2 , 1) or (1

2 , 0).

Note that bothµ1 andµ2 vanish for

[ũx, ũy] = [L,L] and [ṽx, ṽy] = [−L,L] , (11)

which correspond to a square rotated byπ/4. The above indicates an “exact fit”(EQ(p, q) = 0)

if µ1 = µ2 = 0. This suggests bilinear approximation has higher than expected accuracy and
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that the simple quadratic model is inadequate to fully capture the error properties in this case.

To summarize, a square over the isotropic space in any orientation is of optimal shape for

the convex(det(H) > 0) case, and a square rotated byπ/4 is the optimal shape for the saddle-

shaped(det(H) < 0) case. A regular square mesh over the isotropic space would correspond

to an error equidistributing mesh, where each patch incurs the same maximum error. For a

saddle-shaped data functiondet(H) < 0, a regular mesh of squares rotatedπ/4 would have

higher than expected accuracy.

4. Differential Geometry

The constantHessian MatrixH = {hij} in (1) determines the coordinate transformationS

that maps[x̃, ỹ]t = S[x, y]t so that

[dx, dy]H[dx, dy]t = dx̃2 + εdỹ2 .

For more general functions, we may view the Hessian matrixH(x, y) as a metric tensor for

measuring the interpolation error[dx, dy]H[dx, dy]t. Thus we need to determine[x̃(x, y), ỹ(x, y)],

a continuoustransformation thatglobally satisfies[dx, dy]H[dx, dy]t = dx̃2 + εdỹ2 for in-

finitestimals[dx, dy]. The transformation[x̃(x, y), ỹ(x, y)] should satisfy

h11dx2 + 2h12dxdy + h22dy2 =
(

∂x̃

∂x
dx +

∂x̃

∂y
dy

)2

+ ε

(
∂ỹ

∂x
dx +

∂ỹ

∂y
dy

)2

,

h11 =
∂2

∂x2 f(x, y) =
(

∂x̃

∂x

)2

+ ε

(
∂ỹ

∂x

)2

,

h12 =
∂2

∂x∂y
f(x, y) =

∂x̃

∂x

∂ỹ

∂y
+ ε

∂ỹ

∂x

∂x̃

∂y
, (12)

h22 =
∂2

∂y2 f(x, y) =
(

∂x̃

∂y

)2

+ ε

(
∂ỹ

∂y

)2

.

The conditions for finding the anisotropic coordinate transformation[x̃(x, y), ỹ(x, y)] are

given by a classical result in differential geometry for characterizing a “flat” space [10]: that

the Riemann-Christoffel tensor formed from the metric tensorH is identically zero. In this
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case, a sufficient condition is forH = {hij} to satisfy

K1h11 + K2h12 + K3h22 = 0 (13)

for some constantsK1, K2, K3. In particular, (13) is satisfied by harmonic functions(h11 +

h22 = 0). The coordinate transformation[x̃(x, y), ỹ(x, y)] may be found by solving an ini-

tial value ordinary differential equation. The details for computing the anisotropic coordinate

transformation[x̃(x, y), ỹ(x, y)] are described in [2].

5. Numerical Experiments

In this section, we demonstrate the effectiveness of a super-convergent mesh for interpolation

over bilinear quadrilaterals on several harmonic functions. To clearly illustrate the error e-

quidistributing properties, only elements entirely interior to the unit square are generated to

simplify the presentation.

Example1. A logarithmic singularity at(x0, y0) = (0.5,−0.2),

f(x, y) = ln((x− x0)2 + (y − y0)2)/2 , and det(H) = −((x− x0)2 + (y − y0)2)−2 .

Coordinate transformation is

x̃(x, y) = arctan(y − y0, x− x0) , and ỹ(x, y) = ln((x− x0)2 + (y − y0)2)/2 .

Example2. A near singularity at(x0, y0) = (0.5,−0.2),

f(x, y) =
(x− x0)2 − (y − y0)2

((x− x0)2 + (y − y0)2)2
, and det(H) = −36((x − x0)2 + (y − y0)2)−4 .

Coordinate transformation is

x̃(x, y) =
√

6

(
1− x− x0

(x− x0)2 + (y − y0)2

)
, and ỹ(x, y) =

√
6

y − y0

(x− x0)2 + (y − y0)2
.

Example3. A more severe near singularity at(x0, y0) = (0.5,−0.2),

f(x, y) =
((x− x0)2 + (y − y0)2)2 − 8(x− x0)2(y − y0)2

((x− x0)2 + (y − y0)2)4
, and
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det(H) = −400((x − x0)2 + (y − y0)2)−6 .

Coordinate transformation is

x̃(x, y) =
√

5

(
1 +

(y − y0)2 − (x− x0)2

((x− x0)2 + (y − y0)2)2

)
, and ỹ(x, y) = 2

√
5

(x− x0)(y − y0)
((x− x0)2 + (y − y0)2)2

.

Example4. Potential flow around a corner at(x0, y0) = (0.5, 0.5) wheren = π/α =

16/31, α = 2π − π/16 is the angle of corner, andθ = arctan(y, x),

f(x, y) = ((x− x0)2 + (y − y0)2)n/2 cos(nθ) , and

det(H) = − 57600
923521

((x− x0)2 + (y − y0)2)−46/31 .

Coordinate transformation is

[x̃(x, y), ỹ(x, y)] =
√

15
2

((x− x0)2 + (y − y0)2)4/31 [sin(8θ/31), cos(8θ/31)] .

The results of the experiments are summarized in Figures 2, 3, 4, and 5 and in Tables 1, 2,

3 and 4. Mesh I is generated by a regular mesh of squares over the isotropic space. Mesh II

is generated by a regular mesh of squares but with theπ/4 rotation over the isotropic space to

capture the super-convergent behavior. Both Mesh I and Mesh II have similar element size, ele-

ment shape and density and differ mainly in theπ/4 rotation. The error equidistributing meshes

(Mesh I) are displayed in Figures 6, 8, 10 and 12. The super-convergent meshes (Mesh II) are

displayed in Figures 7, 9, 11 and 13. The error profiles in Figures 2, 3, 4 and 5 clearly show

significant improvement in accuracy of Mesh II over Mesh I. The almost level error profile for

Mesh I indicates an equidistribution of interpolation error evenly over all elements, as predicted

by our simple error model.

Note that Example 1 produces a simple radially symmetric mesh with a regular angular

partition. Even in this simple case, aπ/4 rotation yields substantial improvement in approxi-

mation accuracy.

Results on Table 1 and Table 3 show the expectedO(h2) convergence rate for Mesh I.

A fourfold increase of elements leads to a fourfold decrease in error. Results for Mesh II

demonstrate a higher thanO(h2) convergence. A fourfold increase of elements leads to an

eightfold decrease in error. This suggestsO(h3) convergence behavior for Mesh II.
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TABLE 1: Summary of results for Example 1.

Minimum Median 90 Maximum Number of
error error percentile error elements

Mesh I 3.56e-04 3.56e-04 3.56e-04 3.56e-04 918
Mesh I 8.90e-05 8.90e-05 8.90e-05 8.90e-05 3841
Mesh I 2.22e-05 2.22e-05 2.22e-05 2.22e-05 15674

Mesh II 3.44e-06 3.44e-06 3.44e-06 3.44e-06 923
Mesh II 4.30e-07 4.30e-07 4.30e-07 4.30e-07 3847
Mesh II 5.37e-08 5.37e-08 5.37e-08 5.37e-08 15695

TABLE 2: Summary of results for Example 2.

Minimum Median 90 Maximum Number of
error error percentile error elements

Mesh I 1.30e-02 1.30e-02 1.30e-02 1.30e-02 920
Mesh II 1.27e-04 1.79e-04 3.18e-04 6.93e-04 921

In summary, we have derived a simple error model for bilinear approximation over a paral-

lelogram. We used this model to motivate the generation of super-convergent meshes using an

anisotropic coordinate transformation of a regular mesh of squares. The numerical experiments

clearly demonstrate the effectiveness of the super-convergent mesh for certain non-convex data

functions. The insight gained here might have application to mesh design near known point or

corner singularities.
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TABLE 3: Convergence test on Example 3.

Minimum Median 90 Maximum Number of
error error percentile error elements

Mesh I 1.51e+00 1.51e+00 1.52e+00 1.56e+00 255
Mesh I 4.54e-01 4.54e-01 4.54e-01 4.60e-01 916
Mesh I 1.13e-01 1.13e-01 1.14e-01 1.15e-01 3837
Mesh I 2.84e-02 2.84e-02 2.84e-02 2.85e-02 15685

Mesh II 2.36e-02 4.06e-02 9.66e-02 5.09e-01 259
Mesh II 3.69e-03 6.69e-03 1.63e-02 9.64e-02 918
Mesh II 4.52e-04 8.29e-04 2.04e-03 1.44e-02 3834
Mesh II 5.53e-05 1.03e-04 2.54e-04 1.92e-03 15682

TABLE 4: Summary of results for Example 4.

Minimum Median 90 Maximum Number of
error error percentile error elements

Mesh I 4.21e-4 4.21e-4 4.22e-4 4.26e-4 576
Mesh II 5.90e-6 9.90e-6 1.90e-5 3.97e-5 575

Error Profile
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FIG. 2: Error profiles for Example 1.
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FIG. 3: Error profiles for Example 2.
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FIG. 4: Error profiles for Example 3.
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Error Profile
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FIG. 5: Error profiles for Example 4.
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FIG. 6: Mesh I for Example 1.

FIG. 7: Mesh II for Example 1.
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FIG. 8: Mesh I for Example 2.

FIG. 9: Mesh II for Example 2.
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FIG. 10: Mesh I for Example 3.

FIG. 11: Mesh II for Example 3.
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FIG. 12: Mesh I for Example 4.

FIG. 13: Mesh II for Example 4.
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Appendix

In this section, we show that the error function for quadratic interpolation over a parallelogram

is given by (6) using only simple algebraic expansion. Let the data function be

f(x, y) =
1
2
[x, y]H[x, y]t + [g1, g2][x, y]t + c (14)

and the affine isoparametric transformation be

 x(p, q)

y(p, q)

 = T

 p

q

+

 x1

y1

 , and (15)

T =

 ux vx

uy vy

 =

 x2 − x1 x4 − x1

y2 − y1 y4 − y1

 . (16)

Then the interpolation error can be shown to be

EQ(p, q) = pb(x(p, q), y(p, q)) − f(x(p, q), y(p, q))

= EQ − 1
2

(
µ1(p− pc)2 + µ2(q − qc)2

)
, (17)

with centroid at[pc, qc] = [12 , 1
2 ],

EQ = EQ(pc, qc) =
1
8

(µ1 + µ2) , and

µ1 = [ux, uy]H[ux, uy]t, µ2 = [vx, vy]H[vx, vy]t .

Let the data function over(p, q)-space be written as

f̃(p, q) = f(x(p, q), y(p, q))

=
1
2
[p, q]H̃ [p, q]t + [g̃1, g̃2][p, q]t + c̃ ,

where H̃ = T tHT =

 h̃11 h̃12

h̃12 h̃22

 , (18)

[g̃1, g̃2] = ([g1, g2] + [x1, y1]H)T , and (19)
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c̃ = c + [g1, g2][x1, y1]t +
1
2
[x1, y1]H[x1, y1]t .

The function values at the four interpolating corners are

f1 = f̃(0, 0) = c̃ , f3 = f̃(1, 1) =
1
2
(h̃11 + h̃22 + 2h̃12) + g̃1 + g̃2 + c̃ , (20)

f2 = f̃(1, 0) =
1
2
h̃11 + g̃1 + c̃ , and f4 = f̃(0, 1) =

1
2
h̃22 + g̃2 + c̃ .

By (5) and (17) (note the vanishing of linear and constant terms),

EQ(p, q) =

(
i=4∑
i=1

fiφi(p, q)

)
− f̃(p, q)

=
1
2

(
p(1− q)h̃11 + pq(h̃11 + h̃22 + 2h̃12)

+(1− p)qh̃22 − (p2h̃11 + q2h̃22 + 2pqh̃12)
)

=
1
2

(
ph̃11 + qh̃22 + 2pqh̃12 − p2h̃11 − q2h̃22 − 2pqh̃12

)
=

1
2

(
p(1− p)h̃11 + q(1− q)h̃22

)
=

1
8
(h̃11 + h̃22)− 1

2
(h̃11(p− 1

2
)2 + h̃22(q − 1

2
)2) . (21)

From (16) and (18), we havẽh11 = µ1 andh̃22 = µ2; hence, the error function has the form

given in (17).
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