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1. INTRODUCTION

The author is involved with a project that requires calculation of the flow of gas through thin sheets
of aflexible polymer foam. Essentialy, the foam is a collection of interconnected spherica holes in the
polymer matrix. When the materia is made, its porosity isin the range of 60! 70%. Initialy, the sheets are
roughly amillimeter thick. In the application, the sheets are compressed between solid surfaces so that their
thicknessisreduced to approximately 501 75% of the original (thereby reducing the porosity to aslow as20%).

The project requires calculating gas transport in the longitudinal direction (in other words, parallel to
the thin section of the sheets and perpendicular to the direction of compression). The transport calculations
must be donein three different flow regimes. First, with gas pressures high enough so that the gasin the pores
isin the continuum regime and thusthe transport isgoverned by the usual equationsfor flow of acompressible
gas in a porous medium. Second, with gas pressures low enough so that the flow is in the free molecular
region. Inthethird regime, the foamisfilled with acarrier gas (with pressure high enough to be in continuum)
and the flow of interest is that of a small amount of an additional gas. In thisthird regime, the driving force
isdiffusion of the trace gasin the carrier.

The project alows for some limited experiments to measure the permeability of the foam. The
objective of the portion of the project being discussed in the present document isto develop avery approximate,
first order model that will alow usto use the results from permeability measurements to calculate flow in all
three of the regimes. The theory needsto alow the following:

1. Given ameasurement or measurements of flow through the foam, the model must allow calculations
of transport in all three of the regimes! viscous, free molecular flow, and diffusive. It isexpected that
the measurements will be made in one regime only (most likely in free molecular flow) so that the
theory needs to show how results from this one regime may be used in the others.

2. The model must include changes in the transport with changes in the compression of the foam.

Itis, of course, desirable that the details of the transport be calculated with reasonable accuracy. However,
atheory that provides results that are accurate within afactor of 2 would be useful.



2. THE SIMPLE CLUSTER OF TUBES APPROXIMATION

One of the earliest model's of aporous medium isthat of abundle of tubes of uniform area. Bear* cites
publications of this idea by Blake (1922), Kozeny (1927), and Fair and Hatch (1933). The reader will
immediately object that a bundle of uniform tubes does not seem a very likely approximation to a collection
of interconnected spherical cavities. The reason for using this bundle of tubes approximation isthat the flow
rates for a tube in laminar flow (the Poiseville equation), free molecular flow (Knudsen's results), and one-
dimensiona diffusion can be written down in closed form. It is the author's hope that use of this model will
allow results from permeability tests to provide parameters that can be used for calculating gas transport in
all three of the regimes of interest.

The derivations that follow are the author's own. The author is sure that he is reinventing the whed,
but has found it necessary to derive the results from scratch in order to link the three different flow regimes.

The porous medium is simulated as a bundle of tubes of radius, r,. In an area of height h and width
w, therewill be N, of thesetubes. Thetubesareall of length L/%O, where L isthe length of the piece of porous
material in the streamwise direction. The factor O s called the tortuosity factor and isthe ratio of the square
of the distance along the piece of porous medium in the streamwise direction to the length of the tubes (O#1
which implies that the tubes do not go straight through the block of porous material, but rather take awinding
or "tortuous' path). Authors whose results are quoted by Bear suggest values of O in the range of 0.4-0.71
(Bear, p. 111) with arecommended vaue of 0.67 for isotropic unconsolidated media (Bear p. 112). Thereis
a conflict between the notation for the tortuosity and the absol ute temperature because both use an upper case
letter "T." The author has written the tortuosity using a block font upper case Greek letter "tau" (O) and the
absolute temperature using an italic font upper case"T" (T). Theauthor hopesthat the difference in fonts plus
the fact that, in the work he is documenting here, the absolute temperature usually appears as part of the
product RT will minimize the ambiguity.

Thefirst requirement for the equivalence of the bundle of tubesto the piece of porous materia is that
the volume of the tubes must equa the void volume in a block of foam of dimensions h by whby L. The
equation for equdity of void volumesis

2L .
Ntért =O noth (1)

where n, is the porosity of the foam as manufactured (i.e., uncompressed). This can be reduced to the
following:

N,d—= " n,hw )

At this point, there are two unknowns: N, and r,.
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The author will need an expression for the drag of the gas flowing through the medium next. This
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will giveasecond equation for the two unknowns. The author assumesthat, in the continuum regimestheflow
through the porous medium is governed by laminar, viscous flow. An additiona approximation that will be
made all through this document is that the flows are isothermal. For sheets as thin as those being modeled for
this project with solid pieces bounding them, that approximation seems plausible. Using these assumptions
and approximations, the laminar, viscous (Poiseuille) massflow rate through asingle tubeis

N o A
ube RT 8 as

or

1 6rt4 ap?

. 4
2RT 8 &s

e ~ &

where [ isthe laminar viscosity, R is the gas constant for this gas (i.e., the universal constant divided by the
gas molecular weight), T is the absolute temperature, P is the absolute pressure, and s is the distance along
the flow direction (for the tortuous tube, s=L/%0). The total mass flow rate through the bundle of tubesis
the flow rate for each tube times the number of tubes, i.e.,

. N, 6rt4 ap2
R TR ®

The author wants to compare this result with the form for flow through a porous medium. For a
compressi ble gas flowing through aporous medium of permeability k, (thisisthe material permeability, whose
dimension islength squared), the mass flow rate is as follows (thisis awell-known result that can be derived
from an expression in Bird, Stewart, and Lightfoot?, p. 150):

. . K hw &P?

Poorcus W 2RT &x

(6)

where éx is the distance along the length of the porous dab and &x=L. Equating the two expressions for total
mass flow [Egs. (5) and (6)] and canceling terms gives a second equation for relating the unknowns which is

N@ir(‘@ " kohw (7

One way to solve the two equations for two unknowns [Egs. (2) and (7)] isto solve for the groups Nr,? and
r2 and then solve for N, and r,. After considerable algebraic manipulation, the results are
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. nZhwO? o
t ek, ®

In thismodél, the effective tuberadiusr, is afunction of material parameters and istherefore itself amateria
parameter. A valuable way to express the number of tubesis the number per unit areawhichis

2A3/2
ny O

hw 80k,

(10)

Thisis also amaterial parameter.

In addition to the full mass flow rate, the author needs an expression for the mass flux, which isthe
mass flow per unit area [the area is not the flow area (i.e., the area of the tubes) but rather the area of the
porous material normal to the direction of the flow]. Thisis very smply the mass flow rate from Eq. (5)
divided by the area hw as follows:

N or 5p2
(] .&tl taPm

area hw2RT 8y L

(11)

viscous

The reader may note that the area hw shows up in the expression for N, [Eq. (9)]. Therefore, the area hw will
cancel out of the expression for massflux, which isas expected (because one would not expect that amassflux
would be dependent on the flow area).

2.2 DIFFUSION

Aswas mentioned in the introduction, it is expected that some calculations of the diffusion of small
pressures of gasesin ahigh pressure of carrier gaswill beneeded. In ordinary diffusion, the massflux isgiven
by Fick’sFirst Law and isthe diffusivity of the trace gasin the carrier times the gradient of the density of the
trace gas. The task of this section is to estimate how the presence of the porous medium will affect the
transport of thetracegas. A very smple model for diffusion isto assume that the diffusion is one-dimensiona
along the length of the tube. If that istrue, then the massflow rate isthe area available for flow (the number
of tubes times the area of each individual tube) times the diffusivity of the trace gas in the carrier times the
density gradient in the flow direction (i.e., the difference in density divided by the tube length, whichis L/%0).



Therefore,
. J{ P 1V/O
Misrusion ~ &N 2D, a( R_IT) % (12)

or (for an isothermal system)

M gitrusion &Ntértza—ll_T"/ﬁ (13)

where P, isthe partial pressure of trace gasi inthe carrier, R, isthe gas constant of the trace gas (the universal
gas constant divided by the molecular weight of gasi), and D; isthe diffusivity at small pressures of trace gas
i inthe carrier. For reference, it would be worth checking to see what the apparent diffusivity for the porous

mediumis. In other words, what is D4 such that the mass flow is given by ordinary diffusion with that term
for the diffusivity, i.e.,

M yitrusion &hWDeﬁ;“zl' (14)
RT L

If one equates the two expressions for diffusive mass flow [Egs. (13) and (14)], substitutesfor N, and r,, and
cancelsterms, theresult is

Dy " n,D,0 (15)

The above equation is identical to that in Bear (ref. 1) on p. 112.

Asbefore, the author would like an expression for mass flux, which is massflow per unit area. From
Eq. (13), thisis

N D. aP.
. ) Te—ter L —1/0 (16)
area) yiusion hw " RT L

Aswastrue for the mass flux for the laminar viscous flow, the area hw will drop out of the mass flux because
N, is proportional to hw. The smplest expression for diffusive mass flux is Eq. (14) divided by hw, i.e.,

aP. R aP.
1] ) - &Deffé; - &nODiO$=I (17)
area) yiusion RT L RT L

2.3 FREE MOLECULAR FLOW
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Aswas stated in the introduction, it is expected that some cal culations will have to be donein regions
for which the pressureis so small that the flow isfree molecular. From Roth?, p. 82, the conductance of along
tube of uniform, but arbitrary cross section and length L/%O in free molecular flow is as follows (with some
changes in notation to match that author’s):

- 8 Atubez
C V2RT VO

where A, is the area of the tube normal to the flow direction and B is the wetted perimeter of the tube. The
definition of conductance (unitsare volume divided by time) isthat it isthe factor such that the volumetric flow
rate Q is proportional to the pressure difference divided by the average pressure, or

Q- ac®t (19)
P

Using this definition and multiplying by the average density, the mass flow rate (per tube) becomes

ar P

. A ow P .
e - QR Q? &CT? (20)

(this is a generic mass flow rate that can be used for any kind of flow). Applying the free molecular
conductance per tube [Eq. (18)] to this definition and multiplying by the number of tubes, the mass flow rate
for abundle of N, tubes of arbitrary shape becomes

M, " &Nt—8 WA‘“bezfo—éP (21)
ree 3/ BL RT
or, for around tube of radiusr,,
M " &N,——/2RT 62”4\/62 22
free '3/5 2or L' RT (22)
Callecting and canceling terms, the mass flow rate becomes
3
r
Mo " &Ntﬁ—Jﬁ_t OsP (239)

free SﬁL






3. EFFECTS OF COMPRESSION OF THE FOAM

Aswas stated in the introduction, asecond major objective of thistheory isto determine what happens
to flow rateswhen the foam is compressed in the direction perpendicular to theflow. In other words, when the
thin foam sheet becomes even thinner. The model for changing the flow parameters due to compression is
particularly smple. The round tubes are flattened to ovals. The flow area changes while the perimeter, and
therefore the surface area of theinside of the tube, remainsthe same. Asafirgt-order approximation, thelength
of the tubesis Ieft at L/%O with the tortuosity factor O unchanged.

3.1 LAMINAR, VISCOUS FLOW

For viscous flow, the flow rate through the tubes is governed by the usua transformations for
noncircular tubes. This means the friction factor uses the hydraulic radius. Consider the flattened tube of
length &s and hydraulic radius r,. From basic hydrodynamics (the Darcy formula for pressure drop with
constant friction factor, the definition of hydraulic radius, and the friction factor for laminar viscous flow,
should al be found in any decent reference on fluid dynamics)® the pressure drop is as follows:

. 1. as
&&P " =hAvi =
2 2r, (26)

where f isthe friction factor and v is the mass averaged velocity in the tube. The definition of the hydraulic
radiusis

2A
rn/ B (27)

where, as before, A isthe flow area and B is the wetted perimeter of the tube. The laminar friction factor is
asfollows:

feesM
Avar, (28)

Substituting for the friction factor in the equation for pressure drop [Eq. (26)] and canceling terms leaves

um w  OHES

2
Iy

Solving this equation for the velocity v and substituting into the definition of the mass flow rate (from the
definition of hydraulic radius, the flow area equals half the hydraulic radius times the perimeter) gives the
following form for the mass flow through a bundle of flattened tubes:
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2

- =~ - P e r‘h rh
I’e\/ist:ousﬂ attenedtube AvA " & ﬁ aP m‘/——o NtE B

4p2 T 3g (30)
& 22" /o,
2RT 16pL
The perimeter of each individual tube is unchanged at B=20r,. Therefore,
. , aP? r,f’ or,
rﬁ\/iscousﬂattenedtube &ﬁ 8“ L ‘/* t (31)

Asacheck of the algebra, assume one has a circular tube such that r,=r,. Then the massflow rate reducesto
the following:

2 or/

JON, * &d—P—\/ﬁNt (32)

2RT 8pL

- dp2 r 2ér,
2RT 161L

Thisisthe same as Eq. (5), which gives mass flow rate in a bundle of round tubes.

The author has derived an expression for the mass flow rate for the bundle of ovals. Now, he needs
to determine the mass flow rate as a function of the properties of the foam. Suppose the foam is compressed
to anew porosity n,. As has already been noted, the wetted perimeter B for each tube is unchanged and it is
assumed that the length of the tubesis unchanged. Therefore, the flow areaisdirectly proportiona to thevoid
volume. The author must now calculate the change in void volume. When the foam is compressed, the solid
volume (i.e., the volume of the polymer in the foam) is unchanged. Therefore,

V, " (1&nyV, T (1&n)V, (39

where V; is the solid volume, V, is the initid volume of the foam (i.e., hwL) and V, is the volume after
compression. For the foam before and after compression, the volumeisthe sum of the solid and void volumes.
Thevoid volumesarethetotal volumestimesthe porosities. Therefore, thevoid volumeafter compression may
be expressed by either of the following:

V

voidl

" V&V, TV &(1&N,)V, (34)
and

voidt .~ MV (35)
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The expression for mass flux becomes

4p2 or n, 1&n,}* [ 1&n
l) - & aP t ‘/*ONt 1 0 /hV‘.’ 0 (42)
A8/ igousnn,  2RT 8HL N, 1&n; 1&n,
or
4
M . gp2 Or N, [n [*[1&n,[®
—) & —/0— |=| |- (43)
Area) igcousnn, 2RT8uL" hw(n,|[1&n,

For convenience, theauthor wantsto cal cul ate an effective permeability for compressed materia called
k,. Thisfactor makes the compressed viscous mass flux equal to a porous medium flux with k=k;, i.e.,
. 2
M ) L O
Kk,

W 2RT & (44)

area

Substituting the expressions for r, and N, into the equation for viscous compressed flux [Eq. (43)], theflux is

i . ap? ky [n[f1&n, PP
. &———=|— (45)
area viscousn® ng 2RT HL Ny 1&nl
Equating the two different expressions for viscous mass flux and canceling terms, the result for k; is
Kk n, [*1&n,
Nyl [1&N, (46)

3.2 DIFFUSION

As before, the diffusive mass flow is the flow area times the density gradient times the diffusivity.
Using the changed flow areafor compressed foam, the mass flow becomes

. , N, 1&n, D, &P,
re'|diffusionn'n1 &Ntért T 1&n Rll' LI‘/*O (47)
0 170
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As before, the author wants a mass flux. Dividing for the true area, he gets

3
r n, 1&n. 2 1&n
L ] '&Nti 2=6=‘\/63p=1 0 0 (54)
A€ freenn, S\J RT L Ny, 1&n; 1&n,
Further cancellation leads to
i N, 4 | 26 rt3 n, [?1&n,
- /e 1o (55)
area) feenwn, hw 3\ RT L ny| 1&n,

As before, the author wants to reduce the compressed free molecular flow mass flux equation by
substituting for N, and r, to see what a mass flux based on material and gas properties looks like. The result

IS
i - 16 | KO ap
Ar€a) freentn, 3\ ORT L

In an earlier section, the author derived Eq. (46), which gives an effective compressed material permeability
k,. Thisfactor makesthe compressed viscous mass flux equa to aporous medium flux with k=k;. The author
now wishesto find an effective free molecular permeability k; ... He definesk, . asthe factor such that the
free molecular mass flux for a materia with k=k; 4, and n=n, is as follows.

1] - &£ k1freenloi (57)
Ar€a) feenen, 3 oRT L

The analogy between Eq. (25) for uncompressed material and Eq. (57) for compressed materia should be
obvious. Setting this expression equal to that for mass flux for compressed free molecular flow [Eqg. (56)] and
solving for k; ¢, theresult is

n, [>1&n,

1&n,

(56)

Ny

3 2

N

Ny

1&n,
1&n,

k1free i k0 (58)

If one comparesthisto Eq. (46), the expression for the effective compressed material permeability for laminar,
viscous porous medium flow k;, it is obvious that the expressions are different. The powers for both the ratio
of porosity and the ratio of 1-porosity are different. The laminar, viscous mass flux responds to changesin
compression more strongly than the massflux infree molecular flow. Therefore, thelaminar, viscous effective
permesbility respondsto changesin compression morestrongly than the effective permeability in freemolecular
flow.
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whereN isthe molar flux of gasand a and b are constants that account for geometric factors. Clearly thefirst
term is the free molecular flow while the second is the viscous contribution. If the terms are divided in the
equation for mass flux [Eq. (60)] by molecular weight (to convert to molar flux), expressionsfor aand b can
be derived. Hoglund, Shacter, and von Halle comment that it should be possible to determine the magnitudes
of the geometric factors by making measurements at different pressures. If this same ideais followed and
enough measurements obtai ned, then one should also be able to estimate the geometric factors for viscous and
free molecular flow. A cavedt isthat the measurements will need to be done with pressures both low enough
to be fully in free molecular flow and high enough to be fully in the continuum.



5. INFERRING PERMEABILITY FROM COMPRESSED FOAM EXPERIMENTS

Presumably all the parameters in Eqg. (60) are known except the uncompressed permeability k,
(provided that one has an estimate of ©). Then, Eq. (60) is a quadratic equation that can be used to infer k.
Asan dternative, if one does not have an estimate of O, one can use the combination of a measurement made
at apressure high enough to be in the continuum range and another at a pressure low enough to bein the free
molecular range to infer values of k, and the product k,0. |f one has a series of measurements ranging from
the continuum regime through the free molecular regime, one may be lucky enough to find that asingle value
of k, and asingle value of the product k,O will match the data. |f the measurements are only in the continuum
regime, then one can not infer a value of O. On the other hand, if the measurements are only in the free
molecular regime, then one can not separate k, from the product k,0O.

17
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APPENDIX A: INFERRING MATERIAL PERMEABILITY OR EFFECTIVE DIFFUSIVITY
FROM CHEMICAL PERMEABILITY

In the chemical literature, measured permeabilities are given in units of ccstp-cm/srcmz-crp Hg. The
author refers to the permeability in those units as " chemical permeability” and givesit the symbol A following
the example of J. H. Leckey in one of his reports. The chemical permeability is not just a property of the
porousmaterial (and itscompression), but also includes propertiesof thegasaswell asexperimental conditions
such as pressure and temperature. In this appendix (Appendix A), the author will go through the exercise of
inferring the material permeability from the measured chemical permesbility and the properties of the gas.

The first thing the author wants to do is a units conversion. He will convert A in its customary units
(ccyp-cm/s-cm?-cm Hg) to an S| equivalent Ay whose units are kg-m/s-m*Pa. The units conversion is as
follows:

Ay (kg-m/sm?-Pa) = A (ccy-cmis-cm?-cm Hg) x 10°® (mPgre/cey,) x 102 (m/ecm) /[10* (mP/en?)
x 76.0 (cm Hg/atm) /[1.01325 x 10° (Palatm)] /[2.2414 x 10 (m*grx/moal)]
x M (kg/moal)
= A(ccy,-cm/s-cm?-cm Hg) M (kg/mol)
x 3.346 x 10°® (mol-m/s-m?-Pa)/(ccq,-crm/s-cm?-cm Hg)

Now the author will work out how to infer the material permesbility k from A. The definition of A
comes from the following mass balance:

M . 4P
— " &A=
A : (A.2)

where al the terms have consistent units. If al the other terms have Sl units(i.e.,, massin kg, pressurein Pa,
and length in m), then Ais replaced by A (note that the units of Ag are seconds). First, the permeability for
laminar, viscous (continuum) flow needs to be worked out. The mass flux for the porous medium is Eq. (6)
dlightly rearranged and is as follows:

0 . k P aP
— —— (A.2)

A)owey MRT L

Material permeability is given the symbol k and the author neglects to specify whether the value is for the
compressed or uncompressed material. If the two mass fluxes are equated, one arrives at the following:

A, 8P - AMx3.346x1006 8P - K P aP (A.3)
L L WRTL

Canceling terms and substituting for the gas constant (i.e., universal gas constant = 8.3143 Jmol divided by
molecular weight inkg/moal), thefollowing equival ent between chemical permeability and material permeability
(k has units of m?) assuming continuum flow is found:

20
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and on the temperature as well, of course, as on the porous material and its compression. The author might
expect, however, that the ratio of D to the diffusivity of the trace gas in the stagnant carrier to be a property
of the material and the degree of compression.



APPENDIX B: SOME CLOSED-FORM SOLUTIONS FOR FLOW IN A POROUS MEDIUM

For permeability measurements, it can be convenient to have experiments under conditions for which
a closed-form solution is known. In this appendix, a number of such solutions are presented.

B.1 CLOSED FORM SOLUTIONSFOR LAMINAR, VISCOUS (DARCY) FLOW
B.1. 1 Laminar, Viscous (Darcy) Flow on a Hemishell

One potential configuration for apermeability experiment isahemispherical sheet of porous material
between two concentric solid hemispherical pieces of dightly different radii (the difference in radii becomes
the compressed thickness of the porous sheet). The author will now outline asolution for the laminar, viscous
compressible Darcy flow in a hemishell.

According to Transport Phenomena by Bird, Stewart, and Lightfoot (ref. 3), p. 150, the velocity
equation for compressible Darcy flow is asfollows:

Y k dP
v ?? (B.1)

wherevistheveocity, P isthe pressure, and x isadirection measured parallel to the flow. The author defines
E as the angle measured from the pole. The equation for the mass flow becomes

~ rh ~ k dP
- - &n
area pdx (8.2)

The author assumes cylindrical symmetry. He also assumes that boundary layer effectsin the gap are small
compared to the resistance caused by the foam and that therefore the flow field can be accurately enough
approximated as uniform acrossthe gap. With these assumptions, the problem becomes one-dimensional with
the independent variable being the angle E or the distance x, the two being equivaent. Theidea gas equation
of state for an isothermal system is

=|o

" RT (B.3)

The equation for the flow area as a function of angleis
A " 28rhsinE (B.4)

wherer istheinner radius of the hemishell and h is the height of the gap measured radialy from the center
(therefore the outer radiusis r+h). The expression for areais an approximation assuming r>>h. The steady
state continuity condition is that the mass flow rate is constant at al angles. Therefore, the steady state

23



equation for the pressurefield is
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. X
Pa&Poy %RT%IH[ °”t] (B.17)

An aternate form for this equation is

(Pin&Pout)2|3 . (Pin&Pout)(Pin%Pout)

- iRTLIn XOUt (B.18)
k X;

n

Applying the ideal gas equation of state, another form is

. M
(P, &P,,)2% ?%In

XOut
) (B.19)

Xin

where i isthe average of the denditiesin the inlet and outlet. As before, one may solve Eq. B.(18) for mass
rate or for permeability as needed.

B.2 CLOSED FORM SOLUTIONSFOR FREE MOLECULAR FLOW
B.2.1 FreeMolecular Flow on a Hemishell

The mgjor difference between free molecular flow and continuum flow in the compressible Darcy
equation is that the mass flux is proportional to the pressure gradient, but not to the pressure gradient times

the pressure (or dternately to the gradient of pressure squared—the two are mathematically equivalent). For
an isothermal system, the equation for the mass flux is as follows:

D
M. e dP (B.20)
A RT dx

where D, is a mass transfer coefficient for free molecular flow with the dimensions of a diffusivity. By
comparison with Eq. (57), itis clear that D, is given by the following:

. 16 n, ORT
Dyt 3«‘—%* 5 (B.21)
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fn . 28h
int " D, (P &Py) (B.27)

out

As has been the case for earlier solutions in this appendix, one can use Eq. B.(27) to calculate mass rate or
D\« Using Eq. B.(21), one can calculate k. from D, .

B.3 CLOSED FORM SOLUTIONS FOR DIFFUSIVE FLOW

The solutions for diffusion driven flow in a hemishell and a disk are identical to those for free
molecular flow except that one must substitute n, DO for D, Where n, isthe porosity of the porous material,
D isthediffusivity of thetrace gasin the stagnant carrier, and Oisthetortuosity. For completeness, the author
will include the final flow equations.

B. 3. 1 Diffusive Flow on a Hemishéell

ORT E i E,
P " P& — Jntan—L¢] &In[tan—> B.28
pole b 26nlDOh{ Lton—= "I éinlten=>1 (29

B. 3. 2 Diffusive Flow on a Disk

lin « 206h A
in—" ?nlDO(Pin&Pout) (B.29)

rout
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