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1.  INTRODUCTION

The author is involved with a project that requires calculation of the flow of gas through thin sheets
of a flexible polymer foam.  Essentially, the foam is a collection of interconnected spherical holes in the
polymer matrix.  When the material is made, its porosity is in the range of 60!70%.  Initially, the sheets are
roughly a millimeter thick.  In the application, the sheets are compressed between solid surfaces so that their
thickness is reduced to approximately 50!75% of the original (thereby reducing the porosity to as low as 20%).

The project requires calculating gas transport in the longitudinal direction (in other words, parallel to
the thin section of the sheets and perpendicular to the direction of compression).  The transport calculations
must be done in three different flow regimes.  First, with gas pressures high enough so that the gas in the pores
is in the continuum regime and thus the transport is governed by the usual equations for flow of a compressible
gas in a porous medium.  Second, with gas pressures low enough so that the flow is in the free molecular
region.  In the third regime, the foam is filled with a carrier gas (with pressure high enough to be in continuum)
and the flow of interest is that of a small amount of an additional gas.  In this third regime, the driving force
is diffusion of the trace gas in the carrier.

The project allows for some limited experiments to measure the permeability of the foam.  The
objective of the portion of the project being discussed in the present document is to develop a very approximate,
first order model that will allow us to use the results from permeability measurements to calculate flow in all
three of the regimes.  The theory needs to allow the following:

1. Given a measurement or measurements of flow through the foam, the model must allow calculations
of transport in all three of the regimes!viscous, free molecular flow, and diffusive.  It is expected that
the measurements will be made in one regime only (most likely in free molecular flow) so that the
theory needs to show how results from this one regime may be used in the others.

2. The model must include changes in the transport with changes in the compression of the foam.

It is, of course, desirable that the details of the transport be calculated with reasonable accuracy.  However,
a theory that provides results that are accurate within a factor of 2 would be useful.
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2.  THE SIMPLE CLUSTER OF TUBES APPROXIMATION

One of the earliest models of a porous medium is that of a bundle of tubes of uniform area.  Bear1 cites
publications of this idea by Blake (1922), Kozeny (1927), and Fair and Hatch (1933).  The reader will
immediately object that a bundle of uniform tubes does not seem a very likely approximation to a collection
of interconnected spherical cavities.  The reason for using this bundle of tubes approximation is that the flow
rates for a tube in laminar flow (the Poiseuille equation), free molecular flow (Knudsen's results), and one-
dimensional diffusion can be written down in closed form.  It is the author's hope that use of this model will
allow results from permeability tests to provide parameters that can be used for calculating gas transport in
all three of the regimes of interest.

The derivations that follow are the author's own.  The author is sure that he is reinventing the wheel,
but has found it necessary to derive the results from scratch in order to link the three different flow regimes.

The porous medium is simulated as a bundle of tubes of radius, rt.  In an area of height h and width
w, there will be Nt of these tubes.  The tubes are all of length L/%Ô, where L is the length of the piece of porous
material in the streamwise direction.  The factor Ô is called the tortuosity factor and is the ratio of the square
of the distance along the piece of porous medium in the streamwise direction to the length of the tubes (Ô#1
which implies that the tubes do not go straight through the block of porous material, but rather take a winding
or "tortuous" path).  Authors whose results are quoted by Bear suggest values of Ô in the range of 0.4-0.71
(Bear, p. 111) with a recommended value of 0.67 for isotropic unconsolidated media (Bear p. 112).  There is
a conflict between the notation for the tortuosity and the absolute temperature because both use an upper case
letter "T."  The author has written the tortuosity using a block font upper case Greek letter "tau" (Ô) and the
absolute temperature using an italic font upper case "T" (T).  The author hopes that the difference in fonts plus
the fact that, in the work he is documenting here, the absolute temperature usually appears as part of the
product RT will minimize the ambiguity.

The first requirement for the equivalence of the bundle of tubes to the piece of porous material is that
the volume of the tubes must equal the void volume in a block of foam of dimensions h by w by L.  The
equation for equality of void volumes is

where n0 is the porosity of the foam as manufactured (i.e., uncompressed).  This can be reduced to the
following:

At this point, there are two unknowns: Nt and rt.

2.1  LAMINAR, VISCOUS FLOW
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The author will need an expression for the drag of the gas flowing through the medium next.  This
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will give a second equation for the two unknowns.  The author assumes that, in the continuum regimes the flow
through the porous medium is governed by laminar, viscous flow.  An additional approximation that will be
made all through this document is that the flows are isothermal.  For sheets as thin as those being modeled for
this project with solid pieces bounding them, that approximation seems plausible.  Using these assumptions
and approximations, the laminar, viscous (Poiseuille) mass flow  rate through a single  tube is

or

where µ  is the laminar viscosity, R is the gas constant for this gas (i.e., the universal constant divided by the
gas molecular weight), T is the absolute temperature, P is the absolute pressure, and äs is the distance along
the flow direction (for the tortuous tube, äs=L/%Ô).  The total mass flow rate through the bundle of tubes is
the flow rate for each tube times the number of tubes, i.e.,

The author wants to compare this result with the form for flow through a porous medium.  For a
compressible gas flowing through a porous medium of permeability k0 (this is the material permeability, whose
dimension is length squared), the mass flow rate is as follows (this is a well-known result that can be derived
from an expression in Bird, Stewart, and Lightfoot2, p. 150):

where äx is the distance along the length of the porous slab and äx=L.  Equating the two expressions for total
mass flow [Eqs. (5) and (6)] and canceling terms gives a second equation for relating the unknowns which is

One way to solve the two equations for two unknowns [Eqs. (2) and (7)] is to solve for the groups Ntrt
2 and

rt
2 and then solve for Nt and rt.  After considerable algebraic manipulation, the results are
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and

In this model, the effective tube radius rt is a function of material parameters and is therefore itself a material
parameter.  A valuable way to express the number of tubes is the number per unit area which is

This is also a material parameter.

In addition to the full mass flow rate, the author needs an expression for the mass flux, which is the
mass flow per unit area [the area is not the flow area (i.e., the area of the tubes) but rather the area of the
porous material normal to the direction of the flow].  This is very simply the mass flow rate from Eq. (5)
divided by the area hw as follows:

The reader may note that the area hw shows up in the expression for Nt [Eq. (9)].  Therefore, the area hw will
cancel out of the expression for mass flux, which is as expected (because one would not expect that a mass flux
would be dependent on the flow area).

2.2  DIFFUSION

As was mentioned in the introduction, it is expected that some calculations of the diffusion of small
pressures of gases in a high pressure of carrier gas will be needed.  In ordinary diffusion, the mass flux is given
by Fick’s First Law and is the diffusivity of the trace gas in the carrier times the gradient of the density of the
trace gas.  The task of this section is to estimate how the presence of the porous medium will affect the
transport of the trace gas.  A very simple model for diffusion is to assume that the diffusion is one-dimensional
along the length of the tube.  If that is true, then the mass flow rate is the area available for flow (the number
of tubes times the area of each individual tube) times the diffusivity of the trace gas in the carrier times the
density gradient in the flow direction (i.e., the difference in density divided by the tube length, which is L/%Ô).
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Therefore,

or (for an isothermal system)

where Pi is the partial pressure of trace gas i in the carrier, Ri is the gas constant of the trace gas (the universal
gas constant divided by the molecular weight of gas i), and Di is the diffusivity at small pressures of trace gas
i in the carrier.  For reference, it would be worth checking to see what the apparent diffusivity for the porous
medium is.  In other words, what is Deff such that the mass flow is given by ordinary diffusion with that term
for the diffusivity, i.e.,

If one equates the two expressions for diffusive mass flow [Eqs. (13) and (14)], substitutes for Nt and rt, and
cancels terms, the result is

The above equation is identical to that in Bear (ref. 1) on p. 112.

As before, the author would like an expression for mass flux, which is mass flow per unit area.  From
Eq. (13), this is

As was true for the mass flux for the laminar viscous flow, the area hw will drop out of the mass flux because
Nt is proportional to hw.  The simplest expression for diffusive mass flux is Eq. (14) divided by hw, i.e.,

2.3  FREE MOLECULAR FLOW
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As was stated in the introduction, it is expected that some calculations will have to be done in regions
for which the pressure is so small that the flow is free molecular.  From Roth3, p. 82, the conductance of a long
tube of uniform, but arbitrary cross section and length L/%Ô in free molecular flow is as follows (with some
changes in notation to match that author’s):

where Atube is the area of the tube normal to the flow direction and B is the wetted perimeter of the tube.  The
definition of conductance (units are volume divided by time) is that it is the factor such that the volumetric flow
rate Q is proportional to the pressure difference divided by the average pressure, or

Using this definition and multiplying by the average density, the mass flow rate (per tube) becomes

(this is a generic mass flow rate that can be used for any kind of flow).  Applying the free molecular
conductance per tube [Eq. (18)] to this definition and multiplying by the number of tubes, the mass flow rate
for a bundle of Nt tubes of arbitrary shape becomes

or, for a round tube of radius rt,

Collecting and canceling terms, the mass flow rate becomes
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3.  EFFECTS OF COMPRESSION OF THE FOAM

As was stated in the introduction, a second major objective of this theory is to determine what happens
to flow rates when the foam is compressed in the direction perpendicular to the flow.  In other words, when the
thin foam sheet becomes even thinner.  The model for changing the flow parameters due to compression is
particularly simple.  The round tubes are flattened to ovals.  The flow area changes while the perimeter, and
therefore the surface area of the inside of the tube, remains the same.  As a first-order approximation, the length
of the tubes is left at L/%Ô with the tortuosity factor Ô unchanged.

3.1  LAMINAR, VISCOUS FLOW

For viscous flow, the flow rate through the tubes is governed by the usual transformations for
noncircular tubes.  This means the friction factor uses the hydraulic radius.  Consider the flattened tube of
length äs and hydraulic radius rh.  From basic hydrodynamics (the Darcy formula for pressure drop with
constant friction factor, the definition of hydraulic radius, and the friction factor for laminar viscous flow,
should all be found in any decent reference on fluid dynamics)5 the pressure drop is as follows:

where f is the friction factor and v is the mass averaged velocity in the tube.  The definition of the hydraulic
radius is

where, as before, A is the flow area and B is the wetted perimeter of the tube.  The laminar friction factor is
as follows:

Substituting for the friction factor in the equation for pressure drop [Eq. (26)] and canceling terms leaves

Solving this equation for the velocity v and substituting into the definition of the mass flow rate (from the
definition of hydraulic radius, the flow area equals half the hydraulic radius times the perimeter) gives the
following form for the mass flow through a bundle of flattened tubes:
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The perimeter of each individual tube is unchanged at B=2ðrt.  Therefore,

As a check of the algebra, assume one has a circular tube such that rt=rh.  Then the mass flow rate reduces to
the following:

This is the same as Eq. (5), which gives mass flow rate in a bundle of round tubes.

The author has derived an expression for the mass flow rate for the bundle of ovals.  Now, he needs
to determine the mass flow rate as a function of the properties of the foam.  Suppose the foam is compressed
to a new porosity n1.  As has already been noted, the wetted perimeter B for each tube is unchanged and it is
assumed that the length of the tubes is unchanged.  Therefore, the flow area is directly proportional to the void
volume.  The author must now calculate the change in void volume.  When the foam is compressed, the solid
volume (i.e., the volume of the polymer in the foam) is unchanged.  Therefore,

where Vs is the solid volume, V0 is the initial volume of the foam (i.e., hwL) and V1 is the volume after
compression.  For the foam before and after compression, the volume is the sum of the solid and void volumes.
The void volumes are the total volumes times the porosities.  Therefore, the void volume after compression may
be expressed by either of the following:

and
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The expression for mass flux becomes

or

For convenience, the author wants to calculate an effective permeability for compressed material called
k1.  This factor makes the compressed viscous mass flux equal to a porous medium flux with k=k1, i.e.,

Substituting the expressions for rt and Nt into the equation for viscous compressed flux [Eq. (43)], the flux is

Equating the two different expressions for viscous mass flux and canceling terms, the result for k1 is

3.2  DIFFUSION

As before, the diffusive mass flow is the flow area times the density gradient times the diffusivity.
Using  the changed flow area for compressed foam, the mass flow becomes
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As before, the author wants a mass flux.  Dividing for the true area, he gets

Further cancellation leads to

As before, the author wants to reduce the compressed free molecular flow mass flux equation by
substituting for Nt and rt to see what a mass flux based on material and gas properties looks like.  The result
is

In an earlier section, the author derived Eq. (46), which gives an effective compressed material permeability
k1.  This factor makes the compressed viscous mass flux equal to a porous medium flux with k=k1.  The author
now wishes to find an effective free molecular permeability k1 free.  He defines k1 free as the factor such that the
free molecular mass flux for a material with k=k1 free and n=n1 is as follows:

The analogy between Eq. (25) for uncompressed material and Eq. (57) for compressed material should be
obvious.  Setting this expression equal to that for mass flux for compressed free molecular flow [Eq. (56)] and
solving for k1 free, the result is

If one compares this to Eq. (46), the expression for the effective compressed material permeability for laminar,
viscous porous medium flow k1, it is obvious that the expressions are different.  The powers for both the ratio
of porosity and the ratio of 1-porosity are different.  The laminar, viscous mass flux responds to changes in
compression more strongly than the mass flux in free molecular flow.  Therefore, the laminar, viscous effective
permeability responds to changes in compression more strongly than the effective permeability in free molecular
flow.
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where N is the molar flux of gas and a and b are constants that account for geometric factors.  Clearly the first
term is the free molecular flow while the second is the viscous contribution.  If  the terms are divided in the
equation for mass flux [Eq. (60)] by molecular weight (to convert to molar flux), expressions for a and b can
be derived.  Hoglund, Shacter, and von Halle comment that it should be possible to determine the magnitudes
of the geometric factors by making measurements at different pressures.  If this same idea is followed and
enough measurements obtained, then one should also be able to estimate the geometric factors for viscous and
free molecular flow.  A caveat is that the measurements will need to be done with pressures both low enough
to be fully in free molecular flow and high enough to be fully in the continuum.
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5.  INFERRING PERMEABILITY FROM COMPRESSED FOAM EXPERIMENTS

Presumably all the parameters in Eq. (60) are known except the uncompressed permeability k0

(provided that one has an estimate of Ô).  Then, Eq. (60) is a quadratic equation that can be used to infer k0.
As an alternative, if one does not have an estimate of Ô, one can use the combination of a measurement made
at a pressure high enough to be in the continuum range and another at a pressure low enough to be in the free
molecular range to infer values of k0 and the product k0Ô.  If one has a series of measurements ranging from
the continuum regime through the free molecular regime, one may be lucky enough to find that a single value
of k0 and a single value of the product k0Ô will match the data.  If the measurements are only in the continuum
regime, then one can not infer a value of Ô.  On the other hand, if the measurements are only in the free
molecular regime, then one can not separate k0 from the product k0Ô.
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APPENDIX A:  INFERRING MATERIAL PERMEABILITY OR EFFECTIVE DIFFUSIVITY
FROM CHEMICAL PERMEABILITY

In the chemical literature, measured permeabilities are given in units of ccstp-cm/s-cm2-cm Hg.  The
author refers to the permeability in those units as "chemical permeability" and gives it the symbol Ã following
the example of J. H. Leckey in one of his reports.  The chemical permeability is not just a property of the
porous material (and its compression), but also includes properties of the gas as well as experimental conditions
such as pressure and temperature.  In this appendix (Appendix A), the author will go through the exercise of
inferring the material permeability from the measured chemical permeability and the properties of the gas.

The first thing the author wants to do is a units conversion.  He will convert Ã in its customary units
(ccstp-cm/s-cm2-cm Hg) to an SI equivalent ÃSI whose units are kg-m/s-m2-Pa.  The units conversion is as
follows:

ÃSI (kg-m/s-m2-Pa) = Ã (ccstp-cm/s-cm2-cm Hg) × 10-6 (m3
STP/ccstp) × 10-2 (m/cm) /[10-4 (m2/cm2)

× 76.0 (cm Hg/atm) /[1.01325 × 105 (Pa/atm)] /[2.2414 × 10-2 (m3
STP/mol)]

× M (kg/mol)
     = Ã (ccstp-cm/s-cm2-cm Hg) M (kg/mol)

× 3.346 × 10-6 (mol-m/s-m2-Pa)/(ccstp-cm/s-cm2-cm Hg)

Now the author will work out how to infer the material permeability k from Ã.  The definition of Ã
comes from the following mass balance:

where all the terms have consistent units.  If all the other terms have SI units (i.e., mass in kg, pressure in Pa,
and length in m), then Ã is replaced by ÃSI (note that the units of  ÃSI are seconds).  First, the permeability for
laminar, viscous (continuum) flow needs to be worked out.  The mass flux for the porous medium is Eq. (6)
slightly rearranged and is as follows:

Material permeability is given the symbol k and the author neglects to specify whether the value is for the
compressed or uncompressed material.  If the two mass fluxes are equated, one arrives at the following:

Canceling terms and substituting for the gas constant (i.e., universal gas constant = 8.3143 J/mol divided by
molecular weight in kg/mol), the following equivalent between chemical permeability and material permeability
(k has units of m2) assuming continuum flow is found:
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and on the temperature as well, of course, as on the porous material and its compression.  The author might
expect, however, that the ratio of Deff to the diffusivity of the trace gas in the stagnant carrier to be a  property
of the material and the degree of compression.
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APPENDIX B: SOME CLOSED-FORM SOLUTIONS FOR FLOW IN A POROUS MEDIUM

For permeability measurements, it can be convenient to have experiments under conditions for which
a closed-form solution is known.  In this appendix, a number of such solutions are presented.

B. 1  CLOSED FORM SOLUTIONS FOR LAMINAR, VISCOUS (DARCY) FLOW

B. 1. 1  Laminar, Viscous (Darcy) Flow on a Hemishell

One potential configuration for a permeability experiment is a hemispherical sheet of porous material
between two concentric solid hemispherical pieces of slightly different radii (the difference in radii becomes
the compressed thickness of the porous sheet).  The author will now outline a solution for the laminar, viscous
compressible Darcy flow in a hemishell.

According to Transport Phenomena by Bird, Stewart, and Lightfoot (ref. 3), p. 150, the velocity
equation for compressible  Darcy flow is as follows:

where v is the velocity, P is the pressure, and x is a direction measured parallel to the flow.  The author defines
È  as the angle measured from the pole.  The equation for the mass flow becomes

The author assumes cylindrical symmetry.  He also assumes that boundary layer effects in the gap are small
compared to the resistance caused by the foam and that therefore the flow field can be accurately enough
approximated as uniform across the gap.  With these assumptions, the problem becomes one-dimensional with
the independent variable being the angle È  or the distance x, the two being equivalent.  The ideal gas equation
of state for an isothermal system is

The equation for the flow area as a function of angle is

where r is the inner  radius of the hemishell and h is the height of the gap measured radially from the center
(therefore the outer radius is r+h).  The expression for area is an approximation assuming r>>h.  The steady
state continuity condition is that the mass flow rate is constant at all angles.  Therefore, the steady state
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equation for the pressure field is
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An alternate form for this equation is

Applying the ideal gas equation of state, another form is

where ñ— is the average of the densities in the inlet and outlet.  As before, one may solve Eq. B.(18) for mass
rate or for permeability as needed.

B. 2  CLOSED FORM SOLUTIONS FOR FREE MOLECULAR FLOW 

B. 2. 1  Free Molecular Flow on a Hemishell

The major difference between free molecular flow and continuum flow in the compressible Darcy
equation is that the mass flux is proportional to the pressure gradient, but not to the pressure gradient times
the pressure (or alternately to the gradient of pressure squared–the two are mathematically equivalent).  For
an isothermal system, the equation for the mass flux is as follows:

where Dkeff is a mass transfer coefficient for free molecular flow with the dimensions of a diffusivity.  By
comparison with Eq. (57), it is clear that Dkeff is given by the following:





29

0m ln
rin

rout

'
2ðh
RT

Dkeff (Pin&Pout) (B.27)

Ppole ' Pb&
0mRT

2ðn1 DÔh
ln[tan

È pole

2
]& ln[tan

È b

2
] (B.28)

0m ln
rin

rout

'
2ðh
RT

n1 DÔ(Pin&Pout) (B.29)

As has been the case for earlier solutions in this appendix, one can use Eq. B.(27) to calculate mass rate or
Dkeff.  Using Eq. B.(21), one can calculate k1free from Dkeff.

B. 3  CLOSED FORM SOLUTIONS FOR DIFFUSIVE FLOW

The solutions for diffusion driven flow in a hemishell and a disk are identical to those for free
molecular flow except that one must substitute n1 DÔ for Dkeff where  n1 is the porosity of the porous material,
D is the diffusivity of the trace gas in the stagnant carrier, and Ô is the tortuosity.  For completeness, the author
will include the final flow equations.

B. 3. 1 Diffusive Flow on a Hemishell

B. 3. 2  Diffusive Flow on a Disk
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