
Abstract

A class of parallel multiple front solution algorithms is described for solving linear sys-

tems arising from discretization of boundary value and evolution problems. The basic
substructuring approach and frontal algorithm on each subdomain are �rst modi�ed
to ensure stable factorization in situations where ill-conditioning may occur due to

di�ering material properties or the use of high-degree �nite elements (p methods).

Next, the method is extended to apply to parallel distributed-memory multiprocessor
systems with the �nal reduced (small) Schur's complement problem solved on a single

processor. A modi�ed algorithm that implements a recursive partitioning approach

on the subdomain interfaces is then developed. Both algorithms are implemented

and tested in a least-squares �nite element scheme for viscous incompressible 
ow
computation using a p-�nite element method.
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A Class of Parallel Multiple Front Algorithms 1

1 Introduction

T
he emergence of several powerful multiprocessor supercomputers and uniform

message passing interface protocols for tightly coupled workstation clusters has
generated considerable interest in the development and application of parallel algo-

rithms. In analysis applications using �nite-di�erence or �nite-element schemes, much

of the computational cost is associated with solving sparse linear systems. Domain

decomposition has proven to be an e�ective and robust strategy to exploit parallelism

across subdomains, and this is the approach considered in the present work.

Since iterative methods such as the conjugate gradient (CG) algorithm are
generally easier to parallelize and scale than sparse direct methods, considerable at-
tention has been focused on the performance of iterative methods on distributed

memory multiprocessors. Most of these studies are limited to solving well-behaved,
sparse, diagonally dominant, symmetric positive-de�nite linear systems arising from

low-degree �nite elements or analogous �nite-volume/di�erence schemes. Relatively

little attention has been paid to solving poorly conditioned linear systems with an
irregular sparsity pattern that may arise out of high-degree p-version �nite-element

formulations, nor has the parallel preconditioning problem been fully resolved for
these systems. For example, Babu�ska et al. (1992) consider a domain decompo-

sition strategy for an hp-�nite element formulation applied to elliptic problems and

using a preconditioned CG method for shared-memory parallel processors. Bar-

ragy et al. (1994) present a parallel element-by-element scheme for elliptic partial

di�erential equations and discuss some aspects of the preconditioning and iterative

performance issues for these schemes inCarey and Barragy (1989) andBarragy
and Carey (1991). A family of domain decomposition preconditioners has also been

proposed by Mandel (1990) and Mandel (1991) for p-version �nite-element ma-

trices. However, there are many classes of problems for which iterative methods

converge slowly, are unreliable, or breakdown and parallel elimination methods are

more reliable and eÆcient. In fact, for real applications in many areas, iterative meth-
ods may have signi�cant diÆculties. Notably, this is the case in least-squares �nite

element formulations of the incompressible viscous 
ow equations for Newtonian and

viscoelastic 
ows and motivates the present research on parallel direct methods using

substructuring and element-by-element multifrontal techniques.

Almost all studies on parallel direct solution of hp-�nite element systems con-

sider symmetric positive de�nite matrices for which diagonal pivoting and distributive

Cholesky decomposition can be employed. For example, Guo and Myers (1996)
proposed a dynamic load distribution algorithm for mapping hp-�nite element clus-

ters onto processors using the mesh topology and a parallel distributed Cholesky

factorization scheme for solving the resulting linear system. The algorithm is suitable
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2 Abhijit Bose et al.

for parallel direct solution of linear elasticity problems.

In the present paper, we extend the parallel multiple front approach (Duff

and Scott, 1994) to the solution of linear systems arising from p-�nite element
formulations and apply the algorithm to viscous 
ow simulations. We have added

several intermediate steps for subdomain and element reordering, and load balancing

via weighted vertices based on the p-levels of the element basis functions to the ex-

isting capabilities of Metis (Karypis and Kumar, 1995) to achieve our subdomain

partitioning for parallel elimination. An element-by-element frontal LU factoriza-

tion with threshold pivoting is then applied to element matrices of each subdomain.
Performing the LU factorization step allows us to solve non-symmetric matrix prob-

lems such as those arising from the mixed Galerkin formulation of the Navier-Stokes
equations. In general, this step eliminates most of the internal unknowns in each

subdomain. However, it should be noted that, because of the pivoting criterion used
in our scheme, some of the internal unknowns in each subdomain may not be elim-
inated and therefore become part of the resulting Schur's complement problem. As

explained later, this is necessary for stability of the factorization for systems such as
those obtained using high p bases and mixed methods for incompressible viscous 
ow
computations. The global Schur's complement problem can be assembled and solved

on one processor. The respective subdomain solutions are then extracted and sent to

the individual processors for parallel recovery of the local eliminated variables. How-

ever, solution of the entire Schur's complement problem on one processor presumes
that the reduced problem is small and hence, only allows coarse granularity of the

present algorithm. In a modi�ed algorithm we introduce recursive partitioning of the

interface and global Schur's complement problem. This leads to improved scalability
properties, as shown in the supporting numerical experiments.

The outline of the discussion is as follows: We �rst describe the basic domain

decomposition and substructuring problem from a linear algebra standpoint. Then

we give details of the frontal implementation, including strategies related to pivoting
and reduced �ll-in. Our approach for recursively partitioning the interface and the
associated graph theory is then presented. Some supporting numerical experiments

for p-�nite element solution of viscous 
ow problems and parallel performance studies

conclude the treatment.
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A Class of Parallel Multiple Front Algorithms 3

2 Parallel multiple front algorithm

2.1 Substructuring

Consider a mesh de�ned on a domain 
 and a partition to a set of k open subdomains

 =

Sk

i=1

i with associated subdomain meshes such that 
i

T

j = 0 and the

common interfaces are 
i

T

j = �ij for 1 � i; j � k. Using this decomposition,

the discretized problem can be expressed as a partitioned algebraic system with the

partitioning de�ned by the subdomains.

A typical substructuring algorithm involves factorization of matrix blocks for

grid points interior to the respective subdomains in order to eliminate internal un-
knowns in terms of interface unknowns. This is straightforward when the subdomain
block matrices are nonsingular. However, Gunzburger and Nicolaides (1984)

have shown, for instance, that in the standard mixed Galerkin formulation for the
incompressible Navier-Stokes problem with discontinuous pressure subspaces, each

subdomain block matrix will have a single local pressure null vector and therefore
will be singular with a one-dimensional null space. To circumvent this diÆculty, they

propose a complex algorithm using pseudo-inverses and many matrix manipulation

steps.

In other cases, such as the least-squares mixed formulation of the incompress-

ible Navier-Stokes equations with equal interpolation bases for pressure, velocity, and
stresses, the subdomain block matrices are nonsingular. However, depending on the

choice of element basis functions and the particular problem, these block matrices
may not be completely factorizable because of ill-conditioning that can be attributed
to the presence of very small pivots arising from the basis functions. We propose a

strategy that is based on frontal elimination with pivoting within each subdomain
and that may involve only a partial elimination.

To illustrate the main ideas, consider decomposition of a domain 
 to two

subdomains 
1 and 
2. Let us regroup implicitly the unknowns so that u1 and u2
correspond to only those internal unknowns that can be eliminated from subdomains

1 and 
2, respectively, within stability limits and prescribed pivoting criteria. Then
let uS denote the interface unknowns and remaining internal unknowns from the two

subdomains. We write the resulting partitioned system as2
4 J11 0 J1S
0 J22 J2S
JS1 JS2 JSS

3
5
2
4 u1
u2
uS

3
5 =

2
4 r1
r2
rS

3
5 ; (2.1)

where the coeÆcient matrix corresponds to, say, the Jacobian matrix for a nonlinear
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system solve or the constant coeÆcient matrix for a linear system. Note that the spe-

ci�c form of uS and hence the structure of the reduced Schur's complement problem

for uS cannot be determined in advance but is only known after the partial interior

elimination is complete in 
1 and 
2.

2.2 Subdomain problem

Let us now consider the part of the algebraic linear system corresponding to a sub-

domain 
s written as

Ju = r+ �: (2.2)

Here J is the assembled Jacobian matrix from individual elemental matrices of the

subdomain, r is likewise the assembled residual for subdomain 
i, and � corresponds
to the remaining contributions from the adjacent subdomains. (We have suppressed

the subdomain index for notational simplicity.)

Next, let us introduce another local ordering of the subdomain nodal unknowns

so that those eliminated by the action of the incomplete frontal factorization are
numbered �rst as ue. The remaining unknowns, uf , correspond to those that are left
in the front for the subdomain. This simple reordering of the nodal components can

be represented using a permutation matrix QT by

~u = QTu; (2.3)

where ~u = [ue uf ] andQ
T is de�ned by elementary operations on the identity matrix.

In the same way, the components of the vector r in (2.2) can be reordered to

~r with

~r = PTr; (2.4)

as in (2.3), where PT is de�ned in a manner similar to QT to denote the e�ect of
row interchanges. It should be noted that the permutation matrices P and Q are the

same only if diagonal pivoting is used for factorization of J. Otherwise, matrices P

and Q re
ect the order of row and column pivoting, respectively, during the frontal
factorization of J. Under this reordering, equation (2.2) becomes

~J~u = ~r+ ~�; (2.5)

where ~�T has zeros in those entries corresponding to all interior degrees of freedom

and

~J = PTJQ: (2.6)
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A Class of Parallel Multiple Front Algorithms 5

When diagonal pivoting is used, that is, PT = Q, the symmetry of ~J is preserved.

The elimination process induces a corresponding block partitioning which can be

expressed conveniently as

~J =

�
Jee Jef
Jfe J�

�
: (2.7)

Here Jee denotes the block of J associated with the nodal unknowns to be eliminated,
and J� is associated with those in the remaining front. The o�-diagonal blocks Jef
and Jfe describe the interaction between eliminated and remaining degrees of freedom.

The system (2) under this partitioning becomes

Jeeue + Jefuf = re

Jfeue + J�uf = rf + �f ; (2.8)

where the nonzero entries in �f correspond to all unknowns on the interface.

Formally, the �rst equation in (2.8) can be used to express ue in terms of uf
as

ue = Jee
�1 [re � Jefuf ] (2.9)

so that the remaining equation in (2.8) reduces to the Schur's complement problem
for the subdomain interface,

S�uf = bf ; (2.10)

with the Schur's complement matrix S� de�ned by

S� = J� � JfeJ�1ee Jef (2.11)

and

bf = rf + �f � JfeJ�1ee re: (2.12)

Of course, this system cannot be set up explicitly because the unknowns de�ning

uf are not known a priori. Moreover, even if the system were set up, it obviously

could not be solved because entries in �f are not known. However, the operations in
(10) and (11) can be conveniently expressed for our purposes in terms of the block

factorization �
Jee Jef
Jfe J�

�
=

�
Lee 0

Lfe S�

� �
Uee Uef

0 I

�
: (2.13)
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6 Abhijit Bose et al.

Further details of the LU factorization and matrix front modi�cation as well as piv-

oting and �ll-in reduction strategies are described later in the section on Frontal

Implementation. Substituting the factored form, (2.13), in (2.8),the resulting prob-

lem can be rewritten as the pair of systems�
Lee 0

Lfe S�

� �
ye
yf

�
=

�
re
rf

�
+

�
0

�f

�
: (2.14)

and �
Uee Uef

0 I

� �
ue
uf

�
=

�
ye
yf

�
(2.15)

Let us now return brie
y to the global problem and note that the global system could
be obtained by assembling the local subdomain systems. Let Bs denote the boolean

matrix specifying the global connectivity for subdomain s. Then the local subdomain

matrix Js can be mapped into the global system by BT
s JsBs. Here Js is of size

ns�ns and Bs is an ns�nG matrix, where ns, nG are the number of local and global

degrees of freedom, respectively. Similarly, rs, �s map to BT
s rs and B

T
s �s. Then the

assembled global system for uG can be expressed as the sum of mapped subdomain

contributions

SX
s=1

�
BT
s JsBs

�
uG =

SX
s=1

BT
s rs +

SX
s=1

BT
s �s: (2.16)

The last term in (2.16) reduces to the global sum of interface 
ux jumps; that is,

SX
s=1

BT
s �s =

IX
i=1

[�i] = 0; (2.17)

which follows from the weak variational statement in the Galerkin method and from

Co approximation of the 
uxes in the least-squares method.

Hence, we need not explicitly treat �f and therefore can proceed with a parallel

factorization step as follows: The interface variables for each subdomain are �rst


agged in a pre-front routine. The block matrices Lee, Lfe,Uee,Uef , and S are then
generated by an element-by-element frontal solution scheme with threshold pivoting

within the front. The remaining front contains not only the interface variables but also

those remaining internal variables that did not pass the threshold pivoting criterion.
Since conditioning depends upon the choice of the element basis functions (as well as

other factors such as subdomain mesh size), it is not surprising that di�erent bases

will lead to di�erent front sizes. In some of our numerical test cases we �nd that a

Oak Ridge National Laboratory Technical Report ORNL/TM-1999/183, pp. 1{35



A Class of Parallel Multiple Front Algorithms 7

signi�cant fraction of the interior unknowns still remain in the front at the end of the

factorization step.

For clarity of exposition, let us �rst assume that the global Schur's complement
problem (SF gF = bF) has been assembled from subdomain contributions, (2.10),

onto processor zero and solved to determine the global vector gF. From gF we can

extract the subdomain front solution vectors fusfg; s = 1; 2; � � � ; S. Consider a typical
subdomain with front vector solution uf . Then the recovery procedure (recall eq. (2.9)

) for the remaining interior variables consists of a subdomain back-substitution step

in (2.15).

For a given LU -decomposition of the subdomain Jacobian matrix ~J, we can
modify (2.12) as

bf = rf + �f � JfeJ�1ee re = rf + �f � Lfeye (2.18)

The above step replaces the matrix multiplication operations to a forward substitution

step for calculation of the Schur's complement vector bf . Since the local subdomain
elimination is local, the above steps can be made concurrently across the processors
in a distributed environment. For purposes of overlapping computation with com-

munication, the subdomain Schur's complement matrix S� may be sent to processor
zero via a nonblocking \send" call while the computation for vector bf is in progress.

A more detailed description of the parallel multiple front solution algorithm follows
as

Algorithm [parallel multiple front algorithm ]

for s = 0 to S subdomains in parallel

if s = 0 then [ processor zero ]

Receive S� and bf from processors f1,2,� � � ,Sg and assemble
the global Schur's complement problem.

Solve the global assembled Schur's complement system.
Extract and send subdomain solution ye to each subdomain.

else

Construct matrices Lee,Lfe,Uee,Uef ,S� using subdomain frontal factorization.
Generate permutation matrices P and Q from row and column pivoting sequences

during frontal factorization.
Send subdomain Schur's complement matrix S� to processor zero using a

nonblocking data transfer protocol such as MPI Isend.

Compute bf  rf � Lfeye using forward substitution.

Send subdomain Schur's complement right-hand-side bf to processor

zero using MPI Isend.

Receive ye from processor zero using a blocking receive call

Oak Ridge National Laboratory Technical Report ORNL/TM-1999/183, pp. 1{35
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such as MPI recv. [forces synchronization with global Schur's complement

solution step]

Solve for internal variables ue.

endif

endfor

Remarks

The only serial part of the algorithm is the �nal solution of the global reduced

Schur's complement problem. Clearly, this step may dramatically degrade perfor-
mance and eÆciency of the parallel algorithm as the problem scales since increasing
the number of subdomains results in a large number of interface variables (Duff

and Scott, 1994); and the size of the assembled Schur's complement problem in-
creases accordingly (Keunings, 1995). This algorithm is therefore best suited for

coarse-grain parallelism. Of course, one can also solve the resulting global Schur's

complement problem in parallel using a parallel dense direct or iterative solution
algorithm.

The above comments are especially true for elements with low order polynomial
bases such as linear and quadratic basis functions. For example, given a �xed mesh

of quadratic �nite elements, the ratio of interface and subdomain internal unknowns
quickly grows with an increase in the number of partitions. However, with suÆciently

high order �nite elements on the same mesh, there are more internal unknowns in
any subdomain than interface unknowns in the global Schur's complement problem.
Therefore, the parallel eÆciency can be improved signi�cantly by using high-order

hierarchic polynomial basis functions keeping the mesh �xed. We brie
y describe the
hierarchic polynomial bases used in the present study in the Appendix. This is also
demonstrated in our numerical experiments presented in a later section. However, it

should be noted that �xing the mesh size to a constant and increasing the polyno-

mial degree of the approximation functions may not always lead to an optimal rate

of convergence. On the other hand, the above algorithm may be quite practical on
a tightly coupled system of workstations. To illustrate these ideas, let us consider a
rectangularm�n mesh of quadrilaterals. Let p denote the uniform polynomial degree

of the approximation functions in all the elements of the mesh and k the number of

subdomain partitions. Note that there are many possible ways of dividing a mesh of
m�n elements into k-subdomain partitions. For example, a simple strategy is to use

vertical partitioning of the elements into k vertical subdomain strips. With such an

arrangement, we can readily calculate the number of internal and interface unknowns

for each subdomain and also the number of unknowns for the global Schur's com-

plement problem, assuming that only the subdomain interface unknowns constitute

Oak Ridge National Laboratory Technical Report ORNL/TM-1999/183, pp. 1{35
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the global Schur's complement system. The present parallel multiple front algorithm

based on a serial solution of the global Schur's complement problem is acceptable

when the size of the global Schur's complement problem is less than the average sub-

domain problem size. Algebraically this can be written for the above partitioning

as

k �
p
1 + 4b + 1

2
; (2.19)

where b = p2mn+mn+np�1

mp+1
. Such estimates, however, cannot be as easily calculated for

more general unstructured mesh and subdomain partitions. The Schur's complement

problem is more dense than the typical subdomain problem. Obviously the overall
eÆciency will be better if the Schur's complement problem is signi�cantly smaller

than the average subdomain problem.

3 Frontal implementation

The convenient sparse block structure of the subdomain matrix ~J in (2.5) does not

arise naturally. Instead, the matrix is stored as a collection of smaller dense �nite-

element matrices so that their assembling sum is equivalent to a permutation of the
matrix displayed on the left side of (2.5). Nevertheless, the block LU factorization

of ~J can be obtained without ever using a block structure. The �nite element matrix
contributions can be assembled into a larger dense matrix, denoted F, where all dense
kernel factorization operations take place. The so-called frontal matrix F is constantly

modi�ed at each step of the factorization process with a rank-one update operation
such that the frontal matrix at the k-th step is obtained by

F(k) = F(k�1) � �
(k)xy; (3.1)

where �(k) is the inverse of the pivot element in the matrix, x is the vector of multi-
pliers, and y is the row to be subtracted. F(k) is organized into four dense blocks

F(k) =

�
A B

C D

�
: (3.2)

The blocks A and C store fully summed columns, and blocks A and B store

fully summed rows. Pivots can be chosen from row and column entries inA according

to the criteria discussed below. We proceed with rank-one updates until no further

equation can be eliminated or the dimension of D equals the number of interface

equations (in which case, A will be null). The remaining block D is the Schur

Oak Ridge National Laboratory Technical Report ORNL/TM-1999/183, pp. 1{35
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complement of Jee in ~J, and it is elsewhere denoted as S� . The block factorization

(2.13) is possible since the columns of [Lee Lfe]
T
are the multipliers �(k)x and the

rows of [Uee Uef ] are the subtracting rows yT .

It should be noted that the dimension of D is equal to or greater than the

number of subdomain interface equations. It will be greater if all �nite elements are

assembled into F; A cannot be reduced to a null matrix because some of its entries

have unacceptable pivots. Since pivots can be chosen anywhere in A, row and column

permutations are actively performed, and therefore a rigorous account of the above

procedure must include the e�ects of two permutation matrices.

The criteria for selection of pivots follows Zlatev (1980), except that we have
not found advantages in using an associated �ll-in reducing strategy. A pivot at the
k-th step of factorization is selected in A by searching the rows of A and C for each

column of A in the increasing order of their global indices until the �rst occurrence

of the threshold criterion,

jai;jj � u (max jai;jj;max jci;jj) ; (3.3)

is satis�ed. A global index of rows and columns of F points to the corresponding

sparse row and column indices in ~J. Therefore the pivot search is biased towards
the original ordering of the equations. The threshold parameter u is chosen as 0.1.

No absolute pivot tolerance is enforced, but the largest and smallest pivot absolute

value is monitored. In our experience, if ~J is properly equilibrated, an acceptable
pivot can be found in a few column searches, typically less than 5. Equilibration

is found to be mandatory|otherwise this pivoting strategy can take a substantial

amount of computing time to search and most importantly cause prohibitive �ll-in.
See (de Almeida et al., 1999) for details on equilibration and �ll-in control strategies

based on dropping.

The entries in the multiplier column �
(k)x and subtracting row y are dropped

according to a threshold dropping criterion. The root-mean-square value (RMS) of

each row and column is computed, and all entries whose absolute value is less than

10�7 times the RMS value are dropped. We �nd that this dropping strategy often
reduces �ll-in without a�ecting the quadratic convergence of the outer Newton iter-
ation loop. Ordering of the matrix ~J is of the utmost importance. Here we employ

the wavefront reducing method of Sloan (1989) modi�ed by Scott's (1995) proce-

dure II to avoid subdomain interfacial elements entering the front at early stages of
elimination. Since the equations corresponding to the block J� in (2.13) can not be

eliminated, they should enter the frontal matrix last. This can be e�ectively achieved

by resequencing the �nite elements so that the elements on the interfaces are num-

bered last within a subdomain. Scott's approach II augments the dual �nite-element

graph of the mesh with one vertex and edges connected to all interfacial vertices. By
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A Class of Parallel Multiple Front Algorithms 11

taking this additional vertex as a pseudo peripheral vertex, a second pseudo periph-

eral vertex is computed and used as the starting vertex in Sloan's element reordering

Sloan (1989). Once the reordering is completed, the additional vertex is eliminated.

Since the additional vertex was the last vertex to be renumbered, all interfacial ver-

tices connected to it will be contained in the last level structure of the graph, and

therefore they are labeled last.

4 Partitioning the interface

Since we adopt a graph theoretical approach to describe the interface partitioning
problem, a few basic concepts from graph theory are �rst presented. A graph G =

(V;E) consists of a set V of vertices along with a set E of edges where an edge is a
pair (v1; v2) of distinct vertices in V . A subgraph ~G = (~V ; ~E) of G = (V;E) is a graph
which consists of some or all vertices of G and some of the edges of G : ~V � V; ~E � E.

The subgraph is a section graph when ~V consists of only some of the vertices of G and
~E consists of all edges (v1; v2) that are in ~V :

~V � V

~E =
n
(v1; v2) 2 E k v1 2 ~V and v2 2 ~V

o
(4.1)

A graph is connected if every pair of vertices is connected by a path. Otherwise,

the graph is disconnected. Usually a disconnected graph consists of two or more

connected components. We only consider connected graphs of �nite elements for
the present study. A separator is a set of vertices that renders a connected graph

disconnected when that set of vertices along with their incident edges are removed

from the graph. A vertex is called a cutvertex when it is itself a separator. For our
purposes, we de�ne degree of a cutvertex as the number of subdomains incident to it

and denote it as deg(Ci) for a cutvertex Ci.

Now let us consider a partitioning of a �nite-element mesh to subdomains. We
wish to represent the global interfaces among the neighboring subdomains in terms

of interface graphs. Depending on the partitioning scheme used for the subdomains,

there will be a number of interfaces joining only at certain points in 2D and along
lines in 3D. For clarity of exposition, we will restrict our discussion to 2D domains for

this study. However, the basic ideas are easily extended to 3D geometries as well. To

illustrate the main ideas, let us consider the partitioning in �gure 4.1. It should be
noted that the point at which two interfaces intersect in 2D coincides with a physical

node of a �nite element sharing these two interface segments. This node then becomes

a cutvertex or a separator in the interface graph. For example, the separators of the
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1

2

5

6

3

 4

Fig. 4.1: Partitioning of a �nite element mesh to six subdomains.

graph of global interfaces for the partitioning in �gure 4.1 are shown in �gure 4.2. The

degree of any cutvertex can be calculated from the number of subdomains incident to
it, for example, deg(C4) = 2, deg(C5) = 3, etc. The interface segment between any

two end separators consists of nodes of �nite elements incident to that interface. Let
us denote the set of all nodes between two separators i and j along an interface by
vij. Using these de�nitions, we can represent all the vertices of an interface graph, as

shown in �gure 4.3 for subdomains 1, 2, and 4.

The interface partitioning strategy can then be simply explained using this

example. Let us assume that the interfaces incident with subdomains 1; 2, and 4 in
�gure 4.3 belong to the same partition. Obviously, not all of the unknowns on these

interface segments can be solved independently of the other partitions. The following

rules, however, are always satis�ed.

1. If either of the cutvertices i or j of an interface graph can be eliminated, then the

intermediate set of vertices vij is also a candidate for elimination.

2. A separator or cutvertex can be eliminated only when its degree has been reduced

to 2 by merging incident subdomains for a particular interface partition.

The graph of the interface for subdomain 1 can be represented as G(1) = (V (1)
; E

(1))
where the set of all vertices on the interface is V (1) = fC1; v12; C2; v23; C3; v34; C4g.
Note that the degree of any interface nodal subset vij is always 2. However, the

cutvertices Ci have di�erent degrees depending on the original decomposition of the
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Fig. 4.2: Separators in the graph of global interfaces.
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Fig. 4.3: Vertices of interface graphs for subdomains 1; 2, and 4.
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�nite-element mesh.

The entire set of vertices V (1) is non-reducible; that is they cannot be elimi-

nated independently of the other partitions. Next, consider the set of vertices on the
interface of subdomain 2, V (2) = fC4; v34; C3; v310; C10g, and make V

(2) part of the

set of vertices that cannot be eliminated. Next, we search for common separators of

V
(1) and V

(2); (C3 and C4). The separator C4 can be readily eliminated (following

Rule 2 above) since its degree is 2. Then, by Rule 1, the intermediate vertices given

by the set v34 can also be eliminated. Since deg(C3) = 3, the separator C3 cannot

be eliminated at this stage. However, once subdomains 1 and 2 are merged, we can
reduce the degree of C3 by one so that deg(C3) = 2. For example, it can be eliminated

if subdomain 4 is also merged with subdomains 1 and 2.

After subdomains 1 and 2 are merged, the sets of internal and boundary un-

knowns on the resulting interface are

I = fC4; v34g
N = fC1; v12; C2; v23; C3; v310; C10g ; (4.2)

respectively. The internal vertices given by the set I can be readily eliminated and a
resulting Schur complement problem can be written in terms of the unknowns corre-
sponding to the vertices in N . We describe the implication for the matrix problem

in a later section. A merging of the interface of subdomain 4 to the current sets will
then result in a new list for both I and N as follows:

I = fC4; v23; v34; C3; v310; C10g
N = fC1; v12; C2; v25; C5; v56; C6; v67; C7g : (4.3)

The above example assumes that the interfaces of subdomains 1, 2, and 4 form

one single partition of the global interface problem. If one wishes to solve the global

interface problem on two interface partitions or interface subregions in parallel, the
rest of the interface segments incident with subdomains 3, 5, and 6 will be part of

the second interface subregion and can be treated in the same manner as above. For

both interface subregions, we can eliminate the respective internal unknowns and

write the resulting Schur complement problem in terms of the remaining unknowns.

The resulting �nal \reduced" Schur complement problem can then be assembled and

solved on one processor. Clearly, the above approach involves two partitioning and
elimination cycles, the �rst for subdomains with interfaces and the second for interface

subregions. The �nal `reduced' Schur complement problem involves only a very small

subset of the original problem.
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We now present the algorithm for creating lists I and N for each interface

partition.

Algorithm 1

for k = 0 to n interface partitions

generate a list of m subdomains (S(k)) for partition k

for i = 0 to m subdomains

N (k)  N (k) [ V (i) (initialization)

if i > 0 then (merging of subdomains)

�nd s minimal separators between sets N (k) and V
(i)

for j = 0 to s separators

if deg(Cj) = 2 then (eliminate)

I
(k)  I

(k) [ Cj [ vjl (jl: connected vertices)

remove Cj and vjl from N (k)

else

deg(Cj) = deg(Cj)� 1
endif

endfor

endfor

endfor

For a given number of subdomains, the number of interface partitions to be

divided among processors for the solution of the global Schur complement problem

is not �xed. For elimination of common vertices, at least two subdomains must be
merged for each interface segment. Benner et al. (1987) present an algorithm based

on nested dissection in which two subdomains are merged in parallel to eliminate the

incident interface in n-steps for 2n subdomains. The disadvantages of this method

are: the parallelism is progressively reduced and that their scheme is best suited

to structured meshes. Moreover, computing n nested-dissection steps in the mul-
tifrontal algorithm on a distributed-memory multiprocessing system using message

passing requires many communication cycles and may not scale at all beyond a few
subdomains.

Recently, a family of linear solvers based on selective orderings have been pro-
posed. Notably, SPOOLES (Ashcraft et al., 1999) from Boeing Phantom Works
employs multilevel nested dissection and multisection (a hybrid algorithm of nested

dissection and minimum-degree ordering) to �nd an ordering in the graph of the ma-

trix to be factored. Subsequently, the vertices in the elimination graph are grouped

together to form fundamental supernode trees which can be solved in parallel. This

approach requires renumbering the vertex labels of the entire graph and, therefore,
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may not be convenient for the type of large distributed �nite-element graphs we

consider here. Another recent publication (Li et al., 1999) explores the notion of un-

symmetric supernodes to perform most of the numerical computation in dense matrix

kernels. The multi-threaded version of the solver known as SuperLU runs on shared-

memory machines and employs a depth-�rst search along with symmetric structural

reductions to speed up the symbolic factorization and improve cache performance.

Later, we present a number of examples to illustrate the e�ect of partitioning the

Schur complement problem over di�erent processor con�gurations for a given number

of subdomains using the new algorithm described here.

5 Matrix representation

The speci�c problem of merging adjacent subdomain interfaces and the resulting
\reduced Schur complement" problem is considered next. For the time being, let us

assume that only interface unknowns contribute to the Schur complement problem
for any subdomain. Consider two neighboring subdomains, 
(p) and 
(q), sharing an

interface segment �pq. The subdomain Schur complement problems are

S(p)u(p) = b(p) + r(p) (5.1)

S(q)u(q) = b(q) + r(q); (5.2)

corresponding to the interfaces @
(p) and @
(q), respectively. The interface unknowns

are denoted as u(p) and u(q). The subdomain Schur complement matrices S(p) and
S(q) are generated using a frontal algorithm in each of the subdomains p and q. Note

that both subdomains p and q may have interfaces shared with other neighboring
subdomains. The contribution of the neighboring interfaces is represented by the

vectors r(p) and r(q) in (5.1) and (5.2). Let us assume that these two subdomain

interfaces are merged to form a global interface partition. The algorithm shown
earlier can be employed to generate the necessary lists N and I for merging the

interfaces. The unknowns corresponding to the shared interface �pq will be part of I
and the rest of the unknowns part of N . This induces a block representation of the

Schur complement problem, ((5.1) and (5.2)), in each subdomain. First, we introduce

a local ordering of the subdomain interface nodal unknowns so that those on �pq are
numbered as ue. The remaining unknowns on each subdomain interface are labelled

as u
(p)

f and u
(q)

f , respectively. In the absence of any other subdomain interfaces, the

lists I and N can then be expressed as
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I = fueg
N =

n
u
(p)

f ;u
(q)

f

o
: (5.3)

This reordering of the interface unknowns can be represented using a permu-

tation matrix Q(: ) as

(ue ; u
(p)

f )T = QT
(p) u

(p) (5.4)

(ue ; u
(q)

f )T = QT
(q) u

(q)
; (5.5)

respectively, for the two subdomains.

Under these reorderings, (5.1) and (5.2) become

~S(p)~u(p) = ~b(p) + ~r(p) (5.6)
~S(q)~u(q) = ~b(q) + ~r(q); (5.7)

respectively, for subdomains p and q, where

~S(p) = QT
(p)S

(p)Q(p);
~b(p) = QT

(p)b
(p)
; ~r(p) = QT

(p)r
(p) (5.8)

and

~S(q) = QT
(q)S

(q)Q(q);
~b(q) = QT

(q)b
(q)
; ~r(q) = QT

(q)r
(q)
; (5.9)

Matrices ~S(p) and ~S(q) then have the following block structure:

~S(p) =

"
S
(p)
ee S

(p)

ef

S
(p)

fe S
(p)

�

#
(5.10)

and

~S(q) =

"
S
(q)
ee S

(q)

ef

S
(q)

fe S
(q)

�

#
: (5.11)

Note that the matrices S
(p)
ee and S

(q)
ee represent the respective contributions of

subdomains p and q for the interface unknowns on the common interface segment
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�pq to the global Schur complement matrix. We now perform a summation of these

two matrices; that is, we compute See = S
(p)
ee + S

(q)
ee . This step requires interproces-

sor communication between subdomains p and q. This is also the assembled Schur
complement matrix corresponding to the unknowns ue 2 I on �pq. Let us denote

the unknowns associated with the list N by u� as a result of merging the interfaces

of subdomains p and q. As a result, the merged Schur complement matrix can be

expressed as

�
See Se�
S�e S��

� �
ue
u�

�
=

�
be
b�

�
+

�
0

r�

�
; (5.12)

where the blocks Se�, S�e, and S�� consist of contributions from subdomain interfaces
other than p and q and, hence, cannot be eliminated at this stage. However, the matrix

block See corresponding to the unknowns ue is fully summed since �pq consists of
only the interface between subdomains p and q. The vector r� corresponds to the


ux term contribution of u� and unassembled interface unknowns from neighboring

subdomains. Finally, the unknowns ue can be eliminated from (5.12) and the reduced
Schur complement problem for the merged subdomain interfaces can be expressed as

�
S�� � Se�S�1ee S�e

�
u� = b� + r� � Se�S�1ee be: (5.13)

The subdomain interfaces can be partitioned into a number of global inter-
face segments by merging neighboring subdomains. Each global interface partition

generates a `reduced' Schur complement problem, as given in (5.13), which consists
of only a fraction of the original Schur complement problem. These reduced Schur

complement matrices may now be easily assembled onto one processor and solved for
the global cutvertices.

6 Data structure and implementation

The algorithm described in the earlier sections has been implemented in a general pur-

pose p-adaptive �nite-element program termed P�nics. A given �nite-element mesh is
divided into a speci�ed number of subdomains using Metis (Karypis and Kumar,

1995) and a set of pre-processing tools available in P�nics. This pre-processing phase

performs the following tasks :

1. prepare a graph of element connectivity with element centroids as vertices.
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2. partition element graph using a multilevel k-way partitioning scheme available

via Metis.

3. reorder the subdomains (output of Metis) to minimize the front-width of the

global assembled Schur complement matrix.

4. for each subdomain in the mesh, �nd internal and interface element numbers;

reorder local subdomain mesh to reduce front-width of subdomain frontal fac-

torization; generate send/receive lists of local nodes for each neighboring subdo-

main; �nd local boundary conditions from global �nite element mesh; prepare

input �le for P�nics solver.

5. each subdomain mesh is then assigned to a processor within a portable dis-

tributed object-oriented framework for clusters of workstations and distributed
memory supercomputers such as the Cray T3E.

Communication among processors is handled using the standard message-
passing interface MPI (Gropp et al., 1994) protocols. For instance, all data are

sent to processors using a non-blocking protocol called MPI Isend. This allows a pro-
cessor to proceed to the next level of computation without waiting for the receiving
processor to read the data. To prevent bottlenecks, all processors receive data using

a blocking MPI recv call. The resulting software is portable from workstation clus-
ters to supercomputers and current MPP architectures. A nested linked list (PEList)

keeps track of neighboring processor numbers (PE's) for each processor in the system
and local interface node numbers shared with each neighbor. Another linked list (El-

emList) maintains internal and interface element numbers for each subdomain. This

information is used in the subdomain frontal solver to indicate which unknowns are
fully summed.

An advanced memory management model is used in P�nics, resulting in truly

dynamic memory allocation and deletion as required for adaptive p-�nite-element

methods. More information on data structure and an object-oriented implementation
can be found in Bose and Carey (1997).

7 Numerical experiments

As a representative application to demonstrate the ideas, we consider steady 
ow of a
viscous incompressible 
uid. The global laws of conservation of mass and momentum

in a region 
 of isothermal 
ow may be written in dimensionless form as

r � v = 0 (7.1)
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v � rv = �rp +r�� +
g

Wg

; (7.2)

where p;v;� , and g denote a scalar pressure �eld, velocity vector, stress tensor and

body force vector, respectively, at a spatial point x 2 
. The constitutive equation

for a Newtonian 
uid is given by

� =
1

Re

�
rv +rvT

�
; (7.3)

where Wg ( = v0
2

gol
) is de�ned as an inertial buoyancy number and Re = �vol

�
is

the Reynolds number. The parameters �, �, and v0 are density, viscosity, and a
characteristic velocity, respectively.

The boundary @
 consists of non-overlapping parts @
d and @
n such that

@
d [ @
n = @
. The typical boundary conditions are

v = v0 on @
d (7.4)

� �n = t0 on @
n; (7.5)

Here we present a least-squares �nite-element formulation for (7.1)-(7.3) but empha-
size that the parallel multiple front algorithm can be employed to solve the discretized

matrix problem arising out of other weak formulations, such as Galerkin's method. A
review of least-squares �nite-element methods for 
uid 
ow and transport for a range
of problems including convection-di�usion, Navier-Stokes, and viscoelastic 
ows is

given in Carey et al. (1998).

A least-squares minimization functional for admissible �elds v, p and stress

components (�xx; �xy; �yy) in 
 can be constructed by introducing the corresponding
residuals Rf for (7.1)-(7.3) as follows:

F = k Rf k2L2(
)
; (7.6)

where the residuals Rf (Re � O(1)) for admissible approximation �elds vh, ph, and

�h in the �nite-element spaces are simply

Rf =

2
64

r � vh
vh�rvh +rph �r�� h � g

Wg

�
h � 1

Re

�
rvh +rvhT

�
3
75 : (7.7)

Taking variations leads to a nonlinear algebraic system to be solved for the nodal

solution values of velocities, pressure, and stresses. The usual consistency conditions
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associated with the Galerkin approach do not have to be enforced. (It is well known

that the mixed Galerkin method is not stable for certain basis combinations. For

example, locking to vh = 0 occurs for the linear-velocity, constant-pressure triangle

and spurious pressure modes can occur for other choices of bases (Carey and Oden,

1986). These restrictions on the bases do not apply to the least-squares mixed �nite-

element formulation.) Consequently, in the results presented below, we use Co equal-

order bases for all variables for convenience (although other choices are possible and

may be preferable).

We �rst consider a common two-dimensional viscous-
ow benchmark problem
of isothermal driven cavity 
ow. A unit tangential velocity is applied at the top wall

with no slip on the sides and bottom. Our purpose is to study the e�ects of h and p-
re�nement on the performance of the present algorithm and do a parallel scalability

study. All numerical experiments were performed on a CRAY T3E system at the
Advanced Computing Facility of the University of Texas at Austin.

We used three di�erent uniform discretizations, namely, 10� 10, 16� 16, and
20�20 grids denoted as Meshes I, II, and III, respectively, in all subsequent discussion.
The three respective meshes are partitioned into 3, 7, and 15 subdomains. Since we

currently use processor zero in the communication group for solving the assembled
global Schur's complement problem, we run the above cases on 4, 8, and 16 processors,

respectively.

Figure 7.1 shows timing results on 4, 8, and 16 processors of the T3E for both

Mesh I and Mesh III with quadratic basis functions (p = 2). The present algorithm
does well for up to eight processors for these two cases but does not scale beyond
eight processors. In Table 7.1, we see that for 16 processors, the size of the assembled

global Schur's complement problem is larger than the maximum number of unknowns
in any subdomain (denoted within brackets in the table). The total CPU time in

this case is dominated by the time required to solve the global Schur's complement

problem. However, for good scaling with increasing number of processors, the size
of the global Schur's complement problem must remain small. With p-enrichment

of the element basis functions on a �xed mesh, the ratio of eliminated to remaining
unknowns increases progressively. Now the time required for subdomain Jacobian

matrix factorization and forward/back-solve steps is again more than that required

for the assembled global Schur's complement problem. This results in better timing
results, as seen in Figure 7.2, which compares CPU times for Mesh I with polynomial

orders of 2 and 7, respectively.

The e�ect of increasing problem size on a �xed number of processors is shown in

Figure 7.3. Note that for p equal to 2, both the 8 and 16-processor cases take approx-

imately the same amount of time. However, as the polynomial order is increased, the
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Fig. 7.1: CPU Time for Mesh I and III with quadratic basis functions.

Table 7.1: Global Schur's complement and subdomain unknowns for Meshes I and III (p=2).

Number of Processors (npes)
npes = 4 npes = 8 npes = 16

MeshI 234 480 834
(978) (474) (282)

MeshIII 462 918 1578
(822) (1614) (822)

1

10

100

1000

10000

2 4 6 8 10 12 14 16 18 20

C
P

U
 T

im
e 

(s
ec

)

PE Numbers

p = 2 (N=2892 )
p = 7 (N=31980)

Fig. 7.2: CPU Time for Mesh I (p = 2 and 7).
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timing results with 16 processors improve substantially. Obviously, the subdomain

solution time for frontal factorization and for forward and backward solution steps

scales well as the number of processors is increased, as shown in Figure 7.4 for Mesh I

and polynomial order p = 5. However, because of the increasing number of interface

unknowns, the frontal solver for the assembled global Schur's complement problem

takes more time as the number of processors is increased. This bottleneck can be

signi�cantly reduced by devising an algorithm for parallel solution of the interface

(i.e., Schur's complement) problem.
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Fig. 7.3: E�ect of increasing polynomial orders (Mesh I) on 8 and 16 Processors.
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Fig. 7.4: Frontal solver performance for Mesh I (p = 5, 17820 equations).

As the polynomial degree of the basis is raised, matrix conditioning deteriorates

and the rate of convergence of iterative solvers is adversely a�ected (Bramble et al.,

Oak Ridge National Laboratory Technical Report ORNL/TM-1999/183, pp. 1{35



24 Abhijit Bose et al.

1986). Matrix conditioning in direct solvers can also be a problem; for example, this

can signi�cantly a�ect the stability of a matrix factorization, owing to the presence

of very small pivots along fully assembled rows or columns. This is a more serious

issue for substructuring since only a small sub-mesh is used in each subdomain fac-

torization and the number of assembled rows or columns in each subdomain is much

smaller than that in the fully assembled global domain. As pointed out earlier, the

present algorithm prescribes a conservative pivoting criterion and some equations in

the subdomain matrix are left uneliminated if no acceptable pivots have been found.

The choice of polynomial basis functions for a particular �nite-element formu-
lation also a�ects the condition number of the element matrices, and as a result, the

subdomain Jacobian matrix. For example, consider the previous example involving
a �nite-element formulation of the incompressible Navier-Stokes equations based on

least-squares minimization using hierarchic Lagrange and Legendre polynomials.

Table 7.2: Schur's complement problem size for Mesh I on eight processors (Lagrange).

Processor Number (PE)
p PE = 0 PE = 1 PE = 2 PE = 3 PE = 4 PE = 5 PE = 6 PE = 7

2 480 114 162 114 102 162 216 126
25:7% 34:2% 26:1% 22:1% 36:9% 46:8% 27:3%

5 3249 545 773 420 545 572 823 807
23:2% 30:6% 17:9% 21:8% 24:4% 34:4% 33:5%

7 7263 1055 1714 746 1049 1302 1292 1821
23:6% 35:8% 16:7% 22:1% 29:2% 28:6% 40:0%

Table 7.3: Schur's complement problem size for Mesh I on eight processors (Legendre).

Processor Number (PE)
p PE = 0 PE = 1 PE = 2 PE = 3 PE = 4 PE = 5 PE = 6 PE = 7

2 480 114 162 114 102 162 216 126
25:7% 34:2% 26:1% 22:1% 36:9% 46:8% 27:3%

5 1200 276 396 276 246 396 540 306
11:7% 15:7% 11:8% 9:9% 16:9% 22:6% 12:7%

7 1680 384 552 384 342 552 756 426
8:6% 11:5% 8:6% 7:2% 12:4% 16:8% 9:4%

The data in Table 7.2 are from a partition of Mesh I to seven subdomains.

We consider tensor-product polynomial basis functions for elements in the mesh. The

numbers in the second row for each p-level denote the percentage of Schur's comple-

ment unknowns with respect to total number of unknowns in a typical subdomain.
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Although the software can handle non-uniform p-re�nement, for simplicity, the poly-

nomial order for this study is uniform over all subdomains. This also facilitates load

balancing among processors. Notice that for p = 2, both Tables 7.2 and 7.3 show

the same number of Schur's complement unknowns u
(i)

f for all subdomains. How-

ever, for higher p levels, Lagrange polynomials contribute many internal unknowns

to the subdomain Schur's complement problem, whereas hierarchical basis functions

consisting of Legendre polynomials contribute none. Therefore, for Legendre polyno-

mials, the Schur's complement problem for each subdomain consists of only interface

unknowns. This is evident from the above table. The present algorithm requires that

the size of the Schur's complement problem be small compared with the size of the
subdomain problem. For Lagrange polynomials, the size of the Schur's complement

problem grows exponentially with polynomial order, resulting in poorer eÆciency of
the present algorithm. Moreover, it should be noted that the percentage of Schur's

complement unknowns with respect to total number of unknowns in any subdomain
decreases as the order of the basis functions increases, only when Legendre polyno-
mials are used.

We also consider least-squares �nite-element solution of channel 
ow into a
planar 4:1 contraction as a second example. We refer to (Carey et al., 1998) for

the �nite-element formulation and related issues. Due to symmetry, only one-half of

the planar contraction is modeled. Complete details of the 
ow problem and graphs

of the solution �eld are given by Bose (1997). Here we focus on the performance
of the recursive interface partitioning algorithm and parallel scaling. Representative

samples of partitionings of the original domain to subdomains are given in �gures 7.5

and 7.6.
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Fig. 7.5: 6-Subdomain partition of the 4:1 contraction geometry.
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Fig. 7.6: 15-Subdomain partition of the 4:1 contraction geometry.

Figure 7.7 shows timing results for parallel computations with uniform p-
re�nement on a �xed mesh. Note that for p = 2 (i.e., quadratic basis functions),

the parallel multiple front algorithm does not scale beyond nine processors. For
higher p-orders, however, we get better performance. For example, the bottleneck in

the Schur complement solution step does not appear for p = 5 up to 15 processors.

For polynomial enrichment using hierarchical bases, most of the extra unknowns are
added in the interior of an element. Therefore, for coarse granularity systems and

uniform p-re�nement on a �xed mesh, the size of the subdomain matrix problem is

large compared with that of the global Schur complement problem. For this reason,
solving the entire global Schur complement problem on one processor is still accept-

able. However, for a �xed mesh and �xed p-order distribution, as the number of

subdomains and processors is increased, the size of the interface problem becomes

large and eventually an unacceptable bottleneck occurs.

Figure 7.8 shows the performance of the new distributed Schur complement

solution algorithm embedded within the parallel multiple front solution scheme for

p = 6. A linear speedup curve based on the �rst data point is provided for comparison.

The time required for solution of the Schur's complement problem is also presented.

The improvement in parallel eÆciency for the present algorithm can be explained

from the relatively bounded curve for the Schur's complement solution time for the
processor con�gurations we have tested so far. Figure 7.9 compares the solution

time for the Schur's complement problem for the two algorithms. Note that the size

of the Schur's complement problem is too large to solve on one processor because

of memory limitation when the number of subdomains is suÆciently large (e.g., 18

for this example). This is further motivation for solving the Schur's complement
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Fig. 7.7: CPU time for di�erent polynomial orders.
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Fig. 7.8: Performance of distributed Schur complement solution (p=6, 4:1 contrac-

tion).
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Fig. 7.9: Serial and parallel Schur complement solution timings (p=6, 4:1 contrac-

tion).

problem distributively across a number of processors using either the present scheme

or a parallel iterative scheme.

Next, we comment on the partitioning of the Schur's complement problem

across a number of processors. Since the global interface segments are eliminated via
merging of subdomain interfaces, the greater the number of subdomain interfaces that

are put on the same interface partition (for the Schur's complement solution step),
the fewer the number of unknowns in the reduced Schur's complement problem. The
minimum number of subdomains that must be merged to form a global interface par-

tition is 2, and therefore, one can employ half the number of original processors for
solution of the Schur's complement problem. However, this increases the size of the
reduced Schur's complement problem, and indeed it may be eÆcient to employ just a

few processors for solving the Schur complement problem, as evidenced in �gure 7.10

for an original �nite-element mesh (p = 6) divided into 31 subdomains. Note that

as the number of interface partitions is increased, the reduced Schur's complement
problem gets larger since fewer subdomains are merged for each interface partition.
For the problem sizes we have considered in the present study, it was suÆcient to em-

ploy only four or �ve processors for the Schur's complement solution step as indicated

by the local minimum. It is not straightforward to decide upon an optimum number
of interface partitions for the Schur complement problem. However, the objective

is to balance the time required for solving the merged interface problems in parallel

with the time required for solution of the reduced Schur complement problem on one

processor. Note that the timings presented in �gure 7.10 are still better than that

required for solution of the Schur complement problem on one processor even though
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we get optimum performance when only three or four partitions are used.
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Fig. 7.10: Performance of parallel Schur complement algorithm (p=6, 4 : 1 Contrac-

tion).

Finally, the parallel Schur's complement solution algorithm is applied to our
�rst 
ow problem, that is, isothermal cavity 
ow in a unit square. We show a repre-
sentative partition to 31 subdomains of the original domain of 20� 20 elements with

a uniform polynomial order of 5, as shown in �gure 7.11. For this partitioning, we
present the performance of the parallel algorithm in �gure 7.12 on �ve processors (i.e.,

four interface partitions). It should be noted that the idle processors during the par-
allel Schur complement solution step may be returned to the resource pool for other
processes. Such dynamic resource management is necessary for distributed systems

based on networks of workstations and is an active area of research. Overall, these two
numerical experiments demonstrate an order of magnitude of improvement in parallel

eÆciency and scalability over the serial Schur's complement solution algorithm.

8 Conclusion

We have presented a class of multiple front algorithms based on domain decomposi-

tion for parallel direct solution of algebraic systems resulting from discretization of

boundary-value problems in continuum mechanics. The basic algorithm is suitable

for coarse grain parallelism, for example, tightly coupled workstation clusters and
low-end multiprocessor systems. Its eÆciency improves with p-re�nement on a given

mesh provided the size of the global Schur's complement problem is kept small com-

pared with the average size of the subdomain problems. The solution of the global
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Fig. 7.11: 31-Subdomain partition of the lid-driven cavity problem.
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Fig. 7.12: Performance of parallel Schur complement algorithm (p=5, lid-driven

cavity).
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Schur's complement problem, a bottleneck for increasing number of subdomains can

be signi�cantly improved by partitioning the subdomain interfaces and distributing

them among neighboring processors, rather than solving the entire global Schur's

complement problem on a single processor.

The new algorithm is based on a graph theoretical representation of the sub-

domain interfaces. The separators of the global interface graph are identi�ed, and

a list of subdomains per global interface partition is generated. Only neighboring

subdomains are merged onto a partition so that local neighbor-to-neighbor communi-

cation is required. Once the common vertices of subdomain interfaces are eliminated,
one is left with a reduced Schur's complement problem de�ned over only a fraction

of the original interface unknowns. The procedure can be continued recursively until
the �nal reduced problem is suÆciently small. This �nal very small system can then

be assembled onto a single processor and solved. The performance of the algorithm
in terms of total CPU time closely follows the linear speed-up curve for up to 32
processors for the test problems considered. This is a signi�cant improvement over

the previous parallel direct-solution algorithms based on domain decomposition.
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A Hierarchic basis functions

In the following, we brie
y discuss the hierarchic polynomial basis functions on quadri-
laterals used in the present work. For further details, see Szabo and Babu�ska

(1991). These may be generated as tensor products of one-dimensional families of

polynomials. Such 1D hierarchic polynomials for � 2 [�1; 1] can be de�ned as

N(1)(�) =
1

2
(1� �)

N(3)(�) =
1

2
(1 + �) (A.1)

N (i)
(2)(�) = �i(�)
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Fig. A.1: 2D hierarchic basis functions.

where the functions �i are polynomials of degree i and in the case of Lagrange poly-
nomials as

�i(�) =
�
�
i � s

�
i � 2 (A.2)

where s = 1 for i even and s = � for i odd. Similarly, for Legendre polynomials

�i(�) =
1p

2(2i� 1)
(Pi(�)� Pi�2(�)) (A.3)

where the Legendre polynomials Pi(�) are computed using the recursion

(n + 1)Pn+1(�) = (2n+ 1)�Pn(�)� nPn�1(�) (A.4)

Taking the tensor product, the basis functions for the reference square can be grouped

as follows (see Figure A.1)

Vertex Basis Functions

N1(�; �) =
1

4
(1� �)(1� �)

N3(�; �) =
1

4
(1 + �)(1� �)

N5(�; �) =
1

4
(1 + �)(1 + �) (A.5)

N7(�; �) =
1

4
(1� �)(1 + �)

(A.6)
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Edge Basis Functions

N2(�; �) =
1

2
�i(�)(1� �); i = 2; 3; � � � ; p

N4(�; �) =
1

2
(1 + �)�i(�); i = 2; 3; � � � ; p

N6(�; �) =
1

2
�i(�)(1 + �); i = 2; 3; � � � ; p (A.7)

N8(�; �) =
1

2
(1� �)�i(�); i = 2; 3; � � � ; p

(A.8)

Interior Basis Functions

N9(�; �) = �i(�)�j(�); i; j = 2; 3; � � � ; p (A.9)

In our adaptive p methodology, the polynomial degree may di�er on adjacent

elements. The polynomial degree p on an element edge is taken to be the smaller

p-value of the two adjoining elements sharing that edge. In the hierarchic framework,
C

0 continuity of �eld variables across element edges follows easily since the degree
can be constrained by simply setting the corresponding higher-order derivatives as

degrees of freedom on an edge to zero. This can be enforced by assembling only
those edge hierarchic basis functions that correspond to polynomial orders less than

or equal to the speci�ed degree p. This results in a smaller linear system of equations.
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