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Evaluation of an Effective Elastic Modulus
for J-to-KJ Conversion in 3-Dimensional
Linear-Elastic Finite-Element Analyses

P. T. Williams and B. R. Bass
Oak Ridge National Laboratory

Oak Ridge, Tennessee

Abstract: An evaluation study has been carried out of a procedure for calculating an

effective elastic modulus governing the conversion of the energy release rate (G) per unit

crack extension to a Mode I stress-intensity factor (KI) for 3-dimensional linear-elastic

finite-element analyses. The conventional methodology for converting G (or J) to KI

employs different equations depending on the assumption of either plane-strain or plane-

stress conditions for the stress state at the crack tip. The intent of the procedure under

study is to provide a qualitative measure of the departure of a 3-dimensional crack tip

from these two possibly bounding stress/strain states.

Linear-elastic fracture mechanics calculations were carried out for six surface-

flaw geometries with flaw ½-width to depth aspect ratios ranging from 0.75 # c/a # 3.0

and relative flaw depths of 0.2 # a/t # 0.5. The converted KJ profiles were benchmarked

against KI solutions published in the 1980s with close agreement relative to the shape of

the curves and with "5% agreement relative to magnitude. The interpolated KJ
* results

generally indicated a qualitative departure from the commonly applied plane-strain

conversion with an approximately uniform shift down towards the plane-stress curve.
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1. Introduction

A procedure has been proposed for calculating an effective elastic modulus

governing the conversion of the energy release rate (G) per unit crack extension to a

Mode I stress-intensity factor (KI) for 3-dimensional linear-elastic finite-element

analyses. The conventional methodology for converting G (or J) to KI employs different

equations depending on the assumption of either plane-strain or plane-stress conditions

for the stress state at the crack tip. For a 2-dimensional analysis, these plane strain or

plane stress conditions are set explicitly when the model is created by the selection of

appropriate finite elements. For a 3-dimensional analysis, however, these stress/strain

states exist only as idealized conditions which the model may (or may not) approximately

approach depending upon the significance of any 3-dimensional effects. In the proposed

procedure, an effective elastic modulus for the conversion will be estimated from a

computation involving opening-mode displacements of the crack face near the tip of the

crack. The intent of this procedure is to provide a qualitative measure of the departure of

a 3-dimensional crack tip from these two possibly bounding stress/strain states.

In the following sections, the procedure will be derived from linear-elastic

stress/strain relations and fundamental concepts in linear elastic fracture mechanics

(LEFM). The procedure is then evaluated through applications to 3-dimensional finite-

element models.

2. Conversion of J to KI

2.1 Conventional Methodology
The current methodology for applying finite-element modeling of both linear-

elastic fracture mechanics (LEFM) and elastic-plastic fracture mechanics (EPFM)

problems typically involves the calculation of the J-integral as a characterization of the

crack driving force. Finite-element stress analysis codes such as ABAQUS [1] and

WARP3D [2] calculate this fracture mechanics parameter by the Domain Integral

Method [3,4] which for the most part has replaced the earlier Virtual Crack Extension

technique [5,6]. For linear-elastic analyses, LEFM Mode I stress intensity factors, KI, can

readily be determined from the energy release rate interpretation of the J-integral given

specific assumptions regarding the stress state near the crack tip.
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Irwin [7]showed in 1957 that the Mode I stress intensity factor KI is related to the

elastic strain energy release rate, G, by

GEKI
*2 = (1)

where the elastic modulus, E*, for plane stress is

EE =* (2)

and for plane strain is

( )2
*

1 ν−
= E

E (3)

In Eqs. (2) and (3), E is Young’s modulus and ν is Poisson’s ratio. Under the conditions

of LEFM, it has been shown [8] that the J-integral is equivalent to the elastic strain

energy release rate, i.e., J = G, and from Eq. (1), therefore,

JEKI
*+= (4)

As discussed in [2], for 2-dimensional analyses, the J-integral sets the amplitude

of the singular stress field near the tip of a sharp Griffith crack (described by the well-

known HRR solutions) under certain limiting conditions involving material constitutive

behavior and the extent of plastic deformation relative to the uncracked ligament size.

The choice of either Eq. (2) or Eq. (3) for the effective elastic modulus is governed by the

explicit stress-state condition applied in the development of the 2-dimensional model. In

3-dimensions however, the choice of an appropriate conversion relation is somewhat

problematic. The character of 3-dimensional near-tip stress/strain fields remains a subject

of fracture mechanics research. Far from free-surfaces, the crack tip stress/strain fields

may approximate those of plane strain; however, near traction-free surfaces these fields

can exhibit strong 3-dimensional effects, possibly approaching a plane-stress state.

Independent of the exact singular form of the near-tip fields, however, the J-integral
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continues to provide an accurate estimate of the local energy release rate under LEFM

conditions.

It is a common practice in 3-dimensional analyses to use Eqs. (3) and (4) (i.e.,

plane-strain conditions) to convert J-integral results into linear-elastic Mode I stress

intensity factors, i.e.,

( )21 ν−
+= JE

KJ (5)

This plane-strain conversion produces a KJ converted from J that is higher in magnitude

than one produced by the plane-stress assumption for the same Young’s modulus. For

example, for a Poisson’s ratio of 0.3, the plane-strain KJ is approximately 4.8% higher

than the corresponding plane-stress KJ. Strictly speaking, this conversion is only valid for

linear-elastic analyses; however, the same conversion is typically applied in elastic-

plastic analyses including nonlinear finite-strain elastic-plastic conditions with significant

constraint loss. For the latter condition, the resulting KJ should be viewed only as an

alternate form of the primary fracture parameter, the J-integral, and not as a true stress-

intensity factor.

2.2 Proposed Interpolation Procedure

The derivation of the procedure begins with the linear-elastic response of a sharp

crack under a Mode I tensile load, where the crack is embedded in an infinite medium.

The resulting asymptotic elastic stress and displacement fields can be expressed as

functions of the applied KI and the cylindrical coordinates (r, θ) of a reference frame with

its origin at the crack tip (see Fig. 1). As derived in [9], the 2-dimensional stress and

displacement fields are

( )
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where for the state of plane strain at the crack tip, κ = 3 - 4ν, and for plane stress, κ =

(3 - ν)/(1+ν). Solving for the stresses and displacements in Eqs. (6) and (7) at θ = π

results in
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where the effective elastic modulus, E*, is defined by Eqs. (2) and (3) given the crack-tip

stress/strain states of plane stress and plane strain, respectively. Note that this position of

(r, θ = π) on the crack face (denoted as n* in Fig. 1) is a traction-free surface with

displacements only in the opening-mode direction for a 2-dimensional problem. Applying

Eq. (4) produces the following relationship between E*, J, and the displacement, v, at the

position (r, θ = π),

2
*

*2*

2
2

v

8

8

2

16
v

π

ππ
rJ

E

E

rJr

E

KI

=∴

==
(10)

Dividing Eq. (10) by the plane strain definition of E*, Eq. (3), and taking the positive

square root results in an interpolation factor, F, that can be applied to the conventional

plane-strain-converted KJ (see Eq. 5),

JJ KFK =* (11)
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The factor F may be interpreted as an interpolation factor that produces an approximate

KJ* consistent both with the energetics principle of Eq. (1) and the theoretical 2-

dimensional linear-elastic displacement fields of Eq. (7) at one point on the crack face,

n*. This interpolation factor may be thought of as a qualitative measure of the departure

of the calculated crack-tip displacement fields from an idealized plane-strain condition.

In summary, the interpolation procedure involves the following six steps for a

given position on the flaw front, designated node n in Fig. (1), and a given state of

loading (bending or tension):

1. calculate the linear-elastic strain energy release rate G (for G = J)

2. calculate KJ using the plane-strain assumption of Eq. (5)

3. calculate the distance r between the crack-tip node n and its associated

monitor node n* (see Fig. 1)

4. calculate the opening-mode displacement “v” at n*

5. calculate the interpolation factor F by Eq. (12)

6. calculate the corrected KJ* by Eq. (11)

A modified procedure (to be discussed in the following section) involves calculating

interpolation factors at several n* points and then determining a limiting F as r → 0 by

extrapolation of a regression equation to r = 0.

3. Results and Discussion

3.1 Finite-element Models

Finite-element meshes were generated for one semi-circular and four semi-

elliptical surface flaws in a finite plate using the ORMGEN [10] mesh generator code.

For the geometry shown in Fig. 2, two levels of mesh refinement were generated for

testing the semi-circular surface flaw.
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Mesh 1: 6162 nodes, 1240 isoparametric 20-node elements, 21-node crack front

fan (see Fig. 2)

Mesh 2: 9277 nodes, 1920 isoparametric 20-node elements, 29-node crack front

fan (see Fig. 3)

Figure 3 also gives the definitions of several mesh parameters, specifically the flaw

depth, a, the flaw ½-width, c, the plate width, t, and the plate ½-thickness, b. These

models were based on a focussed-fan flaw front where both midpoint and quarterpoint

positions of the midside nodes were tested to simulate 1/r and 1/√r singularities in the

calculated stress fields. The following surface-flaw geometries were investigated:

(1) c/a = 0.75 and a/t = 0.5 (see Fig. 4)

(2) c/a = 1.0 and a/t = 0.5 (see Fig. 5)

(3) c/a = 1.25 and a/t = 0.5 (see Fig. 6)

(4) c/a = 1.5 and a/t = 0.5 (see Fig. 7)

(5) c/a = 1.5 and a/t = 0.2 (see Fig. 8)

Additionally, a finite-root-tip radius (blunt-tip) model of a surface crack specimen,

SC(T), under tension loading was obtained from the WARP3D [2] collection of fracture

models. This model (see Fig. 9) included a standard-sized (6:1) ¼ t (c/a = 3.0, a/t = 0.25,

a = 6.35 mm) semi-elliptical surface flaw with a finite-root-tip radius of 2.54 × 10-3 mm.

The mesh consisted of 22,814 linear 8-node hexahedral elements with 25,642 nodes.

Implementation of the procedure requires the selection of displacement monitor

nodes, n*, that correspond to each of the flaw-front nodes, n. Calculations, described in

Sec. 3.4, were carried out to determine the sensitivity of the resulting interpolation factors

to the distance of the selected monitor node from its corresponding flaw-front node.

The following linear elastic properties were used for all of the results reported in

this study: Young’s modulus, E = 206.842 GPa (30,000 ksi) and Poisson’s  ratio, ν = 0.3.
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3.2 J-integral Calculations
Crack driving-force J-integrals were calculated for all of the models described in

Sect. 3.1. Figure 10 presents the J-integrals for the semi-circular surface flaw under a

tensile load calculated for Mesh 1 compared to those calculated for Mesh 2. In Fig. 10

(and all position-dependent plots in this report), the circular angle, θ , designates a

position along the flaw front where θ = 0 degrees is at the traction-free surface and θ =

90 degrees is located at the reflective symmetry plane (deepest point of the flaw).  These

results indicate that for this loading, the Mesh 1 and 2 solutions are effectively mesh

independent. ABAQUS [1] J-integrals results are compared to WARP3D [2] in Fig. 11a

for 0.75 # c/a # 1.5 (a/t = 0.5), Fig. 11b for 0.2 # a/t # 0.5, c/a = 1.5. In Fig. 12,

ABAQUS and WARP3D J-integrals are compared for the (6:1) ¼ t semi-elliptical

surface flaw. In both Figs. 11 and 12, the ABAQUS and WARP3D results agree very

closely except at the two boundary planes.

3.3 Interpolation Factor Calculations

Displacement data, “v”, at the monitor nodes, n*, for the semi-circular model are

shown in Figs. 13 and 14 as a function of distance from their corresponding flaw-front

nodes, n. As expected from Eq. (10), the magnitude of the displacements increases with

increasing distance, r, from the flaw front. Dividing the square of the displacements by

the distance r (see Eq. (10)) as in Fig. 14 indicates a degree of sensitivity to the selection

of the position of the monitor node. Due to this sensitivity, a modified procedure for

estimating the interpolation factor was tested.

As shown in Fig. 15, several F factors were calculated at a number of points from

the crack tip and plotted as a function of (r/a)1/2 . A second-order regression equation was

then fit to the data and extrapolated to (r/a)1/2 = 0; the resulting intercept was then taken

as the effective interpolation factor. This modified procedure worked well for deep flaws

(c/a = 0.75); however, the effectiveness of the extrapolation broke down for flaws with

wider aspect ratios, producing F values that projected the plane-strain KJ  above or below

the bounds of the plane-strain/plane-stress limits. For the models with c/a $ 1.0, the
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interpolation factor calculated for the closest available node to the crack-tip node was

used.

ORMGEN [10] employs special crack tip elements along the crack front to model

the appropriate singularity in the stress field. For linear elastic calculations, the quarter-

point wedge element of Fig. 16(a) can be used at the crack front to allow for a r1

singularity in the stress and strain fields [11], where again r is the radial distance from the

crack tip. Figure 16(b) illustrates the collapsed prism element appropriate for both linear-

elastic and perfectly plastic materials, with interior nodes located at the true midpoint

position, simulating a 1/r singularity at the crack front. In the collapsed (or focussed)

element, the nodes that initially share the same positions at the tip will separate with

increasing load to allow for blunting of the crack (see Fig. 17). Interpolation factors based

on the midpoint and quarter-point options are compared in Fig. 18 for the semi-circular

surface flaw using Mesh 1 with essentially identical results except for a small difference

at the traction-free surface (at a circular angle of θ = 0 degrees). Quarter-point results are

also shown in Fig. 19 for Meshes 1 and 2, indicating a continued mesh independence (see

Fig. 10).

Using the Mesh 2 refinement level with the midpoint option, interpolation factors

at r/a = 0.15 were calculated for four surface-flaw geometries, 0.75 # c/a # 1.5 (a/t =

0.5), under tension loading as shown in Fig. 20. For this fixed flaw depth, increasing the

c/a ratio (with constant a) resulted in decreasing interpolation factors. These trends were

essentially independent of the applied tensile load. For the blunt-tip (6:1)-¼ t model, the

interpolation factors at r/a = 0.0004 were approximately independent of the position

along the flaw front as shown in Fig. 20.
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3.4 Tangential and Perpendicular Strain Distributions

The minimum and intermediate principal strains are plotted as a function of

position along the flaw front for both the sharp-tip models in Fig. 22 and the blunt-tip

model in Fig. 23. The minimum principal strain corresponds effectively to the extensional

strain that is tangent to the flaw front, and the intermediate principal strain corresponds to

the extensional strain perpendicular to the locus of the flaw front within the flaw-front

plane. For a Mode I tensile loading, the tangential strains should be consistently

compressive along the length of the flaw front with an increase in the absolute value as

the flaw front approaches the traction-free surface, thereby demonstrating qualitatively a

loss of constraint relative to the deepest point of the flaw.

3.5 KI and KJ* Results
In Figs. 24-30, applied stress-intensity factors, KJ, normalized by the nominal

loading stress (σt) and the square root of the flaw depth, a, are compared to the stress-

intensity factor, KI, results of Newman and Raju [12]. In the 1980s, Newman and Raju

[12] calculated stress intensities directly from their finite-element solutions of the stress-

fields near the crack tip, rather than calculating a J-integral with subsequent conversion.

For all of the geometries studied, the converted KJ distributions closely follow the shapes

of the Newman-Raju profiles, and the offsets between KJ and KI are typically less than

the magnitude of the difference between the plane-strain/plane-stress limits ( < 5%). For a

fixed flaw depth of a/t = 0.5, Figs. 24-28 indicate that increasing the aspect ratio (c/a)

from 0.75 to 1.5 results in an upward shift of the KJ curves relative to the position of the

Newman-Raju curves.

Results for the c/a = 0.75 model are presented in Figs. 24 and 25. In Fig. 24, the

interpolation factor was calculated using displacement results from a monitor node at a

distance of r/a = 0.0188 from the crack-tip node. The extrapolation procedure described

in Sect. 3.3 was applied for the results shown in Fig. 25, and the resulting KJ
* values

indicate an approximate plane-strain condition near the deepest point in the flaw that

gradually shifts to an approximate plane-stress state as the flaw front approaches the

traction-free surface. For the geometries in Figs. 26-29, the interpolation factor shifts the
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plane-strain converted KJ down towards the plane-stress curve for the full length of the

flaw front.

The results for the finite-root-tip radius (blunt-tip) model (c/a = 3.0 and a/t =

0.25) of Fig. 9 are plotted in Fig. 30. The positions of the plane-strain/plane-stress curves

relative to the Newman-Raju curve are consistent with the other shallow-flaw geometry

with a sharp-tip flaw front (see Fig. 29). The interpolation factor shifted the plane-strain

KJ down to (or slightly below) the plane-stress curve.

4. Summary and Conclusions
An evaluation study has been carried out of a procedure for calculating an

effective elastic modulus governing the conversion of the energy release rate (G) per unit

crack extension to a Mode I stress-intensity factor (KI) for 3-dimensional linear-elastic

finite-element analyses. The conventional methodology for converting G (or J) to KI

employs different equations depending on the assumption of either plane-strain or plane-

stress conditions for the stress state at the crack tip. The intent of the procedure under

study is to provide a qualitative measure of the predicted departure of a 3-dimensional

crack tip from these two possibly bounding stress/strain states.

Linear-elastic stress analysis and fracture mechanics calculations were carried out

for six surface-flaw geometries with flaw ½-width to depth aspect ratios ranging from

0.75 # c/a # 3.0 and relative flaw depths of 0.2 # a/t # 0.5. The converted KJ profiles

were benchmarked against KI solutions published in the 1980s with close agreement

relative to the shape of the curves and with "5% agreement relative to magnitude. The

interpolated KJ
* results generally indicated a qualitative departure from the commonly

applied plane-strain conversion with an approximately uniform shift down towards the

plane-stress curve.
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Fig. 1. Geometry of linear elastic sharp crack showing location of crack tip node, n, and
crack-displacement monitor node, n*.
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a=1

Semi-circular Surface Flaw

Fig. 2. Meshes for semi-circular surface flaw with a/t = 0.5:
Mesh 1: 1240 elements, 6162 nodes, 21 node crack front fan
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a

c

t

ba

Fig.  3. Mesh parameter definitions for semi-elliptical surface flaws
Mesh 2: 1920 elements, 9277 nodes, 29 node crack front fan.

Fig.  4. Semi-elliptical surface flaw: c/a = 0.75, a/t = 0.5 (Mesh 2).
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Fig.  5. Semi-circular surface flaw: c/a = 1.0, a/t = 0.5 (Mesh 2).

Fig.  6. Semi-elliptical surface flaw: c/a = 1.25, a/t = 0.5 (Mesh 2).
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Fig.  7. Semi-elliptical surface flaw: c/a = 1.5, a/t = 0.5 (Mesh 2).

Fig.  8. Semi-elliptical surface flaw: c/a = 1.5, a/t = 0.2 (Mesh 2).
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symmetry
planes

(a)

(b)
Fig.  9. Finite-root tip semi-elliptical surface flaw (2c/a =6, a/t = 0.25 under tension

loading) in an SC(T) specimen: (a) complete model and (b) closeup of (6:1) ¼t
surface flaw (25,642 nodes and 22,814 linear 8-node hexahedral elements).
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Fig.  11. Comparison of ABAQUS J-integral results to WARP3D results for

σ = 46 MPa.: (a) 0.75 # c/a # 1.5 (a/t = 0.5), (b) 0.2 # a/t # 0.5, c/a = 1.5.
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Fig.  12. Comparison of ABAQUS J-integral results to WARP3D results for
σ = 1.32 MPa tensile load of (6:1) ¼ t semi-elliptical surface flaw.
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Fig.  16. Special crack tip elements employed in ORMGEN [10].

Fig.  17. Collapsed prism elements.
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under tension loading using Mesh 2: interpolation factors taken from monitor
node at r/a = 0.0188.
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Fig.  25. Normalized Newman-Raju KI results compared to finite-element solutions with
plane strain, plane stress, and interpolated KJ  values for c/a = 0.75 (a/t = 0.5)
under tension loading using Mesh 2: interpolation factors extrapolated from
monitor nodes at 0.0188 # r/a # 0.4.
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Fig.  26. Normalized Newman-Raju KI results compared to finite-element solutions with
plane strain, plane stress, and interpolated KJ  values for c/a = 1.0 (a/t = 0.5)
under tension loading using Mesh 2: interpolation factors taken from monitor
node at r/a = 0.0188.
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Fig.  27. Normalized Newman-Raju KI results compared to finite-element solutions with
plane strain, plane stress, and interpolated KJ  values for c/a = 1.25 (a/t = 0.5)
under tension loading using Mesh 2: interpolation factors taken from monitor
node at r/a = 0.0188.
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Fig.  28. Normalized Newman-Raju KI results compared to finite-element solutions with
plane strain, plane stress, and interpolated KJ  values for c/a = 1.5 (a/t = 0.5)
under tension loading using Mesh 2: interpolation factors taken from monitor
node at r/a = 0.0188.
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Fig.  29. Normalized Newman-Raju KI results compared to finite-element solutions with
plane strain, plane stress, and interpolated KJ  values for c/a = 1.5 (a/t = 0.2)
under tension loading using Mesh 2: interpolation factors taken from monitor
node at r/a = 0.0188.
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ORNL/NRC/LTR-99/19

DISTRIBUTION

01-05. B. R. Bass
06. W. G. Craddick
07. K. W. Childs
08. T. L. Dickson
09. E. M. Hackett, NRC/DET/RES/MEB
10. D. M. Hetrick
11-13. S. N. M. Malik, NRC/DET/RES/MEB
14. M. E. Mayfield /NRC/DET/RES/MEB
15. W. J. McAfee
16. R. K. Nanstad
17. C. E. Pugh
18. C. G. Santos, NRC/DET/RES/MEB
19-23. P. T. Williams
24. Laboratory Records
25. File-RC


