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Abstract

Predicting the ferrite content in stainless steel welds is
desirable in order to assess an ailoy’s susceptibility to hot cracking
and to estimate the as-welded propertics. Several methods have
been uscd over the years to estimate the ferrite content as a
function of the alloy composition. A new technique is described
which uses a necural network analysis to determine the ferrite
number. The network was trained on the same «ata set that was
used to generate the WRC-1992 constitution diagram. The
accuracy of the neural network predictions is com.pared to that for
the WRC-1992 diagram as well as another recently proposed
method. It was found that the neural network model was
approximately 20% more accurate than either of the other two
methods. In addition, it is suggested that further improvements
to the ncural nctwork model. including the consideration of
process variables. can be made which can lead to even better
accuracy. '

Introduction

The ferrite content in stainless steel welds and castings plays
animportant rolc in determining ailoy properties and hot-cracking
sensitivity, . Mechamcal propertics as well as corrosion behavior
are aﬂ'cctcg by the g@l froportions of ferrite to austenite in the
microstructure. In 3dd@dH, weldability is strongly influenced by
the ferrite content. The latter is affected by the mode of
solidification, i.e., whether ferrite or austenite is the primary
solidification phase. If the alloy undergoes primary austenite
solidificatioti during welding, minor elements such assulfy £.can
become quite enriched and lead to the stabilizarion of the llquxd
to lower temperatures, thereby significantly increasing the
solidification range. This enrichment ofien increases the
vulnerability of a weld to cracking during thz final stages of
solidification. In contrast, for primary fecrrite solidification,
segregation to the liquid of these minor tramp elements is kept to
a minimum and hot-cracking sensitivity is reduced. During
further cooling, in the solid state, the ferrite transforms to

austenite. This reaction is often incomplete under the cooling
conditions prevalent during welding and. consequently, some
residual ferrite is present at room temperature. Thus, the amount
of ferrite that is present in the microstructure at room temperature
is an indirect indication of the extent to which primary ferrite
solidification took place and the degree to which ferrite transforms
during cooling. Often. alloy specifications require a specific
minimum level of ferrite as a means for assuring that primary
ferrite solidification takes place in the alloy and that the alloy is
resistant to hot cracking during welding.

Over the years there have been many attempts at devising a
means of predicting ferrite content as a function of alloy
composition. Constitution diagrams have been developed that
convert the alloy composition into two factors, a chromium
cquivalent (Cr,,) and a nickel equivalent (Ni,;). The former
contains alloying elements that influence the microstructure much
like chromium, i.e., they are ferrite stabilizers, while the latter
contains elements that behave like nickel, i.e., austenite
stabilizers. These constitution diagrams plot ferrite levels as a
function of these chromium and nickel equivalents. The first such
diagram that was used for welding is the Schaeffler diagram'.
Since the introduction of the Schaeffler diagram, several
modifications and improvements have been proposed®’.
Corresponding constitution diagrams for stainless steel castings
have also been proposed®®. The various versions of constitution
diagrams differ primarily in the coefficients that are used to
convert alloy composition into the Cr,q and Ni.,. The most recent
version of the constitution diagrams is the WRC-1992 diagram®,
The equations for the Cr,, and Ni,, factors in the WRC-1992
diagram are:

Cr..= Cr+Mo+0.7 Nb (1a)
Ni, =Ni+35C+20N+0.25Cu (1b)
where the elemental symbols represent the weight percent of each

element.
Recently, another approach (Function Fit model) has been
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proposed for predicting ferrite number in stainless steel
weldments'®. In this method. the difference in free energy
between ferrite and austenite was calculated as a function of
composition and this was related to the ferrite number. A
regression analysis was used to determine the coefficients
associating the ferrite number with the free energy change. It was
found that this approach was comparable in accuracy to that of the
WRC-1992 diagram. The advantage of this new approach was
that certain restrictions with regard to the alloying elements that
are considered, and their composition ranges, were eased!’.

The ferrite content at room temperature is controlled by
several factors and is a result of a series of microstructural
transformations. The ferrite content is initially influenced by the
solidification mode. This is determined by the alloy composition
as well as the solidification conditions. Many investigations have
shown that under rapid cooling conditions. alloys that would
normaily solidify in the primary ferrite mode instead solidify in
the primary austenite mode'""’”. Once solidificd, the alloy may
undergo a solid state transformation of ferrite to austenite as the
ferrite stability relative to austenite dccreases with decreasing
tcmperature, at least in the elevated temperature range of 800°C
and higher. The extent of this transformation depends on the
nucleation and diffusion-controlled growth of austenite. Asinthe
case of the solidification mode, this transformation is strongiy
influenced by several factors. including the cooling rate. the
degree of segregation within the ferrite phase, and the amount of
austenite already prescnt after solidification. Thus, the overail
relationship betwcen composition and ferrite content can be
expected to be quite complicated. Simple relationships such as
those in Eq. I cannot be expected to take into account all of the
critical factors. Furthermore. constitution diagrams that rely on
simple linear expressions for the Cr, and Ni,, factors ignore
interactions between the elements. For example, the influence of
manganese levels on ferrite content may vary depending on the
chromium. nickel or carbon content. Since the coefficients are
constant over the entire composition range, such interactions are
ignored in traditional constitution diagrams.

Therefore, it is desirable and appropriate to describe the
residual ferrite in a more flexible manner, so that elemental
interactions as well as process conditions can be factored into the
relationships and. presumably, more accurate predictions would
follow. Neural networks are idcally suited to improve the
flexibility, robustness, and accuracy of ferrite predictions because
they make use of non-linear regression methods. The inclusion of
a variety of additional factors, such as cooling rate during
welding, is straightforward. Furthermore, neural networks are
able to develop relationshiips between variables that are otherwise
difficult or impossible to identify by standard regression analyses.
This paper describes the development of a neural network model
for the prediction of ferrite content in stainless steel welds as a
function of alloy composition. The weli-known influence of
processing conditions has not been considered; this feature will be
addressed in future work.

Neural Network Development

A very simple description of the concept behind neural
networks is given below. There is extensive literature on the
theory behind neural networks. The reader is referred to other
publications for more details'®'?. Neural networks are modeled
after the learning process in the human brain. A network
structure consists of interconnected layers of nodes; the nodes
include input and output nodes as well as internal, hidden nodes.
These nodes are “connected” to each other so that the value of one
node will affect the value of another. The relative influence that
a given node has on another one is specified by the “weight” that
is assigned to each connection. A schematic diagram of a simpie
neural network is shown in Figure 1. There are three layers in the

Output Layer
Hidden Layer \
Input Layer
Figure 1: Schematic diagram showing the multiple layer

structure of a neural network and the inter-connectivity between
the nodes of the network.

diagram. In the example of Figure 1, the input layer has three
nodes, representing three input variables such as chromium,
nickel and carbon concentration. The output layer contains one
node. corresponding to one output variable such as ferrite number.
In addition, one hidden layer with four nodes is shown in the
diagram. The neural network is trained by introducing a training
data set containing experimental data for inputs and
corresponding outputs. A training foutine is then carried out in
which outputs are predicted and these are compared with the true
outputs. Starting with a simple initial configuration, the weights
are continuously adjusted by an optimization grocess to yield
better, more accurate predictions. The first task is to identify the
network architecture, including the input and output variables and
the optimum number of hidden nodes. Once this is determined,
then the learning process, which consists of hundreds of
thousands of iterations, develops the complicated set of empirical
relationships between the input and output variables. There is
minitmal influence from the user while the network “learns™ how
to associate the outputs to the inputs with a minimum error. In
the present study, commercially available software (NeuralWorks
Professional IVPLUS™ ) was used for the neural network
analysis. A feed-forward network with a back propagation

learning scheme was utilized. A sigmoidal transfer function was
used to convert the weighted input to a node to an output vaiue
from the node.




Identify input and ;
output variables |

Identify optimum number of hidden nodes
(i.e, optimum architecture)

Vary starting seed numberj
and find the “best net”,
trained on the entire data set |

Evaluate the predictability of the network

Figure 2: Flow chart showing the sequence of operations to
identify the optimum network architecture and to train the best
network.

The analysis scheme to develop the final neural network for
ferrite number prediction is summarized in Figure 2. The
optimum architecture was identified by using different
combinations of learning and test subsets of the entire data set.
Only a single hidden laver configuration was examined. It was
found that as the number of hidden nodes increased from one to
five, the errors in both the ability of the network to match the
learning data (“learnability”™) and to predict the ferrite number for
new data (“predictability”) decreased. Beyond five hidden nodes,
the network errors for both factors did not change significantly.
Normally, as the number of hidden nodes. incrcases. the
learnabilitv of the network improves continuously while the
predictability reaches a peak and then deteriorates. It is belicved
that the behavior found in the current study, where both the
predictability and learnability reach platcaus. can be traced to the
scatter in the experimental data. and the inherent inconsistencics
due to the accuracy of the chemical analyses and he variations in
ferrite number measurements from laboratory to laboratory.
Therefore, five hidden nodes were used for the optimum
architecture since this represented the smallest number of nodes
that still achieved the best learnability and predictability.

Once the optimum architecture was identified, then the “best”
network was found by teaching the network on the entire
experimental data set. Numerous initial sced numbers that define
the initial weight configuration were tested®'. By learning with
scveral different starting weight distributions, a final network with
a minitmum error in predicting the ferrite numter for the entire
data sct was found.

An attempt was made at quantifying the predictability of the
final network that was developed. This was done by removing, at
random, 10 points from the entire data set of 961 points and
training a network with the same optimum architecture and initial
sced number on the remaining 951 points. The rasultant network

was tested on the removed data. This was repeated for ten -
different combinations of training and testing data. The error in
predicting the FN under these conditions is a reasonable estimate
of the error that can be expected when the network is applied to
new, previously unseen data.

Experimental Ferrite Number Data

The same data that were used in the development of the WRC-
1992 constitution diagram® and the more recent Function Fit
model® were used in this study. The data consist of three
compilations of composition and measured ferrite number
(FN)?#_ As with the conventional constitution diagrams, ferrite
number has been used as an indicator of the ferrite content. There
are many advantages to using this quantity rather than a
measurcment of the actual volume percent of ferrite in the
microstructure®®. The data consisted of FN measurements made
by various laboratories on welds made with a variety of arc
welding techniques. For this study, no attempt was made to
include the welding process as an input variable. Nonetheless, it
is likely that the welding process has a significant effect on the
ferrite content and this effect will be considered in a later
investigation.

Since the experimental data came from several different
sources. the composition analyses did not always include the same
clements. Therefore, it was decided to consider only those
clements for which a chemical analysis was available for all the
data. Consequently, eight input nodes were used, corresponding
to the weight percent concentrations of eight elements: Cr, Ni,
Mn, C, N, Mo, Si, and Fe. The eighth input variable, the Fe
concentration, was calculated as the remaining balance in the
chemical analysis, taking account of all of the elements that were
analyzed and not just the seven common elements listed above.
Other elements such as Nb, Cu, and Ti, that have been included
in the calculation of chromium and nickel equivalent factors in
the literature (e.g., sce Eq. 1) and are likely to have an impact on
the ferrite number, were ignored because their concentrations
were not known in all cases. The omission of potentially
important input variables (¢.g. other elements) has the same effect
as introducing stochasticity into the experimental FN data. This
produces some unavoidable scatter and limits the network’s ability
to fit the data. However, with the currently developed neural
network as a basis, the addition of other elements as input
variables can be made and this is planned for work in the future.

By using data from various sources, it is likely that some data
were more reliable than others™*. However, no attempt was made
to screen the data in advance, or to exclude data in any way.
Naturally, this practice of using all .the data meant that
considerable scatter in the training data was present. Often, data
points with basically identical compositions had significantly
different measured FN values. Some of this may be attributable
to different welding processes that were used, but much of the
variability is unavoidable and is due to variations from laboratory
to laboratory in chemical analysis and in FN measurement.




Results

A plot of the experimental FN versus the predicted FN for the
neural network model is shown in Figure 3a. For comparison,
similar plots for the WRC-1992 constitution diagram® and
Function Fit modcl'® are shown in Figures 3b and 3c, respectively.
The straight lines represent exact agreement between the
predicted and mcasured FN values. The WRC-1992 predictions
for the data were calculated using an interpolation program based
on the published diagram®. At first glance. the three diagrams
are comparable. In Figure 3d. the neural network model
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predictions and the WRC-1992 predictions are superimposed. It
can be scen that for most of the data, the two methods yicld
similar FN values. However, in several cases, the WRC-1992
predictions are significantly worse than those of the neural
network model. These data have been highlighted with straight
arrows. The WRC-1992 predictions for these selected points both
underestimate and overestimate the measured values and their
error can be as much as 20 FN worse than the error in the neural
network model. In only one case (curved arrow, Figure 3d) is the
neural network model prediction significantly worse than the
WRC-1992 prediction.
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Figure 3: Experimentally measured FN versus predicted FN for (a) neural network model, (b) WRC-1992 constitution diagram, and (c)
Function Fit model. The plots in (a) and (b) are superimposed in (d) for easy comparison. The significance of the arrows in (d) is

explained in the text.




The root mean square errors between the ‘measured and
predicted FN values for the threce methods are compared in
Table 1. While the Function Fit model and WRC-1992 diagram
accuracies are comparable, the neural network model developed
in this study is significantly better, with a root mean square error
decrease of approximately 20%. The accuracics of the three
approaches are compared pictorially in Figure 4. where
histograms showing the frequency distribution of errors are
plotted. The point beyond 20 represents the sum of all errors
greater than 20 FN. Once again the present neural network model
shows the best behavior. The distribution for the necural network
model is less spread out than in the other two models, and the
number of prediction errors greater than 20 FN (8) is roughly haif
of the corresponding numbers for the WRC-1992 diagram (17)
and the Function Fit model (15).

Table 1: Comparison of Root Mean Square Errors for Three FN
Prediction Mcthods

Prediction Method Root Mean Squarc Error
WRC-1992 58
Function Fit Model 5.6
Neurai Network Model +.8

As described in an carlier section, an attempt was made at
assessing the predictability of the neural network model by
training the network with only 99% of the data and then
predicting the FN for the “unseen” 1% of the data, This was done

“with ten different 99%-1% combinations. This method of
assessing the predictability is a truer measure than simply the root
mean square error over all the data (Table 1) since it is based on
data not previously seen by the model. The average root incan
squarc error for the predictions on these ten scts of new data was
4.6, which is basically equivalent to the overall root mean square
crror for the neural network trained and tested and the entire data
set (Table 1). Corresponding prediction accuracy values for the
WRC-1992 and the Function Fit models are not available for
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Figure 4: Prediction error histograms shcwing frequency
distribution of errors for the three prediction mathods.

comparison. Nonetheless, it is concluded that the accuracies -
quoted in Table 1, which represent the degree to which the three
models reproduce or “fit” the known data, are also reasonable
estimates of the accuracies of the three models for predicting FN
for new data.

Discussion

When comparing the present neural network model for ferrite
number prediction with the WRC-1992 diagram, it should be
noted that the WRC-1992 diagram has a quoted upper limit for
the Ni,, of 17. No attempt was made in the present study to
separate out the experimental data which had an Ni,, greater than
17. In the entire experimental data set of 961 points, there were
89 measurements on alloy compositions with Ni>17. The root
mean square error of the WRC-1992 predictions for these 89
measurements was calculated and found to be essentially the same
as for the entire data set (5.9 versus 5.8, respectively). Thus,
inclusion of all the data when comparing the WRC-1992
predictions with the neural network model did not introduce any
appreciable increase in the calculated errors.

The neural network model for ferrite number prediction was
found to be more accurate than the other two methods that were
examined (sce Table 1). While this is ccrtainly an encouraging
result, the neural network approach has the potential for being
even better. As noted earlier, only those elements which were
chemically analyzed in ail the data were considered in the neural
network model. Among the elements that were not included.
several are known to have an influence on the ferrite number. Nb
and Cu were not considered and these elements are included in
the coefficients in the WRC-1992 diagram® (see Eq. 1). In
addition. Ti, V, and Co were not considered and these elements
have also been suggested as terms for chromium and nickel
cquivalents by various authors’. A preliminary check of the
ncural network predictions with the largest errors (AFN ~ 6 or
larger) indicated that in most cases the concentrations of some of
the omitted elements were significant. Thus, it can be expected
that significant improvements in the prediction accuracy can be
achieved with the addition of these neglected elements.

The use of neural networks for predicting ferrite number has
an additional advantage in that process variables can be included
as well as composition as inputs to the model. Fogexample, many
studies have shown that at high cooling rates prevalent during
laser welding or electron beam welding the residual ferrite content
can be significantly different than that found for the same alloy
under typical arc welding conditions'""”. The dramatic changes
in ferrite content are often attributable to a change in the
solidification mode so that an alloy that solidifies in the primary
ferrite mode under near-equilibrium conditions can change to
primary austenite solidification when rapidly cooled. In theory,
this additional factor that influences ferrite number can be
incorporated into the neural network model. Such an
enhancement is planned for future work.

The neural network model cannot be condensed into a simple
pictorial form such as the WRC-1992 diagram. Thus, the
variation in ferrite number with composition cannot be viewed



directly. In fact. the complicated interactions among the
elemental concentrations in the neural network model are difficult
to describe in a qualitative manner and in this way a physical
interpretation of the influence of the various elements is missing.
However, the neural nctwork model can be condensed into an
analytical form for easy use. Details describing such an analytical
form may be found elsewhere?. With the use of an analytical
expression for ferrite number as a function of composition,
determination of ferrite number can be easy, convenient, accurate,
and essentially instantaneous. Interpolation, as required with the
use of the WRC-1992 diagram, is unnecessary. Furthermore, the
variation in ferrite number as a function of a given element
concentration can be readily calculated, thereby providing a
description of the effect that such an element has on the ferrite
level. The current model is available for use at the following
world wide web site; “http://engm01.ms.ornl.gov”.

Finally, it is interesting to speculate on other applications of
neural network models bevond simply ferrite number prediction.
Ultimately, ferrite number prediction is a means to an end. namely
the prediction of an alloy’s susceptibility to weld cracking and
even the alloy’s mechanical propertics and corrosion resistance.
In this regard. it may be possibie to use neural networks to dircctly
correlate composition with these properties and bypass the ferrite
number stage complctely. Neural networks are ideally suited for
such applications. Several ncural network models have already
been developed to predict weld alloy properties”™®. The only
impediment for using neural network models to predict properties
of stainless steels directly is the availability of a sufficicntly
complete database. If such a database were available,
development of the required neural network models could easily
follow and the use of constitution diagrams and ferrite numbers
could be bypassed altogether.

Summary and Conclusions

A neural network model for prediction of ferrite number in
stainicss steels has been developed. The neural network was
trained on the same data that were used to develop the WRC-1992
constitution diagram. The model uses the concentration of Fe, Cr,
Ni, C, N, Mn, Mo. and Si as inputs. The accuracy of the neural
network model was compared with that of the WRC-1992
constitution diagram as well as a recently dcveloped alternative
Function Fit model. It was found that over the entire data set, the
neural network model predictions were approximately 20% better
than either of the two alternatives. With the inclusion of
additional elements into the model. such as Nb, Cu, and Ti, it is
expected that the predictive accuracy can be improved still further.
In addition. work is underway to incorporate process variables
into the model to account for the effect of high cooling rate on
ferrite content.
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