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ABSTRACT

) The Sneddon solution, as it is implemented in the Oliver-Pharr method, deviates from the
indentation experimental data in a manner which depends on both the indenter angle and the
Poisson ratio of the sample. These effects are demonstrated experimentally by performing
indentations in tungsten and aluminum using a cube-cube corner indenter where the effects are
exacerbated by the small indenter an%le. The first objective was to experimentally support and
validate an approximate analytical solution in conjunction with finite element simulations which
illustrate the Poisson ratio and indenter angle effects. Second, a review of data analysis
procedures is presented which leads to a better understanding of the systematic errors which
percolate through in the measurement of Young's modulus and hardness.

INTRODUCTION

.. A recent study [1-3] of the Sneddon solution for elastic contact by a rigid cone [4-3]
indicates that the shape of the deformed surface is different from the desired indenter profile
within the contact radius; specifically, the final deformed surface is cusp-shaped [1-3] rather than
linear in the contact region. The boundary conditions of the Sneddon problem are such that
z-displacements are imposed within the contact radius, but the radial positions are not
constrained to the shape of the indenter. The amount by which the deformed surface deviates
from the modeled indenter shape depends on the included indenter angle and the Poisson ratio of
the material.
_ Finite element simulations [1-3] for the elastic contact problem corroborate these
interpretations of the Sneddon solution. When the exact Sneddon boundary conditions are
employed in a finite element simulation, the final nodal positions are consistent with the
deformed surface profile given by Sneddon. An important consequence is that the Sneddon
solution underestimates the actual loads and contact radii for a rigid conical indenter. One can
expect deviations of up to 14% and 49% in the contact area of conical indenters with the same
depth-to-area ratios as the Berkovich and cube-corner indenters, respectively.

As detailed elsewhere [1], the Sneddon solution used for the analysis of indentation
load-displacement data does not adequately describe contact by a rigid cone and should be
rewritten as

S= AT/ W

where S is the contact stiffness, E is the Young’s modulus, v is the Poisson ratio, B is a
geometrical correction accounting for the cross-sectional shape of the indenter, and A is.the
projected contact area. This is different from the original Sneddon solution because it contains v,
a correction factor which accounts for the fact that Sneddon’s boundary conditions result in a
cusp-shaped deformation within the contact radius rather than the tgrescribed conical shape. The
correction factor depends on the Poisson ratio of the material and the indenter half angle as given

by [1]
(1-2v)

1= 50 g ¥

Therefore, the actual area of the cusp-shaped surface and the area of the ideally rigid indenter
differ by a factor of y%. In the limit of a blunt indenter (¢$=90°) or for materials where v=0.5, the
correction factor is equal to 1.

v Pharr, Oliver and Brotzen [7] demonstrated that the contact stiffness determined from
S=dP/dh depends only on the contact area and the Young's modulus of the material. While the




load determined by Sneddon’s analysis will depend on the indenter geometry, the contact
stiffness does not. The correction factor, vy, presented by Hay et al. [1] is defined such that the
deformed surface is still cusp-shaped, but passes through the correct contact radius. In this case,
the contact stiffness should be correct according to Pharr et al. [7].

=  The objectives of the current paper are twofold. First, we wish to test and validate the
approximate analytical solution given by Eqs. (1) and (2) by calibrating a cube-corner diamond
tip. Secondly, an analysis of the errors incurred by using the Sneddon solution uncorrected for
the Poisson ratio and indenter angle influences is presented. Usin%];he methods developed by
Oliver and Pharr [6], systematic errors in the contact area percolate through the calculations of E
and H, but are minimized when testing with blunt indenters.

EXPERIMENTAL

. Nanoindentation experiments were conducted using a Nanoindenter II'™, a load and depth
sensing instrument capable of precise positioning of indentations. The instrument's utility lies in
the fact that indentations only a few nanometers deep can yield accurate measurements of the
loads and displacements used to evaluate Young's modufus and hardness. The theoretical
resolutions of the machine are 0.04 nm and 75 nN for the displacement and load measurements.

, _ All indentation experiments were conducted with the cube-corner indenter as follows.
The indenter tip approached the samples at a rate of 10 nm/s and surface contact was detected b
a change in contact stiffness. The indenter was then driven into the sample at 1 nm/s to a dep
of 10 nm, 2 nm/s to a depth of 30 nm, 4 nm/s to a depth of 70 nm, and 8 nm/s to a maximum
load of 153 mN. The indenter was then withdrawn at a rate of 8nm/s to 10% of the maximum
load, and the load was held constant for 100 seconds providing a segment to determine the
thermal drift of the system. The indenter was then completely unloaded.

The continuous stiffness measurement (CSM) option was used to obtain continuous
contact stiffness measurements as the indenter was driven into the sample. This technique
measures the contact stiffness at many points along the loading curve, differing from the
conventional load-displacement-time method where only one contact stiffness measurement is
made from the unloading portion of the experiment at Py, Thus, one indentation experiment
can be used to provide all of the information which would be measured from several
conventional load-displacement-time experiments performed at various peak loads. For the
experiments in this study, the CSM imposed a 1 nm oscillation at 45 Hz on the loading curve.
Thed dylizaml(ci )response modeled as a mass-spring-dashpot system yielded the contact stiffness
used in Eq. (1).

The equations which will be of importance to the analysis of experimental data are Eqs.
(1) and (2) above and

P
H=2, ®)
where H is the hardness, P is the load and A is the contact area.
Experiments were conducted on two materials: aluminum and tungsten. A single crystal
of aluminum was used as a calibrating medium for the cube-corner tip area function. This tip
eometry was selected because it has a small equivalent cone angle which exacerbates the
indenter angle effect in Eq. (2). An area function was established by the Oliver-Pharr method
6], assuming y=1 in Eq. c%1), and was then implemented to evaluate the hardness of tungsten.
he area function was then reevaluated including the correction factor, v, in E((]i. (2), providing a
better estimate of the true tip shape. Scanning electron micrographs provided direct evidence of
the final contact area to compare with the area function.

- RESULTS

In the determination of an area function, which describes the cross-sectional area of the
indenter tip as a function of distance from the apex, two quantities are measured independently.
First, the contact area is determined from Eq. (1). Through careful selection of a calibrating
material for which the Young's modulus and Poisson's ratio are known, experimental contact
stiffnesses and Eq. (1) yield an estimate of the total contact area under load. However, if y is

“assumed to be 1.0, the area deduced by this procedure is larger than the actual area, Asctai, by Y.
The second quantity required for experimental calibration of the indenter tip is the contact depth,




which follows from an independent procedure developed by Oliver and Pharr [6], adapted from
earlier work by Doerner and Nix [9]. We begin by discussing the errors introduced in the contact
area and then proceed to the errors in the contact depth. The single crystal of aluminum used as a
calibration sample does not tend to pile-up, has minimal elastic anisotropy, and does not crack
during indentation experiments with the cube-corner indenter.

. For clarity, the Sneddon solution used by Oliver and Pharr [6] for determining the contact
area is rewritten, without the y factor, as

g/E 1d-v) r,

A=1573E

4)

where the terms on the right hand side are either known material properties or are measurable. In
this case a Young's modulus of 70.3 GPa for aluminum was used and the Poisson ratio was 0.345
[8]. This step yields a contact area at each data point during the loading portion of the
experiment. _

The second quantity required for the determination of an area function is the contact
depth, or the distance from the indenter tip to the point where the deformed material and indenter
lose contact. The Oliver-Pharr method(fé] prescribes one method for determining the contact
depth from the contact stiffness, the load, and total depth, all of which are all measurable from
the raw data. At each point along the loading curve the contact depth, h., is determined from

he = hyow — 8% 3

where ¢ is a geometric constant [6] equal to 1.0 for a flat punch, 0.72 for a conical indenter, and
0.75 for a paraboloid of revolution. Oliver and Pharr regorted that their data for the Berkovich
tip was best described when € =0.75. The same value has been adopted here for use with the
cube-corner indenter.

The area function is determined by plotting the calculated contact area, A, against the
contact depth, h,. While Oliver and Pharr suggest fitting the data to a ninth order polynomial,
such a function becomes overspecialized beyond about t%le first 5 terms. One indication of an
overspecialized curve fit is large constants, C;, of alternating signs for the last terms. Therefore,
we have truncated the last terms and perform only a fifth order polynomial curve fit using

A(he) = Cih3 + Cahe +C3hi? +Cahl* + Cshy® ©)

where C, through C; are least squares fitting constants.

The area function for the cube-corner indenter determined with no correction factor is
presented in Figure 1 as curve ‘A’. For comparison, the area function for a perfect cube-corner
tip is presented in Figure 1 as a dashed curve. There are three exgﬂanations for the apparent
discrepancy between the calculated area function and the ideal tip: (1) the calculated area, A, is
overestimated, (2) the calculated contact depths are underestimated, or (3) the tip was not ground
to the characteristic shape of a cube-corner.

To address the first point, an independent measurement of the contact area in aluminum
was made using SEM images. Figure 2 is a micrograph of a 153 mN indentation in single crystal
aluminum produced with a cube-corner indenter. A trace of the indentation perimeter reveals a
contact area of 537 pum?. This area is presented in Figure 1 as a solid horizontal line. It is Seen
that the area determined by Eq. (4) cE:arly overestimates the actual contact area at maximum
load, because of an effect due to the Poisson ratio and indenter angle, accounted for in y, whish
has not yet been included in the calculation of A.

By inspection of Egs. (4) and (1), the quantity which is actually determined from the
right-hand-side of Eq. (4) is y*A not A. In the development of the technique by Oliver and Pharr,
v was implicitly assumed to be equal to 1. According to Eq. (2), though, y =1.13 for. a material
with a Poisson ratio equal to 0.345 and an equivalent cone angle of 42.28°. Therefore, all of the
areas used in the area function in Figure 1 are overestimated by a factor v%, or a factor of 1.28. A
revised area function is included in Figure 1 where the areas have been reduced by a factor of
1.28 and is denoted as curve ‘B’.

Note that the area for curve ‘B’ at the largest depth compares favorably with the area
measured by SEM. However, a second factor whic]% may introduce error into the area function is

- in the determination of the contact depth. It has been assumed that the elastic contact theory used
by Oliver and Pharr to develop Eq. (5) will yield the correct contact depth even for a material
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tip.

which has a large plastic component. When the material piles up around the indenter, though,
the deformed surface will increase the actual contact depth.

) In the case of a three sided pyramidal indenter, such as the Berkovich and cube-corner
tips, the pile-up is not uniform about the indentation. Referring to Figure 2, pile-up along the
sides of the impression is manifested in a “bulging” which deviates %rom the assumed linear
sides. Since the micrograph itself provides the plan-view area of the contact impression, one can
see that the pile-up results in a larger contact area than is predicted from elastic contact theory.
Another way of interpreting the significance of the pile-up is that the effective contact depth is
larger than that gredicted by Eq. (5). Itis interesting to note from Figure 1 that the contact d}t}epths
predicted from Eq. (5) are 1n fact less than that expected for the ideal cube-corner tip.

It is proposed here that one may determine an approximate relationship between the
elastic contact depth from Eq. (5) and the effective, or average, contact depth resulting from the
ile-up evidenced in the SEM micrograph. However, there are several assumptions which must
irst be addressed. First, it is assumed that the area measured by SEM is representative of the
contact area under load; that is, the elastic recovery during the unloading portion of the
experiment results in vertical disFlacements, only. Secondly, it must be assumed that there is
minimal pile-up at the corners of the impression. Atomic force microscopy has demonstrated
that at least for the aluminum single crystal used here, this is a valid assumption. This
assumption is required in order to assume that the corner-to-corner area in Figure 2 corresponds
with the contact depth determined from Eq. (5). Given these two assumptions, the effective
contact depth can be determined from geometric similarity by

Aactual ‘(7)

hc,effective = hc Ace ’

where A,ua is the contact area determined from a trace of the indentation perimeter in Figure 2,
and A.. is the corner-to-corner area in Figure 2. - .

If one accepts that the pile-up character is self-similar due to the self-similarity of the
indenter, then a constant scaling factor exists between the elastic contact depth and the effective
contact depth. For this particular case of indentation in aluminum by a cube-corner indenter, that
scaling factor is approximately 1.05. Therefore, all of the contact depths determined by Eq. (5)
are too small by §)%. When the contact depths in Figure 1 are increased by a factor of 1.05, a
final area function is established which accounts for the Poisson ratio, indenter half angle, and
pileup effects. Note in Figure 1 that this revised area function presented as curve ‘C’ agrees very
well with the ideal area function for a cube-corner indenter.
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DISCUSSION

Having established that the accepted methods of experimentally calibrating area functions
actually overestimate the true contact area, the next task is to determine the severity of errors
incurred bIYI using an incorrect area function to determine the Young’s modulus, E, and the
hardness, H. To address this question, a tungsten sample was indented with the cube-corner
diamond tip, and the Young’s modulus and hardness were evaluated using the uncorrected and
corrected area functions in Figure 1.

Errors in the area function enter explicitly when the hardness is evaluated. When the area
function is calibrated according to Oliver-Pharr [6], the areas are too large by a factor of y*>. The
errors which can be expected in the measured hardness are easily determined from,

“%Error = 100(1 — —};12—). (8)

When the tip is calibrated using aluminum with a Poisson ratio of 0.345, the expected error in the
measured hardness of other materials is approximately 22%

The hardness of the tungsten sampl%, determined from Eq. (3), is cf)lotted in Figure 3. The
large triangle represents the actual hardness where the area was measured directly by SEM. Note
that the final hardness measured by the nanoindentation analysis using an uncorrected area
function underestimates the actual hardness as determined from SEM methods. Referring back
to Figure 1, this is expected since the uncorrected area function overestimates the actual contact
area. When the corrected area function in Figure 1 is used to determine the hardness, the
hardness at maximum depth is similar to the actual hardness measured by SEM analysis, as
shown by the square data points in Figure 3. It is interesting to note the close agreement between
the analytical and actual hardness measurements at the maximum penetration depth.

The influence of the f term in the area function is not so straight forward when
considering the effects-on the Young’s modulus. Recall that the area function determined by the
Oliver-Pharr method actually gives y’A. Therefore, when the contact area is determined from an
uncorrected area function and is used with Eq. (1) for a sample of an unknown Young’s modulus,
a y factor has actually been included. While y is not inserted explicitly, the uncorrected contact
area taken from the area function is the true contact area multiplied by y* of the sample used to
calibrate the tip. The data is actually analyzed according to .

_ 24 En_
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.where the included y term is for the calibration sample (cs) and not for the sample of interest (m).
[ronically, when the Poisson ratios of the calibration sample and the sample of interest are the




same, one can still obtain the correct Young’s modulus by the current methods even though the
area function is not correct, by virtue of the materials having the same y factor.

To examine the magnitude of the errors that result from calibrating with a material of one
Poisson ratio and testing a material with a different Poisson ratio, it is constructive to consider
the-ratio of Eq. (1) for the calibration sample (cs) to Eq. (1) for a sample of interest (m). The
influence of a mismatch in v is given by

S
Em= Ecs—s—:‘s—%f;j-. (10)

The error resulting from using the uncorrected area functions is then 7. t};m. For clarity, this error
El;_e‘;czo édgg)mmmatch in Poisson ratios has been plotted in Figure 4 for the cube-corner geometry

The implications for Young’s modulus measurement are minimal for practical
indentation with tips of large half-included angles, such as 70.32° for the Berkovich tip, even for
relatlveg large disparity in the Poisson ratios. Referring to Egs. (2) and (10), the error which
results from calibrating the area function using a material with a Poisson ratio of 0.3 and then
testing a material with a Poisson ratio of 0.2 is approximately 1.5%. However, the error may
ex/plam difficulties in calibrating the sharper cube-corner indenter tips, since the error is closer to
8% for the same disparity in Poisson ratios.

CONCLUSIONS

A companion paper examines the theoretical foundations of the Sneddon solution and
firmly establishes that the experimental indentation community has misinterpreted the Sneddon
solution. The Sneddon solution as used by Oliver and Pharr overestimates the actual contact
area, especially for small Poisson ratios or for sharp indenters. This experimental study
demonstrates by example that this misinterpretation results in incorrect assessments of area
functions, and ultimately results in the incorrect measurement of the Young’s moduli and
hardnesses which rely on the area function. However, a simple, approximate analytical
correction factor has been developed which can be incorporated into the Sneddon solution to
correctly determine the contact area. By incorporating the correction factor into the analysis, an
improved solution for the analysis of experimental data is established.
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