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Abstract. New algorithms for ultrafast (single iteration) learning in feedforward neural networks are developed. In 
addition, a methodology to determine the confidence limits of results predicted by neural network models is 
formulated. This methodology also consistently combines experimental data (e.g., sensor measurements) with 
model-predicted results. Our goal is to obtain best estimates for the network model parameters, and to drastically 
reduce the uncertainties underlying decision processes based on learning. Preliminary results of applying the 
approach to seismic analysis are presented. These results show remarkable promise for petroleum reservoir 
characterization.  
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1  Introduction  

Artificial neural networks are adaptive systems 
that process information by means of their 
response to discrete or continuous input [1]. 
Neural networks can provide practical solutions 
to a variety of artificial intelligence problems, 
including pattern recognition [2], autonomous 
knowledge acquisition from observations of 
correlated activities [3], real-time control of 
complex systems [4], and fast adaptive 
optimization [5]. At the heart of such advances 
lies the development of efficient computational 
methodologies for “learning” [6]. However, 
methods for accurate quantification of the 
uncertainty associated with knowledge 
acquisition and prediction by neural networks are 
not available to date. This is becoming an issue 
of vital importance to robust learning, signal 
analysis, and decision making. For instance, 
many novel sensors, which are expected to play 
an ever-growing role in future intelligent system 
applications, produce large data sets. With such 
sensors, even relatively simple tasks may involve 
an ensemble of often-complex models embedded 
in sophisticated codes. How much confidence 
should then be placed in decisions made by the 
intelligent system on the basis of predictions 
obtained from these models, when it is known 
that they are driven by sensory data possibly 
corrupted by uncertainty? It is clear that answers 

to such a question based solely on physical 
intuition or engineering judgment are precluded.  
 
1.1  Neural Learning 

The development of neural learning algorithms 
has generally been based upon the minimization 
of an energy-like neuromorphic error function or 
functional [9]. Gradient-based techniques have 
typically provided the main computational 
mechanism for carrying out the minimization 
process, often resulting in excessive training 
times for the large-scale networks needed to 
address real-life applications. Consequently, to 
date, considerable efforts have been devoted to 
(1) speeding up the rate of convergence [9,10] 
and (2) designing more efficient methodologies 
for computing the gradients of these functions or 
functionals with respect to the parameters of the 
network [11,12]. The primary focus of such 
efforts has been on recurrent architectures. 
However, the use of gradient methods presents 
challenges even for the less demanding multi-
layer feed-forward architectures. For instance, 
entrapment in local minima has remained one of 
the fundamental limitations of most currently 
available learning paradigms. The recent 
successful development of the innovative global 
optimization algorithm TRUST [13] has been 
suggested [14] as a promising new avenue for 
addressing such difficulties. 



In a major departure from the above paradigms, 
Biegler-König and Bärman proposed a learning 
approach solely based on linear algebraic 
methods [15]. In their seminal paper, they 
observed that it is possible to separate the linear 
(inter-layer propagation) and nonlinear 
(individual neuron activation function) 
operations of information propagation within a 
neural network. Using linear least squares, they 
computed the synaptic weights between each 
pair of layers. The inverted activation function 
enabled the accurate propagation of each 
remaining error back into the preceding layer of 
the network.  The essence of their approach was 
to minimize the learning error at each layer 
separately, rather than globally, i.e. for the entire 
network.   

Based on these ideas, we recently developed [16] 
a training algorithm that minimized the learning 
error function of a generalized feedforward 
neural network in terms of a sequence of 
alternating direction singular value decom-
positions. In such a network architecture, the 
nodes (or neurons) are organized in layers, 
namely: (i) input, (ii) one or several hidden (i.e., 
not directly accessible for input or output), and 
(iii) output.  In addition to these traditional 
layers, we introduced a novel virtual layer 
between the input layer and the (first) hidden 
layer. This virtual layer acts as a nonlinear 
preprocessor of the input patterns, and replaces a 
highly overdetermined linear system with an 
invertible one. Our method was implemented in 
a computer code (DeepNet), and showed promise 
[17] in the characterization of an oil field using 
data from seismic sensors. In this paper, we 
report on further advances in the DeepNet 
methodology in connection to fundamental 
advances in the treatment of uncertainties 
associated with the data used for training the 
network.  
 
1.2  Uncertainty Analysis 

There are several potential approaches to 
uncertainty analysis. Response surface methods 
[18] are a popular paradigm because of their 
intrinsic conceptual simplicity. Other techniques 
frequently used in the neurocomputing 
community include fuzzy logic [19] and cross 
validation [20,21]. The methodology we propose 
here is based on concepts and tools from 
sensitivity analysis [see 22 and references 
therein]. Sensitivities can be used to determine 

and rank the importance of network model 
parameters and input data to computed quantities 
of interest (usually referred to as system 
responses), and to assess model uncertainties due 
to uncertainties in parameters and data. They are 
defined as the derivatives of the system 
responses with respect to parameters and inputs. 
To enable reliable decisions, uncertainty analysis 
methods must possess five key capabilities. First, 
there should be a guarantee that no important 
effects are overlooked, i.e., a full set of 
sensitivities should be available. A full set means 
that the sensitivities with respect to all 
parameters are needed, without making an a-
priori judgment as to which one is important. 
Second, we require an efficient computation of 
the sensitivities, since we may have to process 
large data sets fast. Thus, for recurrent 
architectures, adjoint operator methods and/or 
automated differentiation preprocessors are 
essential. Third, proposed methods should allow 
for a systematic treatment of nonlinearities. The 
fourth criterion addresses the rigorous treatment, 
where relevant, of full time dependence. This 
includes model inputs, parameters, and 
responses. Finally, one requires a coherent 
method for combining experimental (i.e., 
measured) data and model results, the primary 
goal being to reduce the uncertainties. 
 
2  Approach 
To enable learning under uncertainty, we 
envision a two-step paradigm. In the first step, a 
novel architecture and ultrafast training 
procedure are introduced to determine the 
nominal values of the network parameters 
assuming no uncertainties in the data. In the 
second step, best estimates of these parameters 
are obtained by minimizing a generalized 
Bayesian loss function in a space where the 
inverse of a generalized covariance matrix 
(which captures all uncertainties) serves as 
metric of the computational manifold. As result 
of the minimization process, all uncertainties of 
interest are considerably reduced. 

In practice, our effort is organized along three 
thrusts. The first focuses on the development of 
new ultrafast learning algorithms and their 
incorporation into the DeepNet code. The second 
encompasses the formulation of uncertainty 
analysis methods and their implementation in a 
code, which we called NOGA. The third and 



final thrust addresses the demonstration of the 
new methodology in challenging applications 
such as petroleum reservoir characterization.  
 

3  DeepNet 

We consider first a multilayer, feedforward 
network architecture with I input nodes, V virtual 
nodes, and O output nodes.  The numbers I and 
O are equal to the dimensionalities of the input 
and output data and, for a given application, are 
in general fixed. The goal of the learning process 
is to minimize the discrepancy between DeepNet 
predictions and measurements for responses of 
interest. In particular, we wish to determine the 
synaptic interconnections, while incorporating 
explicitly the uncertainties associated with the 
training data.   

Two sets of L pattern vectors are being provided 
for training. Typically, L >> I. Clustering 
methods are used to reduce the number of 
samples to K (with L >> K >>I ). The patterns 
are stored as rows of the matrices ΩKI  and RKO  
respectively, which represent the input signals 
and the target outputs. The number of columns 
of each matrix equals the number of nodes of the 
corresponding processing layer. For conve- 
nience, the matrix dimensions are explicitly 
indicated as subscripts. Two successive non- 
linear transformations map ΩKI into the K × V 
presynaptic matrix, HKV, output by the virtual 
layer. We construct these transformations such 
that HKV becomes a nonsingular square matrix, 
which requires, in particular, that V = K be 
chosen. We also decouple the nonlinearity of the 
transfer function at the output layer from the 
linear interlayer pattern propagation mediated by 
the synaptic weights WVO . This transformation 
is being used to compute the postsynaptic input 
to the output layer as a K × O rectangular matrix. 
Since the latter is connected via a bijective 
sigmoid mapping to the output training 
examples, the synaptic interconnection matrices 
WVO can be uniquely determined by solving a 
system of linear equations.  

The processing between the input and virtual 
layers is specified as follows. For a given set of 
training vectors, we assume that there exists a 
particular nonlinear transfer function, y, that 
maps row vectors from the input pattern matrix 
ΩΚΙ  to row vectors of the postsynaptic matrix 
ΞKK . The usual sigmoid transform ϕ is applied 

to each element of Ξ to produce the presynaptic 
matrix HKK output by the virtual layer. The 
function y is not altered during the learning 
process. We have 

    HKK = ϕ( ΞKK ) = ϕ( y ( ΩΚΙ ) ).                         (1) 

The mapping y (defined by Eq. 2) will always 
produce a nonsingular square matrix, ΞKK .  Let 
ωk

(i)
 denote the i-th component of the k-th 

training vector ωk , and u(k) refer to the L1 
distance between ωk and ωk+1. For each 
component i = 1, 2, ...  I, construct a K × K 
matrix Ξ(i): 
                                                                                 (2)                                                     

 

with   k, l = 1, ... K. Here, D (i)  is the maximum 
of  | ωk

(i) −ωl
(i) | over all  k . Let ΞKK be the block 

diagonal matrix whose i-th block is given by Eq. 
(2). The determinant of the full matrix is [16] 
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The above implementation of ΞKK for guarantees 
that the matrix is nonsingular. Each network 
node implements a sigmoid nonlinear transfer 
function ϕ : ℜ→(0,1). As result of applying ϕ, 
the presynaptic matrix, HKK, output by the virtual 
layer is obtained. Since ϕ is bijective, the inverse 
ϕ -1 is well defined. Then, the postsynaptic inputs 
T to the output layer corresponding to the given 
target outputs R are TKO = ϕ -1(RKO ).  The 
postsynaptic inputs to the output layer computed 
by the network are obtained from the expression  
PKO = HKK WKO .  

The final phase of the learning algorithm 
minimizes ψTKO – PKO ψ by solving the system   
TKO  =  HKK WKO  for WKO.  Since TKO and HKK 
are known we can compute WKO using a 
singular-value decomposition of HKK from the 
left. 

 
4  NOGA 
The incorporation of uncertainty information into 
the DeepNet learning mechanism is essential for 
enabling proper generalization. We present here 
our proposed approach for static pattern analysis.  
We begin by specifying the assumptions and the 
notation. 
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As result of the single-iteration training process 
in DeepNet, a set of nominal values for the 
intrinsic network parameters (e.g., WKO) has 
been determined. There is uncertainty associated 
with WKO, since there is uncertainty in the 
training sets. Let ω denote an I-dimensional 
input pattern. It may be selected from the input 
training set ΩKI, or be a new pattern for which a 
measured O-dimensional response pattern r is 
available. The intrinsic network parameters W 
are concatenated (by rows) with the inputs ω as a 
vector a of system parameters. The dimension of 
a is of order KO + I. The responses calculated by 
DeepNet as function of a are denoted by q. The 
nominal uncertainties in the parameters are 
quantified by specifying covariance matrices, 
e.g., Caa= <∆a ∆at >.  The brackets denote 
integration over a joint probability density 
function (PDF). Many uncertainty analysis 
methods choose a form for the PDF. We will be 
more general, and need only to specify the first 
few moments of the PDF: e.g., mean value and 
covariance matrix. Initially, Caa will be block 
diagonal, each block corresponding to the 
covariance matrices associated with W and ω. 
Sensitivities provide a systematic way to 
propagate uncertainties in complex, non-
stationary, nonlinear models. For example, to 
first order in a stationary system, the sensitivity 
of the calculated response n with respect to 
parameter i evaluated at the nominal values a is 
Sni=∂qn/∂ai. In a feed-forward multilayer archi- 
tecture sensitivities can be calculated analytically 
in a straightforward manner. When neural 
networks are implemented as dynamical systems, 
sensitivities can be obtained efficiently using an 
adjoint operator formalism [11,12], or existing 
automated differentiation preprocessors [23]. 

Using the sensitivity matrix S, we can calculate 
the nominal covariance matrix of the DeepNet 
responses. By expanding about the centroid of 
the joint PDF of the system parameters, we 
obtain, again to first order, Cqq= <∆q∆qt  > = 
SCaaSt. 

We seek best estimates for the parameters and 
responses, denoted by â  and q̂ . These values are 
related to the current estimates by the 
sensitivities: q̂ = q + S( â - a ). To obtain the best 
estimates, we must consistently combine 
computational results and experimental 
measurements. We will achieve this by 
optimizing a generalized Bayesian loss function, 

which simultaneously minimizes (i) the 
differences between the best estimate and the 
measured responses and (ii) the best estimate and 
the nominal values of the system parameters. 
Our optimization process uses the inverse of a 
generalized total covariance matrix as the natural 
metric of the calculational manifold. In 
particular, we write: 

Additional potential contributions to the 
covariance matrix such as method biases may 
also be included in the above expression. To 
capture the constraints between parameters and 
responses, it is convenient to define new 
variables: x = â - a, y = q̂ - r, and  e = q – r. 
Note that  e denotes the discrepancy between 
calculations and measurements. Using the new 
variables, the constraints become  y = Sx + e. For 
simplicity, we have illustrated here this 
relationship to first order only. One can now 
construct an augmented Lagrangian, L, given by 

The best estimates for the parameters and the 
reduced uncertainties will be obtained by solving 
the equations derived from applying the 
optimality conditions to the minimization of L. 
For instance, the covariance matrix 
corresponding to the best estimates of the 
parameters is given by the expression: 

This formalism is being further extended to 
allow treatment of time dependent systems 
(where, for example, sensitivities such as 

/
n i n i

S qν µ ν µ= ∂ ∂a  appear), and to higher order 
(nonlinear) constraints. 

 

5  Application 
The ability to accurately predict the location of 
remaining oil in the neighborhood of existing 
production wells is of vital economic importance 
to the petroleum industry. For practical purposes, 
one typically targets volumes of fluid 10 meters 
thick and 200 meters in lateral extent at a 
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distance of 200 meters from each well, requiring 
a resolution accuracy of 5% in terms of the 
distance from the observation well.  Available 
oilfield information incorporates many datasets 
with different scales, uncertainties, sample 
volumes, and relevance. Well logs (e.g., 
porosity, gamma ray response, and resistivity) 
provide the most accurate possible sensor-based 
characterization of the geological formations 
encountered along the path of a well [24].  On 
the other hand, low-resolution seismic data are 
generally used to conduct large-scale field 
assessments [25]. The specific focus of the 
research we report in this paper was to develop a 
methodology that would enable fast and accurate 
prediction of well pseudo logs from seismic data 
across an entire oil field. 

To test the proposed methodology, the Pompano 
field, located in the Gulf of Mexico, was 
selected. Pompano is in deep water and has a 
significant potential for compartmentalized oil.  
The fine scale heterogeneity caused by the 
channel depositional environment is well below 
the resolution of 3D seismic data.  The 
information available to us included 3D seismic 
data, well logs, core samples, oil location and 
production profiles.  

Five seismic variables were provided: the 
reflected seismic signal, acoustic impedance 
(AI), and three components of the Hilbert 
transform of the reflected seismic signal 
(amplitude, frequency, and phase).  Each of the 
five datasets had 80 megabytes of data with a 
spatial resolution of 4 km in x and 7 km in y. An 
x-t plot of the reflected seismic signal is 
displayed in Fig. 1. For the case of normal 
incidence, the amplitude of the reflected signal 
depends on the change in acoustic impedance at 
the interface between two materials, where AI is 
the product of density and the speed of sound in 
the material. 

The log data is sampled at regular intervals along 
the well.  In Pompano, most wells are not 
vertical (of the 17 wells studied here, only three 
are vertical). The DeepLook consortium of petro-
leum companies provided us with the rate of 
deviation for each well. We calculated the (x,y,z) 
coordinates for each data sample in the log data 
from the seismic data, which have coordinates of 
(x,y,t), where t is the two way travel time.  To 
convert from t to z, we used a smooth estimates 

of the average velocity [υ  =  (2 z)/t]. Such 
estimates are less detailed than the seismic data. 

 
Fig. 1: An x-t cross section of a reflected seismic signal. Lighter 
colors indicate positive data. 

The DeepNet code is written in FORTRAN-95 
running under Windows NT 4.0. Preliminary 
results are very encouraging, both in terms of the 
exceptional speed of the learning process, and 
the quality of prediction obtained with test data. 
For instance, the typical training time using a 
dataset of several hundred seismic signatures is 
of the order of seconds on a Dell Workstation 
610 configured with 2 Pentium II Xeon 
processors operating at 400 MHz.   

It is important to assess the quality of predictions 
that can be obtained with DeepNet. The network 
is initially trained using a small subset of the 
available data: typically, we have used the 
seismic-to-log correspondence for one, two, or 
three wells. DeepNet was then used to generate 
pseudo logs at other wells in the Pompano field.  

   

 

DeepNet  Prediction of Well Logs
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Fig. 2: DeepNet predicts accurately the gamma ray 
log using test data from Pompano well B-10 



For comparison purposes the same pseudo logs 
were generated using a competing, recently 
published state-of-the-art neural network 
algorithm (i.e., the Nadaraya-Watson paradigm 
[26]). The much more accurate DeepNet results 
are illustrated in Figure 2. The N-W results are 
given in Figure 3.  For both cases, Pompano well 
B-10 was used for the prediction test. 
 

Prediction of DeepLook Well Logs using 
Rao's Nadaraya-Watson Net
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Conclusions 
The DeepNet algorithm represents a new, ultra- 
fast (single iteration) approach to neural network 
learning for feedforward nets. As such, it has 
considerable advantages in efficiency (speed, 
computation cost) over backpropagation. Further 
more, initial results indicate that it is also has 
higher prediction accuracy.  It is interesting to 
note that network retraining, typically associated 
with an excessive cost when using conventional 
learning, will now become trivial. When 
combined with the NOGA uncertainty reduction 
algorithms, our methodology will enable the oil 
exploration and production industry to gain an 
unprecedented insight into fluid types and 
distributions in reservoirs of interest. 
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