Palm Wirdess I nterface For Distributed Robots

Sarun Teeravechyan
GLCA/ACM
Knox College

Computer Science and Mathematics Divison
Dr. Lynne E. Parker
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831 — Box 6355

Prepared in partid fulfillment of the requirements of the Office of Science, Department of Energy
Program under the direction of Dr. Lynne E. Parker in the Computer Science and Mathematics
Divison at Oak Ridge Nationd Laboratory.

Participant:
Sgnature

Research:
Advisor Signature

Table of Contents

ADSITACT ...ttt b b et 3
INEFOAUCTION. ...ttt e e r e n e n e enes 4
MaterialS and MENOUTS...........ccooiiieiic e 6
RESUILS ...ttt bt b e et n et bR e nenn e 7
DisCUSSION @Nd CONCIUSION.......co.eiiiiirierie sttt sr b 10
ACKNOWIEAGEMENES. ... e r e sre e enre e 11
FIUIES. .. e a e s b e s b e e sbe e e s be e e sabe e e sar e e e nane e e nnreas 12

Abstract

Pam Wireless Interface For Distributed Robots.
Sarun Teeravechyan, Knox College, Gaesburg, IL 61401
Dr. Lynne E. Parker
Oak Ridge Nationd Laboratory
Oak Ridge, Tennessee 37831

There are gStuations in which the best course solution would be to deploy a team of distributed
mobile robots. However in these cases it is mog likely that one would be confronted with
geographicdly adverse conditions for sdting up the communications sysem. This particular
problem is addressed by introducing the PAmVx PDA into the rday system, wherein it would act
as the interface through which humans could communicate radio commands to the robots. The
handheld device acts as the firg link in a chain through which remote commands are issued. The
GUI on the PAmVx would take in parameters that would dlow a connection-oriented Ethernet
“conversation” with the specified server. This server would act as the buffer stage, teking in Smple
function commands from the remote Padm device, parsng them and piping them out to the
appropriate set(s) of robots These indructions would, in turn, serve to initidize or shut down
distributed robotics functions that have been preprogrammed onto the team. All in dl, the lower
layers of the Structure would be transparent to the user. The only interaction between the operator
and the system would be at the application layer, which condtitutes of the PAdm GUI. From there,
al ample functions can be issued to the robotics team.

Resear ch Category (Please Circle)
ERULF: Physics Chemistry Biology Engineering Computer Science Other
CCl: Biotechnology Environmental Science Computing

TYPEALL INFORMATION CORRECTLY AND COMPLETELY

School Author Attends: Knox College

DOE National Laboratory Attended: Oak Ridge National Laboratory
Mentor’s Name: Dr. Lynne E. Parker

Phone: (865)241-4959

e-mail Address: parkerle@ornl.gov

Author’s Name: Sarun Teeravechyan

Mailing Address: K-1575 Knox College
City/State/ZIP: Galesburg, 1L 61401

Phone: (865)482-6433

e-mail Address: steerave@knox.edu

Isthis being submitted for publication?. Yes No
DOE Program: ERULF CCI PST (circle one only)

Introduction

The invention of the computer has vadlly increased human capacity to meke fast and
accurate caculations. As greater advances are made in this particular fidd we begin to rey more
and more on these machines to do our grunt work, which would previoudy have taken us hours if
not days, months or even years. Such amazing feats of cdculations, once consdered impossble,
are now mundane tasks we take for granted. Computers are now in charge of contralling air treffic,
cdculaiing stock indexes, predicting the weather as well as regulating a huge portion of our
information exchange through an intricate web of connected networks we cdl the Internet.
Sometimes one begins to wonder how much potentid these machines have, how much esser they
can make our lives.

To date, one of the ultimate computer services is in the concept of a robot. Modern robots
are built for a specific task, which they unerringly perform. Some of the earlier forms of robots
were used in automotive assembly plants, where they execute with pinpoint accuracy the
manipulations needed on an assembly line to put the vehicles together. As robotics technology
progress, they have been specidized to perform more complex tasks which are too dangerous,
require too much precison or just plan impossble for humans to peform. Now they are
responsble for the nanometer dlicon linings on a microchip as well as collecting dirt samples from
the planet Mars. The uses that we have found for these automated systems are far and wide, and
ther potentid limited only by our imagination. At the rate our technology is currently advancing
we can be sure to expect bigger and better things. However, what lurks in the horizon for us in
terms of robotics? The answer is atificid intelligence.

At the present, humans do most of the decison-making for the robots. We decide what

specific tasks they are to perform, and in the unfortunate case of it encountering an unanticipated

Stuation, we have to step in and extract it from its predicament. Any nove tasks we want robots
to execute have to be programmed into them. However, with developed Al, it is possble to expect
a robot to d/namicaly solve a problem on the go or even learn new tasks from another robot. This
concept of an “intdligent” machine is where we are headed towards now. In order to make them
intdlligent we have to give them the power of perception. They should be able to gather
information from their surroundings and incorporate them into a decison-making agorithm and
then respond appropriately. The next step would be to include a number of these robots into a team
with a specific task in mind. Thus the birth of the autonomous distributed robotics systems.

In the creation of such a system there are many components that we have to develop. There
ae two man segments that the project could be broken into: the Artificid Intelligence and the
controls. The Al pat would involve research on decison-making dgorithms. That subject,
however, does not pertain to this paper. The purpose of this particular research is to create a user-
friendly wirdless controls system for a specific team of autonomous robot team.

As with any inteface, the top layer should be intuitive and unambiguous while
smultaneoudy presenting the user with the necessary options to initiste communications with the
robots and set them to ther tasks. While for some purposes a complex interface is necessary to
achieve the desred levels of control, we need only the bare minimum. This is done to moderate the
learning curve as wdl as maximize retention rate. From an economics point of view this would
lower costs of training new labor as well as reducing te chances of a costly error. Detailed error
checks and warnings are also integra parts of a user-friendly interface.

What lies hidden benegth the visible interface is dl the code and hardware that is required
to make a functiond rday sysem. Shdtered insde that hull ae the command trandation,

connection establishment, data transfer as well as various parang tasks. The workings of the lower

layers, however, should aways be transparent to the user. All these functions should operate
flavesdy and smoothly enough so that it would not be necessary for the human operator to have
any knowledge of the sysem’s inner mechanisms. The program should be robust enough so tha
any errorsthat do occur would be at the fault of the user.

As the fidd advances, the direction it follows is towards increased gpplicability of the
technology. Most research has been conducted under laboratory environments, where the controls
ae st behind lumbering PC's. Though tests may prove that certain robot teams are able to
perform the required tasks, it is gill necessary to bring the team out to the task Site to do the red
job. A problem arises when the mohility of the controller is bought into consderation. It would be
impractical, and in many cases, impossble, to tow a computer aong to the work area. This is
where the PAm Rilot comes into the picture. It is a compact, yet versatile piece of machinery. PAm
Rlots can be progranmed to perform complex functions and they ae capable of wirdess
networking. It is, in essence, the ided top layer interface device. One can envison a man a an
edge of a battlefidd deploying a team of robots to sniff out mines. This application demondrates
how versdtile this technology can truly be.

Materials and Methods

The creation of the communication rday sysem can be divided into three sections the
saver dde, the client sde and the wirdess interface. These three parts are interconnected by a
series of network programs that alow for data transfer through exclusve sockets. The lines of
communication are set up specificaly for our particular gpplication and are promptly torn down
after the program is closed. This alows for a steady, uninterrupted diaogue between the three
network devices. Fgure 1.1 shows the overdl dructure of the sysem, putting esch of the

aforementioned components in their place.

The interface device is the unit that contains the GUI. It represents the sole medium of
interaction the user has with the system. From here, commands are issued to the robots. The robot
team condtitutes the client sde, which receives dl directives that are sent out from the controller of
the interface. The sarver sde is a worksation that acts as a mediator between the two
aforementioned components. Its job is to firsg establish a reiable connection that would dlow free
flow of informaion. The other responghility it fulfills is in the trandaing of commands so that
both sdes would be able to undersand each other. Ultimately, it dso shuts down the connection
when no longer needed.

The server sde of the system is run on a Solaris platform on a Sun Sparc20 Workdtation,
locdly identified as Neptune. The devdopment work of the program, which was written in
sandard C, was actudly done for another project. However, with a little modification, it suitably
fit our needs. The purpose of the program, which was named communication.c, was to set up a
ligening port, dlowing commands to be rdayed in from the PDA interface, parsed, and then sent
out to the waiting client sSide program.

The client sde condsts of four Nomad 200 series robots from Nomadic Technologies.
Each of these robots has Linux as their operating sysem. They aso contain radio technology that
dlows ther end of the network program to be remotey uploaded into their directories. Once
initisted, they stay online and wait for commands to be sent in from the communications server.
The information they receive when contacted dlows them to determine what type of function
needs to be performed. However, it must be kept in mind that the aforementioned task must have
been preprogrammed into the team as wel as modified to work within the rday sysem. We

focused on one such function - sobounce.c

Sobounce.c has been revised and uploaded to each one of the four robots and is used to test
the interactions between the server and the client sdes. Once activated, each unit begins to wander
around. Readings from their sonar prevent them from hitting each other or any path obstacles. In
the origind verson, the program woud kegp on running until manudly interrupted by the user
pressng Ctrl+C. To serve the purposes of this communications system, however, the program
must be able to receive and respond to a “stop” command. This feature has been implemented in
the new verson, and now will terminate the program on reception of the gppropriate trigger
command.

The choice interface device is the PAmVx, chosen for its large memory (8 MB), its ahility
to connect to a wirdess Ethernet device and its mobility. The Mercury-EN from Nomadic
Technologies sarves as the Ethernet device that plugs the PAmVx into the network. As mentioned
ealier, this is the only section in the whole rdlay system that interacts with the user. This fact has
to be kept in mind when designing the interface program.

The development of interface code was origindly done on Red Hat Linux 6.0 and was later
moved to Windows 2000. Though some may argue otherwise, Windows does have an advantage in
Padm devdopment with its wide options and availability of Interface Deveopment Environments
(IDEs). Codewarrior PAm came as the highest recommended tool, and was subsequently chosen as
the choice IDE for the project. Its power lay in its ability to dlow coders to visudly place and
alocate resource objects. Form dyjects, text objects, menus and menu bars can al be drawn out on
a smulated PAm screen. Once compiled it would create the necessary “.h” resource file that the
man program can cdl. Another benefit of the Codewarrior PAm Congructor (shown in Figure
1.2) is tha it dynamicdly assgns (and reassgns) indexes to the objects you create. As a result a

programmer can do al the resource manipulation he/she wants without ever having to worry about

the detals of changing their identification numbers. The only knowledge they need would be of
the objects name, which in most cases would be intuitive and reflective of thar functions or
position in the program.

The main program was written in sandard C. Although the IDE (Figure 1.3) used did have
a lot of features that aided in debugging and organizing the code, the most useful tool used was an
externa program downloaded from the Internet. This piece of software is cdled POSE (PAm OS
Emulator), and is consdered the best PAm debugger avalable. When writing code for a different
sysem, one of the mog tiresome activities is in the testing of the newly compiled program. In
order to do that, it would require the uploading of the whole program onto the other device. This is
where POSE saves developers a lot of time Instead of having to ingdl the program on the
PdmVx every sngle time a new compilaion is made, it provides an emulaion of the PAm on the
PC (our development platform). POSE accuratdly reflects how the PAm would run the software as
well as how it would respond to erroneous code or memory misdlocation. Another strong feature
it provides is cdled Gremlims. This is bagcdly a saies of indructions sent out by the emulation
software to try as many actions as possble in order to test the robustness of the software. This
function is usudly activated towards the end of the development process to double check on
product reliability.

The interface itsdlf is made to be as smple as possble bearing in mind that the user would
adso need some degree of freedom in ther configurations. There would be two main form objects
in the GUI. The first one would be responsible for the establishment of the connection between the
device and the ret of the rday system. It would ask for the host name of the communications
sarver as wdl as the desred port (default port is set to 10000, which is dso the default on the

communications.c). The other form is where the user would send commands to the desired

robot(s). Any one or any combination of the robots could be pcked as wdl as any available choice
of functions to run. All this information would be sent out to the communication server, parsed and
then passed on to the robots.

Results

The rday sysem has a number of working components such as the established
communication lines between the server sde and the client sde. The two are able to send and
recelve daa through a menu-driven interface. For example, commands sent through a makeshift
interface on the communicetions sSde can initidize and execute sobouncec on the Nomad 200
robots. Though this is in pat due to the generic nature of the system, made to alow for future
development and implementation of other applications.

The interface dde of the project, however, is dill in the making. A compiled verson of the
program has been written and uploaded. The basic sructure of the program has been done and it
only waits for modifications to be made on paticular variable pasing functions. As of now,
memory allocation procedures pose as the largest obstacle in completing the interface gpplication.
Discussion and Conclusion

At this point, two of the three components are abile to communicate with each other.
However a bit of work is gill necessary for even those parts to be fully operationa. The fact of the
metter is that the code is functiond only a a very prdiminary levd. None of the checks for
robustness have been done, and this is definitely the area that needs the most improvement on.
Congdering that the media used is wirdess Ethernet, it would be wise to have some sort of fail-
safe device that would be able to diminate radio interferences. A guarantee of reiable information

flow should be implemented.

10

Ancther area that could be improved upon is concerning user feedback. At the present
there is inadequate information flow coming back to the server. Occasiona progress reports should
be sent to make the user aware of the current dtate of communications. This provides a firmer
sense of product reigbility, as well as fadlitating technicd solutions in the case that errors do
occur.

One of the mgor problems in the development of the GUI component is in understanding
the inner workings of programming a PAm gpplication. Not only does it require good knowledge
of its library of built-in functions, the basic process of memory dlocation works differently from
the way the mgority of machines do. Instead of reading and writing data into files, a Pdm
goplication accesses data directly from its memory. However, a lot more rules and regulaions
govern this action. In order to manipulate memory without error, you have to set a handle to it, and
lock it in place. Only then will it be stable enough to be worked with. In order to finish up the
coding of the GUI, extensive knowledge and experience in Pm programming is recommended.
Acknowledgements

This research is sponsored by the Engineering Research Program of the Office of Basic
Energy Sciences, U.S. Department of Energy, under Contract No. DE-ACO05-000R22725 with
UT-Battdle, LLC.

I would like to thank the United States Department of Energy- Office of Science for giving
this opportunity to participate in the GLCA program.

My thanks dso go to my mentor Dr. Lynne E. Parker, Computationd Inteligence Group
Leader, and the entire daff a the Center for Engineering Sciences Advanced Research Laboratory
a Oak Ridge Nationd Laboratory in Oak ridge, Tennessee. Also specid thanks go to Andrew

McDowel, who patiently waited for me to get my Oak Ridge Science Semester applications in, as

11

well as Aleksander “BIigAl’ Stefanovski for bringing the gpplication to me when | was
incapacitated with a broken fibula.

The research described in this paper was performed at the Center of Engineering Sciences
Advanced Research Laboratory; a nationd scientific user facility sponsored by the United States

Department of Energy and is located at the Oak Ridge National Laboratory.

OVERVIEW

i ™

communication

remote
interface SETVEr
2l O CHeplins
ethernet
device —_—
'Df{krm{,_p({fc?f
N client side
N Ady, COracs, CAith Aﬂmw&fj

Figure 1.1 This figure represents the structure of the relay
system. The three main components are identified
as the Interface, Communication server and
the client side.

13

% Form 1000, "Interface Main™ =

lﬂ Layaout Properties |_ Layout Appearance
= Farm =
Left Origin i
Top Origin i 100
Wiridth 160
: Please choose a h100%2
Height 160 T
Lizable A usable
hindal [tedal
Sawe Behind D Sawe Behind
Form 10 1000
hdzr Bar 1D 1} Create...
Default Button 10 1] [:EH:I[H Conn 006
Form Title Interface [Hex]]

-
4 ¥

Figure 1.2 This is a screen capture of the CodeWarrior Constructor |
used for developing the Palm Interface. Shown here is the
Interface Main, the main form object.

Mol ad.c 1

EIM hhwmmmwmr«mmmmmmrw

= PARAMETERS: fldP - the npumberic field (max - 5 digits)
L]
RETURHED Tru= onee list 1= initialized, elsz= false
-

O

itatic Boolean InitPort(FieldPtr f£1dF)

ForaPty frm = FraGetActiveFora():
Handle oldTxtH. txtH:

#+Default Port Humber Sstting

txtH = HemHandleNew({StrLen(prt) + 1)
Striopy({HenHandleTock (txtH), prt):
MemHandlelnlock(txtH) ;

s+gat fimld and its current text handle

fldP = FraGetObjectPtr{frm, FraGetObjectIndex(frm. InterfaceMainPortFie=ld)):
ErrHonFatalDisplayIf{!f1dP., “nisz=sing field"):;

oldTxtH = FldGetTextHandle(f1ldP}:

sat the field to the new text
FldSetTextHandle(f1dP, txtH);
FldDrawField(£1dF)

##frem the handle after calling FldS=atTextHandle{)
if (oldTxtH)

HenHandleFres(oldTxtH) ;

return trus;

H

o
L

Line: 64 Tl

]

Figure 1.3 This is an excerpt from the code. This particular function,
GetPortSettings, is the source of many of the existing
bugs.

and
Associates, Cambridge.

Rochkind, M.J. (1985). Advanced UNIX Programming. Prentice Hall, Englewoods Cliffs, NJ.

