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ABSTRACT

In this paper, we propose a method to estimate the blur of a
fixed imaging system, without control of camera position or
lighting, using an inexpensive target. Such a method is ap-
plicable, for example, in the restoration of surveillance im-
agery where the imaging system is available, but with only
limited-control of the imaging conditions. We extend a pre-
viously proposed parametric blur model and maximum like-
lihood technique to estimate a more general family of blur
functions. The requirements for an appropriate characteri-
zation target are also discussed. Experimental results with
artificial and real data are presented to validate the proposed
approach.

1. INTRODUCTION

Image restoration [1] is the process of estimating an image
from an observation that has undergone some degradation
such as blur and/or additive noise. To perform any sort of
image restoration, knowledge of the degradation or blur is
required. Knowledge of the blur can be obtained in at least
two ways, which we refer to asblind estimation andperfect-
controlestimation. In the blind estimation scenario [2, 3, 4],
the blur is estimated directly from the degraded image(s). In
the perfect-control setting, the imaging system used to cap-
ture the given image is characterized through some experi-
mental process. This option, of course, is often infeasible or
impractical. Obviously the imaging system cannot be sub-
jected to a characterization process if it is unavailable and/or
unknown. Even if the imaging system is available, however,
current methods for characterization [5, 6] are often imprac-
tical as they require expensive targets, nearly ideal light-
ing, control of camera and/or target placement, and analysis
by a skilled individual. These two alternatives – blind and
perfect-control – represent two extremes of the blur estima-
tion problem.

Work funded by the U.S. Department of Energy’s Office of Nonprolif-
eration Research and Engineering (NN-20).

In this paper, we begin the investigation of a new tech-
nique for estimating image blur inlimited-controlenviron-
ments. The limited-control environment falls between the
two aforementioned extremes and is useful in surveillance
and/or video forensics applications [7]. In such applica-
tions, an event of interest may be recorded by a fixed imag-
ing system, such as a surveillance camera, that is available
for limited testing in its native environment. As it may
be desirable to improve the recorded image(s) using image
restoration techniques, the goal of the work presented here
is a robust method to estimate the blur of a fixed imaging
system, without control of camera position or lighting, us-
ing an inexpensive target (or targets). Such a method is the
primary contribution of this paper. Additionally, we extend
the blur models and maximum likelihood estimation tech-
nique suggested in [2] to allow for a broader class of para-
metric blur functions.

The remainder of this paper is organized as follows. In
Section 2, we present the parametric blur model, based upon
that in [2], that we have adopted for our work. In Section 3,
we discuss the maximum likelihood estimation of the blur
parameters and then, in Section 4, we describe briefly the re-
quirements for the characterization target. We present some
experimental results from artificial and real data in Section 5
and make some closing comments in Section 6.

2. BLUR MODEL

In general, the blur of an optical imaging system can be very
difficult to model. An accurate blur model based upon phys-
ical optics requires such parameters as depth of the imaged
objects, lens aberrations, and spectral distribution of the in-
cident light [8]. A more tractable approach is to employ
parametric blur models based upon geometric or diffraction-
limited assumptions. Such an approach is suggested in [8]
as a reasonable alternative to the more cumbersome physi-
cal optics model and has been used successfully in the im-
age processing literature [2, 9].

We adopt the continuous spatial domain approach pre-
sented by Pavlović and Tekalp in [2] with some modifica-
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Fig. 1. Simple model of imaging system assuming linear,
shift-invariant blur and additive noise.

tions and extensions. Specifically, in [2] out-of-focus cir-
cular aperture blur and circularly symmetric Gaussian blur
are considered independently. We, however, allow for sep-
arable, elliptically symmetric Gaussian blur and addition-
ally consider both out-of-focus and Gaussian blur simulta-
neously. The Gaussian is used to approximate any blur in
the scene that may arise from sources other than focus er-
ror. We adopt the separable Gaussian because some imag-
ing systems tend to have more blur in one direction than the
other (e.g., the real data mentioned in Section 5). The point
spread function (PSF) for the out-of-focus circular aperture
is given by

hc(x;R) =
1

πR2
ΠR(|x|) (1)

where
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{
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0, |x| > R.
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The PSF for the elliptically symmetric, separable Gaussian
is
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The blur for the overall imaging system is given by the con-
volution of (1) and (3):

h(x;R, γ1, γ2) = hc(x;R) ∗ hg(x; γ1, γ2). (4)

Letting θ represent the collection of blur parameters to be
estimated,{R, γ1, γ2}, we can rewrite (4) in the Fourier do-
main as

H(u; θ) =
1

πR|u|
J1(2πR|u|)·

exp(−2π2γ2
1u2

1) exp(−2π2γ2
2u2

2) (5)

whereJk(·) is thekth-order Bessel function of the first kind.
Given the model of (5), the goal of blur estimation is then
to estimate the parametersR, γ1, andγ2.

3. PARAMETER ESTIMATION

Referring to the imaging system model in Fig. 1, the in-
put,f(x), is characterized in [2] by an autoregressive model

driven by Gaussian-distributed, white noise. As we have
some control over the input to the imaging system in the
limited-control environment, we can simplify further and
assume that the input is purely Gaussian noise with un-
known varianceσ2

f . Such an input can be approximated
using a prefabricated target, as discussed in Section 4 be-
low. The termv(·) represents additive white noise of un-
known varianceσ2

v . We letg(n) represent theN × N ob-
served samples of the imageg(x). Using the well-known
block circulant approximation [10] to the covariance matrix
of g(n) (lexicographically ordered), and following the form
of [2], the maximum likelihood parametersθ can be found
by minimizing the negative of the likelihood function (LF)

L(θ, σ2
f , σ2

v) =
∑
k

log
(
Sg(k; θ)

)
+

1
N2

|G(k)|2

Sg(k; θ)
, (6)

whereSg(k; θ) represents samples of the (analytically com-
puted) power spectrum ofg(x) and whereG(k) is the dis-
crete Fourier transform (DFT) ofg(n). Recalling that the
inputf(·) in Fig. 1 is purely white noise, we can write

Sg(u; θ) = σ2
f |H(u; θ)|2 + σ2

v (7)

whereH(u; θ) was given in (5). We note that|H(·)|2 =
H2(·) sinceH(·) is purely real.

To minimize (6) effectively, we must compute the gradi-
ents ofL(·) with respect to each of the unknowns. Recalling
thatθ = {R, γ1, γ2}, we have
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for the blur parameters and
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for the signal and noise power, respectively. To complete (8),
we must evaluate the partials ofH(·) with respect to each
of the blur parameters, yielding
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∂R

=
1
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for i = 1, 2.
Given the DFT of the observed digital image,G(k), the

likelihood functionL(·) from (6) is minimized with respect
to the five unknown parameters –R, γ1, γ2, σ2

f , andσ2
v

– using a constrained nonlinear minimization routine (the
fmincon function from MATLAB’s Optimization Tool-
box). Initial experimental results indicated some sensitivity
to initial conditions, so a two-step initialization procedure is
performed. In the first step, initial guesses forσ2

f andσ2
v are

computed. In the second step, these initial guesses are used
to computeL(·) over a5 × 5 grid of equally spaced points
(over the range of expected/allowable values, noted below)
by assuming thatγ1 = γ2. The minimizer over this 25 point
set is then selected as the starting point for the optimization.

To constrain the optimization, the unknown parameters
are allowed to take values in the following ranges:R ∈
(0, 20], {γ1, γ2} ∈ (0, 20], and{σ2

f , σ2
v} ∈ (0,∞). The al-

lowable blur parameter (R, γ1, γ2) ranges are representative
of what is reasonably expected in our application of interest.

4. CHARACTERIZATION TARGET

As mentioned at the beginning of the previous section, the
goal of the target is to provide white, Gaussian-distributed
noise as input to the imaging system. White noise ensures
that the power spectrumSg(·) takes the form of (7). The
Gaussian distribution is required to satisfy the assumptions
used to generate the likelihood function of (6).

The target we employ is composed of constant intensity
blocks, where the intensity of each block is selected from a
discrete, approximately Gaussian distribution over[0.0, 1.0]
(0.0 corresponds to black, 1.0 corresponds to white). In the
ideal scenario, each block on the target would correspond
to one pixel, with no overlap. Obviously, such a scenario
would be quite difficult to ensure. Instead, we only require
that the area of each target block correspond to less than the
area of one pixel. In this situation there will be some cor-
relation because adjacent pixels will generally be observing
portions of some of the same target blocks. This correlation,
however, is limited to a3×3 window and is essentially neg-
ligible (in fact, it can be assumed to arise from blur and will
therefore be modeled by the blur estimation).

We note that decreasing the area of each target block
with respect to the area of each pixel would decrease the
aforementioned correlation, but would also tend to decrease
the effective SNR. As the number of target blocks observed
by each pixel increases, the effective spread off(·) about

its mean (i.e.,σ2
f ) decreases. Therefore, we would like the

target blocks to be smaller than, but on the same order of,
the area imaged by each pixel. This can be accomplished in
the field by having several targets with varying block sizes
available. Finally, to account for illumination variations and
nonlinear contrast modifications, we include a uniform gray
bar and a black-to-white gradient bar, one each in both the
horizontal and vertical directions, on the target image. The
uniform gray bars are used to estimate and correct any illu-
mination profile and the gradient bars are used to estimate
and correct nonlinear contrast modifications.

5. EXPERIMENTAL RESULTS

In this section, we present experimental results from both
artificial and real data. Artificial data was generated by first
creating a Gaussian white noise image with known vari-
ance,σ2

f , of size128 × 128 pixels. This noise image was
then blurred by a PSF – obeying the model presented in
Section 2 – with known parameters{R, γ1, γ2}. Gaussian,
white noise with known varianceσ2

v was then added to the
blurred image to simulate the observation noise. The DFT
of the noisy, blurred image was then used asG(k) in (6).
Real data was obtained using a consumer video camera, a
PC with video capture capabilities, and a noise target such
as that described in Section 4. To provide blurry images,
the autofocus feature of the camera was disabled and the
camera was manually defocused by varying degrees. The
DFT of one captured frame was then used asG(k) in (6).
The real images, shown in Fig. 2, were (arbitrarily) scaled
so that the initial guess forσ2

f was 10.0.
Some results obtained from the artificial data are sum-

marized in Table 1. The algorithm performed similarly with
various blur parameters. It should be evident from Table 1
that the algorithm performs quite well, even down to SNRs
as low as 20dB. Around 15dB and less, the algorithm is not
robust. This, however, has not been a significant limitation
in our application.

In Table 2, we summarize results obtained from the real
data. Although the good results obtained from the artificial
data give confidence in the results from the real data, we also
performed an additional subjective test. The blurs estimated
from the defocused images were applied to images obtained
using autofocus. The resulting, digitally blurred images cor-
responded well to the same images obtained with optical
blurring by manual defocus. This indicates, albeit subjec-
tively, that the estimated blur is representative of the true,
optical blur. Ongoing work is aimed at quantifying more
conclusively the accuracy and consistency of these results.

We now make a few comments regarding the data from
Table 2. First we recall that each real image was scaled so
that the initial guess forσ2

f was 10.0, hence the variation
of the σ2

f estimates. For the “Small Defocus” results, we



R γ1 γ2 σ2
f σ2

v

SNR 40dB
True 6.2 0.9 1.8 10.0 0.001
Estimated 6.20 0.932 1.81 10.6 0.001

SNR 30dB
True 6.2 0.9 1.8 10.0 0.01
Estimated 6.15 0.917 1.79 10.0 0.0102

SNR 20dB
True 6.2 0.9 1.8 10.0 0.1
Estimated 6.21 0.961 1.91 11.4 0.101

SNR 15dB
True 6.2 0.9 1.8 10.0 0.3162
Estimated 6.94 0.764 1.63 11.6 0.321

Table 1. Some results for artificial images. SNR is given by
10 log10(σ2

f/σ2
v).

R γ1 γ2 σ2
f σ2

v

Autofocus 1.18 0.34 0.36 6.04 0.058
Small Defocus 1.46 1.60 3.58 7.43 0.067
Large Defocus 18.7 2.17 2.42 8.69 0.070

Table 2. Results for the real data shown in Fig. 2.

note that the Gaussian blur parameters indicate more blur
in thex2 (horizontal) direction than in thex1 (vertical) di-
rection. This result, although unexpected, was consistent
with the observed image DFT, which indicated a stronger
lowpass nature in the horizontal direction. This characteris-
tic was not evident when autofocus was enabled or for the
large defocus.

6. CONCLUSION

In this paper, we present a method to estimate the blur of
a given imaging system in a limited-control environment
using a noise target. A previously proposed blur model
and maximum likelihood approach are extended to handle
a more flexible class blur functions. We also discuss the re-
quirements for constructing a suitable characterization tar-
get. Results from artificial and real data are given and demon-
strate the performance of the proposed approach.

7. REFERENCES

[1] M.R. Banham and A.K. Katsaggelos, “Digital image
restoration,” IEEE Signal Processing Mag., vol. 14,
no. 2, pp. 24–41, March 1997.

[2] G. Pavlovíc and A.M. Tekalp, “Maximum likelihood
parametric blur identification based on a continuous

Fig. 2. Real data used for experiments summarized in Ta-
ble 2. Autofocus, small defocus, and large defocus are
shown from left to right.

spatial domain model,”IEEE Trans. on Image Pro-
cessing, vol. 1, no. 4, pp. 496–504, October 1992.

[3] R.L. Lagendijk, J. Biemond, and D.E. Boekee, “Iden-
tification and restoration of noisy blurred images us-
ing the expectation-maximization algorithm,”IEEE
Trans. on Acoustics, Speech, and Signal Processing,
vol. 38, no. 7, pp. 1180–1191, July 1990.

[4] A.M. Tekalp, H. Kaufman, and J.W. Woods, “Identi-
fication of image and blur parameters for the restora-
tion of noncausal blurs,”IEEE Trans. on Acoustics,
Speech, and Signal Processing, vol. 34, no. 4, pp. 963–
972, August 1986.

[5] International Standards Organization,ISO 12233:
2000, Photography – Electronic Still-picture Cameras
– Resolution Measurements, ISO, 2000.

[6] IEEE Broadcast Technology Society,IEEE Std 208-
1995, IEEE Standard on Video Techniques: Measure-
ment of Resolution of Camera Systems, 1993 Tech-
niques, IEEE, 1995.

[7] IEEE Workshop on Visual Surveillance, 2000.

[8] H.-C. Lee, “Review of image-blur models in photo-
graphic system using the principles of optics,”Opt.
Eng., vol. 29, no. 5, pp. 405–421, May 1990.

[9] A.E. Savakis and H.J. Trussell, “Blur identification
by residual spectral matching,”IEEE Trans. on Image
Processing, vol. 2, no. 2, pp. 141–151, April 1993.

[10] R.L. Lagendijk, A.M. Tekalp, and J. Biemond, “Max-
imum likelihood image and blur identification: A uni-
fying approach,” Opt. Eng., vol. 29, no. 5, pp. 422–
435, May 1990.


