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Abstract

 Spatiotemporal fluctuations in small discrete nonlinear arrays affect 
the dynamics of the center of mass. We will present numerical 
evidence indicating that phase synchronization is related to the
frictional properties of such sliding atomic scale objects. 

 We will discuss mechanisms of how the resulting atomic scale friction 
can be tuned with noise and disorder. We derive a set of two coupled 
equations describing respectively the motion of the center of mass and 
the spatial average fluctuations in the coherent mode adopted by the 
array. 

 Our analysis of this reduced set of equations indicates that depending 
on array stiffness and size, quantized jumps in the minimum friction 
(maximum velocity) of the array occur due to resonant parametric
forcing of the particle fluctuations by the center of mass motion. We 
propose an analytical expression to determine occurrences of these 
jumps.



Robustness of Friction Mechanisms

 Friction is ruled by robust dynamics

 good qualitative agreement between variety of 
models and types of interaction potentials used for a 
model

– choice of parameters may be even more important 
than the choice of a model !!!

– Initial conditions !



Stick-Slip Dynamics

• Has been observed from the nano - to macro scales - from 
the atomic scale to earthquakes. 
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Both periodic and chaotic 
stick-slip dynamics have 
been observed



Different Regimes of Motion

• Single - particle 
dynamics

• Collective dynamics

Very limited correlation 
between particles in array

Propagation of well defined 
moving structures

High temperature 
(high noise)

Large external forcing

Small coupling

Small-medium forcing
Large-intermediate coupling
Reasonable noise/disorder



Collective Dynamics

Understanding collective dynamics is the key issue

It has not been studied before in regard to friction

We have suggested a link from collective motion to friction

Some of the predictions based on this approach have already been
successfully tested experimentally



Locking of the Temporal and Spatial 
Dynamics (Modes)

Small size and confinement
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The outcome  ⇒ Propagation modes

Each mode is characterized by 
different frictional behavior
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Nonlinear Friction Selection

• Simulations using F-K model show that for intermediate to high values 
of the coupling and small applied force 

 a series of quantized transitions in the maximum

 propagation velocity occur.

• It is possible to scale the position at which these maximum velocity 
jumps occur using the size N of the array and the coupling κ. 

• At low enough values of the coupling a transition back to synchronous 
motion occurs independent of system size N.
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Theoretical Modeling

• Phenomenological models

• F-K-Tomlinson model

jjjjjj fXVXUXX ηγµ ++∂∂−∂−∂=+ //&&&

µ is the mass of the sliding particle
γ is the dissipation coefficient
U is the interaction potential

V is surface potential
f is the external driving force

η is the thermal noise (temperature effect)



Dynamics of Propagating Arrays

We separate the center of mass motion of array from 
spatiotemporalfluctuations (which only dissipate energy) 

)()()( tXtXtX nn δ+=

where < δXn(t) > = 0 by construction

Keeping fluctuations small, the center of mass obeys

fXXXX n =><−++ ]2/1)[sin( 2δγ &&&

The spatiotemporal fluctuations obey
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Assumptions

We assume that the main mechanism for the energy transfer from  
the center of mass motion to the spatiotemporal fluctuations in the array is 
due to a subharmonic parametric resonance.

We have made a self-consistent approximation by replacing nonlinear terms 
by a quasilinear term.
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Resonant Parametric Forcing

We make the Fourier decomposition
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m
mn etXtX /2)()( πδδ ∑=

and equations of motion for the modes
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where )/sin(2 Nmm πκ=Ω

Shows parametric forcing when 2/ω=Ωm



Spatial Coherence and Mode Selection

If we look for a solution for the m’th mode of the form

)2/sin( mmm tbX βωδ +=
we then find:

Only one mode can exist at a time.

There are N such solutions. Each is spatially coherent with a different 
center of mass velocity and different amplitude fluctuations.

As the spatial fluctuations bm increase, phase synchronization decreases, 
and so the average center of mass velocity decreases.
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Velocity of the Center of Mass

If we look for a solution for the m’th mode of the form

)2/sin( mmm tbX βωδ +=

and the center of mass motion is 
described by 

)sin(0 tBtXX ωω ++=
then the velocity of the center of 

mass is
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Sliding on Disordered Substrate

Friction coefficient can be significantly reduced  
(by orders of magnitude) when sliding on irregular surfaces

PRE 59, R4737 (1999)
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Key Issue ⇒ Phase Synchronization

The better the array is phase synchronized - the faster it moves !
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Phase Synchronization

We define phase synchronization as the inverse of the fluctuations σ
from the center of mass motion
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Disorder - Enhanced Synchronization

Time series of positions of all the particles in N=25 particle array for: 
( a ) the identical array; ( b ) 20% of disorder; 
( c ) 25 % of disorder; ( d ) 30 % of disorder 

(a) (b)

(c) (d)

Vcm=0.05Vcm=0.05
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The position of a particle #12
in array as a function of time.

The bottom curve corresponds to 
the identical array. 

The middle curve corresponds to 
to the arrays with 20% of 

disorder, 
The top curve corresponds to the 

array with 30% of disorder.

The inset shows the average 
velocity of the center of mass as 

a function of the amount of 
disorder



Time series of the fluctuations 
from the center of mass f(σ) for 
different amounts of disorder.

The left-hand part of the plot 
corresponds to the identical 

array. 
The middle part corresponds to 

σ=15%.
The right-hand part corresponds 

to σ=30%.

The inset shows the average 
fluctuations from the center of 

mass as the function of the 
velocity of the center of mass.



Cumulative slip time distribution 
for the array. 

The bottom curve corresponds 
to the identical array.

The middle curve corresponds to 
σ = 2.5%.

The top curve corresponds to 
σ = 5%.



Summary

Nanoscale arrays can exhibit a variety of modes of motion with different 
degrees of spatial coherence which affects frictional properties of the array

Energy is transferred between the center of mass motion and the 
spatiotemporal fluctuations using parametric forcing resulting in mode 
selection

As a result quantized jumps in the observed friction associated with different 
spatial mode is possible 

Spatial disorder and thermal noise can contribute to increase of the phase 
synchronization of the array and therefore decrease friction

Spatial disorder and thermal noise can contribute to the depinning process 
and eliminate stick-slip thus decreasing friction
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