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ABSTRACT

In oilfield spoolable tubing applications, polymer composite materials offer advantages over
traditional tubing materials in terms of reduced weight and improved fatigue life. The many
different loading scenarios that spoolable tubing is designed to withstand include bending
strain, axial force, internal and external pressure, elevated temperature, and combinations of
these loads. For the most part, these loads can be treated as axisymmetric with the exception
of the bending strains. The bending strains are induced when wrapping the tubing around a
large diameter spool, hence the terminology spoolable tubing. Design trade-offs occur
because of the multitude of load cases and resulting multi-axial stress states promoting the
need for efficient and accurate design tools. Solutions based on classical laminated shell
theory are accurate for thin-wall cylinders but solutions for the three-dimensional stresses in
thick-wall cylinders are needed for the typical tube diameters and wall thicknesses being
considered for spoolable tubing. A closed-form solution is presented for determining the
layer-by-layer stresses, strains, displacements, and first-ply failure in thick laminated
composite cylinders subjected to axisymmetric and non-axisymmetric loads. The formulation
is based on the theory of anisotropic elasticity and a state of generalized plane deformation
along the axis of the cylinder. Parametric design trade studies can be easily and quickly
computed using this closed-form solution, and a computer program that was developed for
performing the numerical calculations is described.

INTRODUCTION

Spoolable tubing, better known as coiled tubing, is a well-established, intensively utilized
technology in the oil industry for downhole and piping applications. Currently most coiled
tubing is constructed from high strength steel. Coiled tubing services are generally perceived
to be safe and reliable based on a long history of successful deployment. Nevertheless coiled
steel tubing suffers from a number of performance limitations, notably low cycle fatigue,
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“ballooning”, corrosion, and limited working depth in highly deviated or horizontal
boreholes [1].

Composite coiled tubing (CCT), or spoolable composite tubing, offers the potential to exceed
the performance of coiled steel tubing in many cases, particularly with respect to the
aforementioned performance limitations. The myriad advantages, development history,
applications, and limitations of spoolable composite tubing are extensively documented [2].

Spoolable tubing must withstand many different loading scenarios, including bending strain,
axial force, internal and external pressure, elevated temperature, and combinations thereof.
Bending strains excepted, these loads can usually be treated as axisymmetric. The bending
strains are induced by spooling and unspooling the tubing around a large diameter spool.
Design trade-offs occur because of the multitude of load cases and resulting multi-axial stress
states promoting the need for efficient and accurate design tools. Finite element models that
are faithful to the various geometries and loading scenarios become extremely complex for
non-isotropic, fiber-reinforced polymer composites. Hence analytical models based on
closed-form solutions are desirable for trending and optimization studies. Such models, to be
useful in spoolable composite tubing applications, must accurately resolve non-axisymmetric
bending strains.

In the design and analysis of laminated composite cylinders, axisymmetric loads and
axisymmetric geometries are often assumed for developing closed-form analytic solutions.
In addition, the cylinder is assumed to have an infinite length such that the stresses are not
only independent of the circumferential coordinate but also independent of the axial
coordinate. Solutions have been formulated based on both the theory of anisotropic elasticity
[3,4] and the laminated shell theory [5,6]. The laminated shell theory provides an accurate
solution for thin-walled cylinders, whereas elasticity solutions are required for an accurate
determination of the three-dimensional stress states that exist in thick-walled cylinders. In
both of these analytical approaches, further simplifications are obtained by restricting the
composite cylinder to be orthotropic.

There are a limited number of closed-form solutions for the case of axisymmetric cylinder
geometries with non-axisymmetric loads. Kollar and Springer [7] considered a laminated
cylinder, or cylindrical segment, subjected to hygrothermal and mechanical loads that varied
in the radial and circumferential, but not in the axial direction. The theory of elasticity was
used to derive the solution for stresses, strains, and displacements in the cylinder without any
restrictions on ply angle and lamination sequence. The length of the cylinder was assumed to
be large compared to the wall thickness and inner and outer radii such that end effects could
be neglected. The only restriction on the applied mechanical loads was that they had to be in
equilibrium. Pagano [8] presented a general solution for a cylindrically anisotropic cylinder
subjected to surface tractions that could be expressed by a Fourier series. The surface
tractions had to be independent of the axial coordinate and consistent with overall
equilibrium of the cylinder. On the end faces of the cylinder, the surface tractions were
prescribed as statically equivalent force and moment resultants.
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ANALYTICAL FORMULATION

Single Layer Solution

The work of Pagano [8], as suggested by the author, was developed in a form that could be
extended to analyze a laminated composite cylinder having anisotropic layers. This single
layer solution is the foundation for the current work and the underlying assumptions and
basic equations are briefly described in this section. A circular cylinder having an inner
radius, r1, and an outer radius, r2, is considered where the stress field is independent of the
axial coordinate. Traction boundary conditions are applied on the surfaces r = r1, r2, and on
the end planes, independent of the axial coordinate, x, and expressed in the form of a Fourier
series. The constitutive equations for a material having a single plane of symmetry (xθ) with
respect to a cylindrical coordinate system (x, θ, r) are written as:

(1)

The equilibrium equations in cylindrical coordinates are written as:

(2)

where the components of stress are functions of the θ and r coordinates and the comma
denotes differentiation. The Fr body force term is included and for rotational velocity is
written as ρω2r. The components of displacement are u, v, and w in the radial,
circumferential, and axial directions, respectively, and are functions of r, θ, and x. The
strain-displacement relationships are written as:
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(3)

Now by eliminating the stresses and strains from Eqn. (1)-(3) a general solution for the
displacements that satisfies the compatibility equations can be written as:

(4)

where bi are arbitrary constants that depend on the boundary conditions. The governing
equations for U, V, and W are found by substituting Eqns. (1), (3), and (4) into Eqn. (2).

(5)
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where

and

(6b)

A solution to Eqn. (5) is sought subject to a set of boundary conditions that are expressed in
terms of a Fourier series. Due to the rotational symmetry, the boundary conditions at the
inner and outer radii are expressed in the following form:

(7)

In Eqn. (7), the constants pin, qin, and tin for n=0,1 are not all independent as a result of global
equilibrium for the cylinder. Direct integration of the equilibrium equations results in the
following relationships between the constants in Eqn. (7).

(8)

where σ* are the applied stress components corresponding to n = 1.

The remaining set of boundary conditions consists of the resultant axial force (Fx), torque
(T), and moment (Mx) acting on any cross section of the cylinder.
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(9)

A general solution for U, V, and W is given by:

(10)

Where φi(r,θ) (i=1,2,3) correspond to the particular solution and the remaining terms are for
the homogeneous solution when Pi = T1 = 0. By substituting Eqn. (10) into Eqn. (5) the
homogeneous solution is given by:

(11)

and

(12)

The determinant of the [K] matrix is set to zero and the result is a characteristic equation that
is cubic in kns

2. The roots to this cubic equation provide the solution for the six constants,
kns, for each value of n in the Fourier series. Special cases to the solution of Eqn. (11) occur
for values of n equal to 0 and 1, where repeated roots are found for kns = 0, 0. For n = 0:
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(13a)

and

(13b)

For the case of n = 1:

(14)

The particular solution in Eqn. (10) is found by direct substitution into Eqn. (5) and is:

(15)

where

(16)

and a3, a4, and a5 are found by solving the following set of three simultaneous linear
equations.
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(17)

Finally, due to the form of the prescribed boundary conditions in Eqn. (7) b2 = 0 and
neglecting rigid body motions results in:

(18)

The solution for a single layer, as described by the above equations, is applicable for all fiber
orientations with some minor changes to the equations for orthotropic (C16 = C26 = C36 = C45

= 0) and transversely-isotropic (C12 = C13, C22 = C33, C55 = C66, C44 = ½(C22 – C23) layers.
Taking the highest index in the Fourier series to be M, the actual solution to the problem
contains 6M + 6 unknowns and there are 6M + 6 independent equations. The unknown
constants are b1, b3, b4, A03, A04, Aij (j = 2,3,…,6), B06, D01, and Ans (s = 1,2,…,6, 2 ≤ n ≤ M).
Some of the details have been omitted for brevity here but can be found in the original work
of Pagano [8].

Laminate Solution

For a laminated cylinder, the solution described in the previous section is applied to each
layer and interfacial continuity is invoked between neighboring layers. The boundary
conditions at the inner and outer radii of the cylinder are applied to the inner radius of the
first layer and the outer radius of the last layer, respectively. Let R1 and R2 be the cylinder
inner and outer radii, respectively, r1

(k) and r2
(k) be the inner and outer radii of the kth layer,

and tk be the thickness of the kth layer. For N layers there are N-1 interfaces and by using the
following notation:

(19)

the continuity equations for k = 1,2,…N-1 are written as:

(20)

where δk is a prescribed interference between layers. The resultant force and moment given
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(21)

Recall that each layer has 6M + 6 unknown constants and therefore, the solution to the
problem of a cylinder having N layers has 6N(M + 1) unknown constants. There are 6M + 6
independent equations from the boundary conditions and 6(N – 1)(M + 1) from the
continuity equations for a total of 6N(M+1) equations.

The solution procedure is divided into three separate parts that depend on the number of
terms in the Fourier series. For n = 0 in the Fourier series there are 4N simultaneous
equations that are used to solve for the 4N unknowns of b3

(k), b4
(k), A03

(k), and A04
(k). There

are 4(N – 1) equations from continuity of radial stress and continuity of the three
displacement components. The remaining 4 equations are from the radial stress boundary
conditions at the inner and outer radii of the cylinder (p10 and p20) and from the resultant
axial force and torque conditions. The 2N unknowns of D01

(k) and B06
(k) are solved from

continuity of the two shear stress components (2N – 2 equations) and the two boundary
conditions for shear stress at the inner radius of the cylinder (q10 and t10). For n = 1, there are
6N unknowns with 6(N – 1) equations from continuity of the three stress and three
displacement components and 6 equations from the boundary conditions corresponding to the
terms of p11, p21, q11, t11, and t21, and the resultant moment. The unknowns are b1

(k), A12
(k),

and A1s
(k) (s = 3,4,5,6). Finally, for each n = 2,3,,,M a 6N X 6N system of equations is

solved for the 6N(M – 1) unknowns of Ans
(k) (s = 1,2,…,6). There are 6(N – 1)(M – 1)

equations from the 6 continuity equations and there are 6(M – 1) equations from the
boundary conditions terms of p1n, p2n, q1n, q2n, t1n, and t2n.

A FORTRAN program has been developed for performing the calculations described in the
above solution procedure. The program is general in the sense that monoclinic, orthotropic,
and transversely-isotropic layers can be analyzed, and multiple material systems are
acceptable. The layer-by-layer stresses, strains, and displacements are calculated in both the
global cylindrical coordinate system and in the layer principal material directions.

Failure Criteria

Failure criteria for determining first-ply failure are implemented in the program based on
using Hashin’s criteria [9] and the Tsai-Wu criterion [10]. These are three-dimensional
failure criteria that take into account the stress interactions that occur in composite materials
having multi-axial stress states. Hashin’s criteria are quadratic stress polynomials expressed
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in terms of the transversely isotropic invariants of the applied average stress state. Four
distinct failure modes are modeled separately resulting in a piecewise smooth failure surface.
The four modes are tensile fiber mode, compressive fiber mode, tensile matrix mode, and
compressive matrix mode. The equations in Hashin’s paper are rewritten here in terms of a
safety factor, R, defined by

(22)

where {σ}APPLIED = {σ11,σ22,σ33,τ12,τ13,τ23} is the principal material direction stress vector
resulting from the applied loads and {σ}MAX = {XT,XC,YT,YC,SA,ST} is the allowable
strength vector with X, Y, and S corresponding to the fiber direction, transverse direction,
and shear strengths, respectively.

Tensile Fiber Mode: σ11 > 0

(23)

Compressive Fiber Mode: σ11 < 0

(24)

Tensile Matrix Mode: σ22 + σ33 > 0

(25)

Compressive Matrix Mode: σ22 + σ33 < 0

(26)

LOAD CASES

Consider a T300/862 graphite/epoxy angle-ply tube having an inner diameter of 1.0 inch and
an outer diameter of 1.5 inches. The unidirectional orthotropic material properties used in
the analyses are provided in Table 1. To demonstrate the usage of the analysis method
described above, results are presented by plotting the maximum allowable load (calculated
from the R safety factor) as a function of the helical angle used in the angle-ply laminate.
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The maximum internal pressure corresponds to a helical angle of 80° (see Figure 1). Note
that the symbols used in the plots correspond to the first-ply failure mode as predicted by the
Hashin criteria. For internal pressure the mode changes from matrix to fiber at 45° and then
back to a matrix mode at helical angles greater than 85°. For external pressure, the maximum
pressure capability that is shown in Figure 1 corresponds to an angle of 90°, i.e., an all-hoop
wound tube. The tube fails due to a tensile matrix mode (TMM) for angles greater than 45°.
At angles less than 45°, compressive matrix mode (CMM) is predicted with the exception of
angles between 25-35° where failure due to a tensile fiber mode (TFM) is predicted. As one
would expect, the maximum axial tensile load capacity is for a 0° angle and the mode
switches from fiber to matrix at an angle of 45° (see Figure 2).

Wrapping the tubing around spool diameters that are typically around 6-7 feet in diameter
induces the bending strain [11] and the bending of the tubing results in a non-axisymmetric
stress distribution. To analyze the spooling load scenario, an applied resultant end moment is
used. For typical tube outer diameters of 1.5 in. [11] on a 6-foot spool diameter the bending
strain, ε0, is equal to 2.0%. This is calculated by dividing the distance from the neutral axis
by the radius of curvature. The applied moment necessary to produce this bending strain is a
function of the tube geometry and lamination sequence and can be estimated by:

(27)

where Exk and Ik are the kth layer axial stiffness and layer moment of inertia [12]. This is a
laminated beam theory approach that considers the stiffness of each individual ply.
Alternatively, an averaging approach can be taken and an effective laminate axial stiffness
can be calculated using the micromechanics approach of either Sun and Li [13] or Greszczuk
[14]. Using this approach the moment is estimated by:

(28)

Figure 3 shows that the moments calculated using Equations (27) and (28) are significantly
different when the angle is not equal to zero and not greater than 70° with the effective axial
stiffness method being consistently higher than the laminated beam theory method. The
maximum bending strain as function of helical angle is plotted in Figure 4 using both
methods for estimating the moment. The tube is predicted to have a fiber failure mode for
angles less than 35° and a matrix mode for angles greater than 35°. For angles less than 5°
the failure in the fiber direction is a compressive mode (CFM).

The maximum bending strain capability is shown to be at very shallow helical angles. Larger
maximum bending strains are predicted when the applied moment is estimated by the beam
theory approach. In either approach, the calculated axial strains in the tube are not equal to
the applied bending strain used to estimate the applied moment. The only exception to this is
when the fiber orientation is 0°. It is not clear to the author which method should be used or
if alternative approaches need to be investigated.
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CONCLUSIONS

A closed-form solution has been presented for design and analysis of an axisymmetric
laminated cylinder subjected to non-axisymmetric loads. The solution is based on the theory
of anisotropic elasticity and an assumed generalized plane deformation state of stress. The
prescribed boundary conditions are expressed in terms of a Fourier series and are
independent of the axial coordinate. Using zero terms in the Fourier series expansion treats
the special case of axisymmetric loads. The solution is general in that monoclinic,
orthotropic, transversely-isotropic, and isotropic layers are considered in the formulation and
multiple material systems may be used. The prescribed loads include axial force, moment,
torque, internal and external pressure, uniform temperature change, and rotational velocity
with interference fits. A FORTRAN code was developed for performing the necessary
calculations and the code can be executed from a desktop computer. This permits a
computationally efficient method for conducting numerous design trade studies.

The utilization of the code for CCT applications was demonstrated by analyzing the response
of a graphite/epoxy angle-ply laminate that was subjected to different CCT loads. Depending
on the design specifications and loading scenarios, different angle-ply laminate architectures
were shown to be required. Further validation of this solution procedure for CCT design is
needed to resolve the approach taken in estimating the applied moment for simulating the
spooling load case.
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Table 1. T300/862 Composite Material Properties
Property Value
E11 (Msi) 20.21
E22 = E33 (Msi) 1.101
ν12 = ν13 0.3264
ν23 0.3642
G12 = G13 (Msi) 0.5495
G23 (Msi) 0.4035
Xt (psi) 261,000
Xc (psi) 250,000
Yt (psi) 6,000
Yc (psi) 30,000
Sa (psi) 10,000
St (psi) 3,000
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Figure 1. Maximum internal and external pressure for angle-ply graphite/epoxy tube.
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Figure 2. Maximum axial force for angle-ply graphite/epoxy tube.
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Figure 3. Estimated bending moment per unit axial strain.
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Figure 4. Maximum bending strain for angle-ply graphite/epoxy tube.


