A new approach to deformed proton emitters: non-adiabatic coupled-channels
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1. Introduction

The field of proton radioactivity has experienced a new excitement in the past several years. Just
beyond the proton drip line there are many nuclei where the unbound proton is trapped behind a large
Coulomb-plus-centrifugal barrier leading to lifetimes ranging from microseconds to seconds [1,2]. New
ground-state and isomeric proton emitters [3-6] are continually being discovered, and the first evidence
for fine structure in proton decay [7] was recently announced. The focus of recent investigations has
been on well-deformed nuclei which exhibit rotational motion. These are of particular interest due to the
interplay between proton emission and angular momentum.

The theoretical description of long-lived proton emitters requires a detailed understanding of narrow
resonances. Although proton radioactivity is a complicated A-body phenomenon, much insight may be
gained by considering the simplified problem of a single proton penetrating the Coulomb barrier of the
core consisting of the remaining A-1 nucleons. It has been found that this simple, one-body picture
works surprisingly well. In particular, one has been able to determine the angular momentum content of
the resonance and the associated spectroscopic factor for many spherical proton emitters [2,8].

The array of theoretical tools available for deformed emitters is not as well developed. The existing
ones fall into three general categories. The first family of calculations [3,7,9] is based on the reaction-
theoretical framework of Kandenskii and collaborators [10]. The second suite uses the theory of Gamow
(resonance) states [5,11-13]. Finally, an approach, based on the time-dependent Schrédinger equation,
has been introduced in Ref. [14].

In all of these previous attempts, the strong coupling approximation of the particle-plus-rotor model has
been used. The core is taken to be a perfect rotor with an infinite moment of inertia. This has the effect
of (i) collapsing the rotational spectrum of the daughter nucleus to the ground state, and (ii) neglecting
the Coriolis coupling. Recently we have introduced a technique based on the weak coupling scheme which
is free from these deficiencies [15]. Within this method, partial proton widths from different states of the
parent nucleus to various final states in the daughter system can be calculated in a straightforward and
consistent manner. Currently, the weak coupling approach is being extended to spherical nuclei which
are susceptible to vibrational excitations to study possible fine structure in these decays as well.

2. Coupled-Channel Formalism

From a theoretical point of view, proton radioactivity is an excellent example of three-dimensional,
quantum-mechanical tunneling. As such, the understanding of proton emission is really a test of our
knowledge of very narrow resonances. Since the lifetimes which can be seen experimentally range from
microseconds to seconds, the corresponding widths are extremely small; they vary between 107'% MeV



and 10722 MeV. A theoretical description of such small widths requires extraordinary numerical accuracy.
In the following, the coupled-channel Schrodinger equation method with Gamow states is outlined, and
the proton-plus-core Hamiltonian is defined.

The parent nucleus is described by the core-plus-proton Hamiltonian,

H=Hy+H,+V (1)

where Hgy is the Hamiltonian of the daughter nucleus, H, is that of the proton, and V is the proton-
daughter interaction. In the weak coupling scheme, the wave function of the parent nucleus is written
as
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Jdlpjp

This wave function is labeled by parity, total angular momentum J, and its projection M. In Eq. (2),

u’(r) [where a = (Jal,j,) completely labels the channel quantum numbers] is the cluster radial wave

o
function representing the relative radial motion of the proton and the core, and Vi, ;,m, is the orbital-spin

wave function of the proton. The daughter wave function, ®j,as,, satisfies
Hi®m, = Ery@ram,- (3)

In the present formalism, the daughter spectrum enters through specifying the energies F;,. Where
possible, the energies Ej, are taken from experiment; otherwise, the spectrum is modeled theoretically.
Figure 2 (left) shows a schematic diagram illustrating the energetics of proton emission from a J7™ state
of an odd-Z parent nucleus to the ground-state rotational band of the deformed daughter nucleus.
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Figure 1. Left: Schematic diagram representing proton decay to a rotational ground-state band in the
daughter nucleus. @q is the energy of the resonance state referenced to the daughter’s ground state.
Right: Proton decay to (quadrupole) vibrational states.

As usual, the coupled-channel equations are obtained by inserting Eq. (2) into the Schrédinger equation
and integrating over all coordinates except the radial variable r [9,16]:
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In Eq. (4), Vao is the diagonal part of the proton-core potential, @, is the energy of the emitted proton
leaving the daughter nucleus in the state J;, and V.7, are the off-diagonal coupling terms. The @,
values follow from the spectrum of the daughter nucleus, @5, = Qo — £, where () is the @, value for
the decay to the 0% ground state (see Fig. 2).

To illuminate the dynamics of the system, one can expand the proton-daughter potential in multi-
poles [16],

V=" ua(r) (My& Ya)oo. (5)
A

The matrix elements Via,(r) can then be written in the simple, yet generic, form

VI () = ua(r) (Jall MO Allpdp Ja. Uy T4, AT). (6)
A

The factor A is purely geometric and comes from the proper coupling of angular momentum vectors. The
reduced matrix elements of My contain all of the dynamics of the core.

To be a resonant state, the cluster radial wave function must vanish at the origin and behave as an
outgoing Coulomb wave, O; = G| + i F}, beyond the range of the nuclear interaction and the off-diagonal
Coulomb interaction,

1
aﬁ’" Olp (77Jd : rde)
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where k?]d = 2uQs,/h? and ny,ks, = pZe?/h*. These two conditions are only satisfied for a discrete
set of complex wave numbers k. The generalized eigenvalues of Eq. (4) correspond to the poles of the
scattering matrix [17,18]. The corresponding solutions are either bound or antibound states, £ = Ep < 0,
with negative real energies and imaginary wave numbers £ = iy (v > 0 for bound and v < 0 for antibound
states), or resonance states, £ = @ — z% with a nonzero imaginary part I' # 0 and k = & — 7.

The asymptotic behavior of these solutions is determined by k: at a very large distance the outgoing
solution is proportional to e’*". For resonance states, e’*” = ¢™*7¢" i.e., the wave function diverges
exponentially. As discussed in Refs. [17,18] this seemingly unphysical feature of Gamow wave functions
has a natural explanation in the fact that Gamow states do not represent time-dependent wave packets,
but static sources.

The nonadiabatic approach allows for a straightforward calculation of branching ratios. We can define
the partial width associated with a given channel as [17],
oy () = () )
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Then the partial width corresponding to the decay to a core state Jy is given by

Ty, = Tou (9)

(8)

{13}
Once the total width is known, the half-life for proton emission is
hln2
T, = . 1
y = (10)

The use of the weak coupling scheme represented by Eq. (2) has several advantages. First, excita-
tions of the core are included in a straightforward manner. This enables us to study the proton decay
from the rotational bands of the parent nucleus to the ground-state rotational band of the daughter
nucleus. Furthermore, since the formalism is based on the laboratory-system description [Hamiltonian
(1) is rotationally invariant and the wave function ¥ conserves angular momentumy], the Coriolis coupling
is automatically included.



3. Rotational Systems

For well-deformed nuclei where we are interested in the ground-state rotational band, the reduced
matrix element in Eq. (6) has the simple expression [16]

(TaIMAITLY = /2% + 1 (J4X KO

JuK). (11)

Since the nuclei of interest are not well studied, the energy spectrum of the ground-state band is usually
poorly known. For proper convergence in the calculation, we have found that the first six levels (up to
10%) must be included, although the results are rather insensitive to the placement of the levels above the
first excited state. A rigid rotor model works quite well to fill in the experimental gaps in the spectrum.

Now let us examine a few examples. Previously [19,20] we have done detailed studies of the highly
deformed proton emitters, 13 Eu and 14195 ™Ho. We offer just a brief recapitulation of our results here.
When comparing lifetimes and branching ratios, we are able to find a unique Nilsson orbital which is
consistent with the data. At large elongations, there is little sensitivity to the deformation. This is
because the orbitals have taken on their asymptotic properties at this point. The wave function contains
large contributions from channels which are energetically forbidden; but the width is dominated by the
channel where the proton has the lowest orbital angular momentum. This can lead to cases where the
dominant decay channel goes to the excited state and not the ground state, resulting in large branching
ratios. We found that the unobserved [532]3 in 3 Eu would have a branching ratio above 50% due to
this effect.

The nucleus 19°T offers an interesting case. It is expected to be modestly deformed [21], so it is unclear
whether the rotor assumption is justified. However, let us stick with this picture for the time being.
The predicted lifetimes for two orbitals are shown in Fig. 3 as a function of deformation. At small
deformations a peak in both curves shows up as a result of a level crossing. (See Ref. [12] for a similar
prediction for 1'3Cs.) As a result of the configuration change, the dependence of lifetimes on deformation
is fairly strong in this case.
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Figure 2. Predicted lifetimes for two orbitals in '%°T as a function of deformation. The maxima occur
near level crossings. The horizontal line corresponds to the experimentally measured lifetime.

There is currently a proposal at the Holifield Radioactive Ion Beam Facility [22] to look for '37Tb which
is the important odd-Z, even-N nucleus lying between '3'Eu and '*'Ho. Mass formula predictions give
a @y ~ 800keV. Figure 3 shows the proton partial lifetimes calculated for three Nilsson orbitals close
to the Fermi level as a function of @),. Above the horizontal bar, 3-decay will completely dominate the



proton branch. These calculations show that with current detectors proton emission from 37"Tb would
only be visible for @Q-values above 850 keV in the best case. For these calculations we have assumed a
deformation around #>=0.28 and a rigid rotor ground-state band. Note that if the odd proton happens
to reside in the negative parity orbital [53'2]%, that one would need an unexpectedly large )p-value for
the proton branch to be seen. Finally, also note the strong dependence of the lifetime on @, falling seven
orders of magnitude with a change of only 400 keV in Q.
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Figure 3. Predicted lifetimes for '37Th shown as a function of @p. A deformation of 3; ~ 0.28 is assumed.
Current experiments will not be able to see lifetimes above the horizontal line due to the dominance of

the S-decay branch (> 90%).

4. Vibrational Systems

Recently we have extended this work to include vibrational nuclei. This is particularly useful when
discussing proton emitters near closed shells where the deformation can be rather small (82 < 0.15). To
achieve this, only a few small conceptual points must be altered.

The first step is to replace the reduced matrix element of Eq. (6). For the rotational case, the operator
/\;b\u is equivalent to Y),. For the vibrational case, it is replaced by the one- and two-phonon excitation
operators. These are given explicitly in Refs. [16,23]. In this work, only quadrupole phonons have been
considered to this point. Regarding the daughter nucleus, we shall assume that it is a perfect harmonic
vibrator so that there is a degenerate triplet of levels (0%, 2%, 4%) at twice the energy of the first excited
27 state. This is shown schematically in Fig. 2, righthand side. This now completely defines our coupled-
channel equations for a vibrational system. The solution method proceeds as before. A comparison of the
vibrational and rotational approaches is currently under way and will be presented in the forthcoming
publication.

5. Conclusions

We have developed a method to solve the full, non-adiabatic coupled-channel equations for narrow
resonances seen in proton emission [15,20]. This has allowed us to include effects of excitations in the
daughter nucleus during emission and to consistently calculate branching ratios to excited states. With
these tools, we have been able to identify the deformed Nilsson resonances in a number of cases. An
extension of these methods to vibrational excitations is currently under way and looks promising. This
would allow us to get a detailed description of proton emitters for a wide variety of deformations.
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