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Applications For
DUO2 In Repository SNF WPs



Two Uses Have Been Identified
For DUO2 In A Repository WP

• DUO2  Particulate fill (0.5–1.0 mm) of void spaces
− Spent nuclear fuel (SNF) coolant channels

− Edge spaces

• DUO2-steel cermet (DUO2 embedded in steel)
− WP basket

− Structural components of package



Waste Package Loading Sequence
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Uses of Cermet in PWR Fuel Assembly Waste Package
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Benefits Of Using DUO2



There Are Four Benefits Of Using
DUO2 In A Repository WP

• Reduce potential for long-term nuclear
criticality in the repository

• Reduce radionuclide release rates from
SNF WPs

• Provide WP shielding

• Dispose of excess DU



Benefits Of Using DUO2

 Reduce potential for long-term nuclear
criticality in the repository



DUO2 Reduces The Long-Term
Potential For Nuclear Criticality

In The Repository
• Natural reactors (Oklo) have occurred with

1.3 wt % 235U in 238U

• Average fissile content of light-water
reactor (LWR) SNF is ~1.5 wt % equivalent
235U in 238U: potential for criticality exists

• Other SNF has higher enrichment levels

• DUO2 lowers WP enrichment so that
criticality will not occur



Natural Uranium Enrichment Levels Over
Geological Time
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Methods To Demonstrate That
Repository Criticality Will Not Occur

• Isotopically dilute fissile materials with DU
• Surround fissile materials with DU and

show isotopic dilution over time (concept
described herein)

• Dilute 235U during uranium migration by
isotopic exchange with 238U in rock
− Model SNF and WP degradation
− Follow 235U migration over time
− Show that criticality does not occur



Methods To Assure Nuclear Criticality Will Not
Occur In A Repository
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The Potential For Long-Term Near-Field
Criticality In A Degraded Waste Package Is

Difficult To Estimate
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Isotopic Dilution Of Spent Nuclear Fuel
Uranium With Depleted Uranium
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Benefits Of Using DUO2

 Reduce radionuclide release rates from SNF WPs



Delaying WP Radionuclide Releases
Reduces Radionuclide Releases By

Allowing For Radioactive Decay
• Delay by preservation of SNF UO2

− Radionuclides are primarily incorporated into
SNF UO2 pellets

− Radionuclides can not escape until SNF UO2

pellets degrade

• Delay by retarding radionuclide movement
− Minimize groundwater flow

− Retard radionuclide migration in groundwater



UO2 Ore Deposits Have Existed For
Long Times In Environments Similar

To Yucca Mountain (YM)

• UO2 is chemically unstable in oxidizing
environments such as YM

• SNF UO2 oxidation will release radionuclides

• UO2 ore deposits exist in such environments
by sacrificial chemical reactions on the outer
edges and elsewhere in the ore deposits

• The same mechanisms can be used to
preserve SNF UO2 with DUO2 in the WP



The Interiors Of Natural Uranium Ore Deposits Of
Uranium Dioxide Are Preserved For Extended Times
By Degradation Of Uranium Oxides On The Outside

Surfaces Of The Ore Deposit
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DUO2 Slows SNF WP Radionuclide
Releases By Multiple Mechanisms

• Delay by preservation of SNF UO2

− Maintain chemically reducing conditions in WP

− Saturate groundwater with DUO2 to slow SNF UO2

dissolution

• Delay by retarding radionuclide movement
− Reduce fluid flow through SNF and WP

− Retard radionuclide transport in groundwater
• Ion-exchange and absorption of radionuclides on DUOx

• Filter radioactive colloids from groundwater



Spent Nuclear Fuel Waste Package With Depleted
Uranium Dioxide Particulate Fill To Improve

Repository Performance
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Benefits Of Using DUO2

 Provide WP shielding



DUO2 Is An Effective Radiation-
Shielding Material

• DUO2 provides gamma-radiation shielding
and limited neutron shielding

• DUO2 fill provides some shielding

• DUO2 cermets can provide full gamma-
radiation shielding
− Density: 25% higher than steel

− Cask weight: ~100 t for a self-shielded WP



Benefits Of Using DUO2

 Dispose of excess DU



Use Of DUO2 Provides A Disposal
Method For Excess Depleted

Uranium (DU)
• Growing inventory

− 4 to 6 t of DU produced per tonne of LWR fuel

− Worldwide inventory ~106 t (40% in U.S.)

− Low consumption (~103 t/year)

• Geological disposal is a preferred option
− Meets all disposal requirements

− Oxide is the preferred form (no compatibility
issues and same chemical form as that of SNF)



Quantities Of DUO2 That May Be
Consumed For Different WP Designs



Ground Rules For Evaluating DUO2
Use In An SNF WP

• Assume standard Yucca Mountain WP for
21 PWR fuel assemblies

• More DUO2 is better

• DUO2 quantities are limited by:
− Available void volume (fill applications)

− WP gross weight (fill and cermet applications)
• 100 t (self-shielded WP)

• 125 t (largest transport cask weight)



Quantities Of DUO2 Used For
Different WP Designs

Type DUO2

(t)
Ratio

(DU:SNF)
Gross

Weight (t)
Fill
(all voids)

33.1 3.46 75.4

Self-
shielded
(Fill & Cermet)

49.1 5.14 100

Maximum
Weight
(Fill & Cermet)

65.4 6.84 125



Conclusions

• There are multiple potential repository
benefits in using DUO2 in WPs

• DUO2 can be added to WPs in two forms:
− Fill

− Cermet

• This use of DU could consume half to all
of the potentially excess DU inventory

• Added work is required to evaluate costs
and benefits



Backup Information



DUO2 Is The Preferred Form Of
Uranium In A Repository

• The repository is primarily designed to
accept SNF uranium in the form of  UO2

− No chemical compatibility issues with DUO2

− Massive knowledge base on behavior of UO2 in
the repository environment

• Cermet manufacturing may require DUO2

− Other uranium oxides decompose to UO2 upon
heating

− Cermet manufacturing methods usually
require high processing temperatures



A Cermet Is A Ceramic-Metal
Composite Material

• Ceramic and metal are separate phases

• Properties between ceramics and metals

• Large quantities of some cermets are
produced (>105 t/year)

• A cermet for this application includes:
− Ceramic: DUO2

− Metal: steel (the continuous phase that is
35–50 vol % of the cermet)

• Multiple production techniques exist
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Example Method for Cermet Production
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A DUO2-Steel Cermet Is Compatible
With The WP

• Chemical compatibility is required
− Cermet steel is compatible with a steel WP

− DUO2 is the same chemical form as is SNF UO2

• Simplified operations because DUO2 is
contained in steel (no contamination)

• A cermet allows a single material to meet
multiple WP functional requirements
− Structural strength

− Improved repository performance



DUO2 Reduces SNF WP
Radionuclide Releases By Providing

Time For Radioactive Decay
• Delay by preservation of SNF UO2

− Maintain chemically reducing conditions in WP

− Saturate groundwater with DUO2 to slow SNF UO2

dissolution

• Delay by retarding radionuclide movement
− Reduce fluid flow through SNF and WP

− Retard radionuclide transport in groundwater
• Ion-exchange and absorption of radionuclides on DUOx

• Filter radioactive colloids from groundwater



DUO2 Reduces Radionuclide
Releases By Reacting With Oxygen

• SNF and SNF UO2 are stable under
chemically reducing conditions

• DUO2 reacts with oxygen to yield (DU)3O8

and DUO3*xH2O; oxygen removal creates
chemically reducing conditions

• DUO2 reacts before SNF UO2

− DUO2 outside the SNF

− DUO2 is a high-surface area particulate

− SNF UO2 is protected by clad
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DUO2 Reduces Air And Groundwater
Flow Through WP

• DUO2 is oxidized to U3O8 and UO3*xH20

• Oxidation products are >30% larger
− Swelling fills void spaces in WP

− Fluid flow through the WP is reduced
• Oxygen diffusion slowed with slower oxidation

• Groundwater flow slowed with reduced
radionuclide transport from the WP



Volume Of The Uranium Mineral Versus
Evolution Of Uranium Oxides Over Time To

Hydrated Uranium Silicates

ORNL DWG 96C-326R

UO3

U3 8O

UO2

U1-X XU )( O2+X
+4 +6

Uraninite

Schoepite
+6

U O3 2H2O

Soddyite
U+6 .SiOO2 4( )2 2H2O

U+6 Si2O 2) 6H7
.

2O

Uranophane
( 2OCa

O

Boltwoodite

+6K (U 3SiO)2 2 24H. O2 ( )2(OH)2

.

80

120

160

200

240

280

V
O

LU
M

E
 O

F
 M

IN
E

R
A

L 
P

E
R

 U
N

IT
 M

A
S

S
(c

u
 c

m
/k

g
)

EVOLUTION OF URANIUM OXIDE UNDER
OXIDIZING GROUNDWATER CONDITIONS



ORNL DWG 97C-219A

Initial Conditions Conversion of UO to Higher Oxides2 

UO  Fill2

Spent
Nuclear

Fuel Clad

Spent
Nuclear

Fuel Clad

Spent
Nuclear

Fuel UO
Pellet

2

Spent
Nuclear

Fuel UO
Pellet

2

Void Space

UO  Fill2

U O and
UO H O

3 8 
3  2

. x

Void Space



DUO2 Reduces Radionuclide
Releases By Slowing Radionuclide

Transport In Groundwater
• Adsorption and ion exchange

− UO2 oxidation products absorb and ion-
exchange with many radionuclides

− Delays radionuclide transport in groundwater

• Filtration
− Many radionuclides (particularly actinides)

form colloids (small particulates transported
by groundwater)

− DUO2 oxidation products act as filters



DUO2 Reduces SNF UO2 Dissolution
Rates By Saturating Groundwater

With Uranium

• DUO2 saturates groundwater coming into
the WP with uranium

• Uranium-saturated groundwater can not
dissolve SNF uranium

• SNF radionuclide releases are slowed.



Depleted Uranium Fill Saturates Waste Package
Groundwater With Uranium And Thus Minimizes

SNF Uranium Dioxide Dissolution
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Relative Fill And Cermet
Comparisons

• Fill strengths (direct contact between SNF
and DUO2)
− Minimize radionuclide releases from the WP

− Minimize uncertainties with criticality analysis

• Cermet strengths
− Predictable radiation-shielding material (no

potential for settling and no voids)

− Minimize operational impacts (DUO2 is
invisible—embedded in the steel)



Technology For UO2 Particulate Fill
Addition To WPs Currently Exists

• The U.S. conducted experiments with iron
shot that filled dummy PWR assemblies
− Iron density:  7.86 g/cm3

− UO2 density: 10.96 g/cm3 (theoretical)

• Canada conducted multiple, full-scale WP
fill tests (but not using DUO2)
− Technology tested on multiple fill types

− Spaces between fuel pins in CANDU SNF are
smaller than those in LWR SNF


