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Using random two-body interactions between valence space nucleons, I calculate vari-
ous statistical measures of the many-body wave functions obtained from diagonalization.
These measures include the entropy, spectral rigidity, and the inverse participation ratio.
From these calculations, I find that the various random ensembles exhibit quite similar
spectral characteristics. These characteristics are similar to those obtained from realistic
interactions.

1. Introduction

Nuclei exhibit a rich variety of behavior including shape-coexistence phenomena, paired
ground-states (for even-even nuclei), odd-even mass staggering, and the appearance of
well-deformed pairing and vibrational bands. This richness within nuclear structure stems
from the underlying effective nucleon-nucleon interaction. Of course, for specific compar-
isons to experiment, generating an appropriate effective nucleon-nucleon interaction in
the model space of interest remains an important and challenging problem.

Let us suppose that instead of trying to understand detailed experimental spectra, we
address a different question. Let us assume that we know little about the effective two-
body interaction. The nuclear shell model is defined by a set of spin-orbit coupled single-
particle states with quantum numbers [jm denoting the orbital angular momentum (1)
and the total angular momenta (j) and its z-component, m. The shell model interactions
produce many-body states with good spin total 7 and isospin 7. Now, we ask “which
generic nuclear properties remain when one employs randomized effective interactions
and calculates average nuclear properties from an ensemble of these interactions”? This
is precisely the line of research pursued in a number of recent papers in the framework of
both the shell model [1,2] and the interacting boson model [3].

Using a spherical shell-model Hamiltonian in the sd-shell, these studies indicated that
for a large range of random interaction, a dominance (roughly 60-70%) of J™ = 07
ground states exists despite the random nature of the interactions. In addition, evidence
was found for the occurrence of pairing properties. For example, pair-transfer amplitudes
are strongly enhanced for interactions that give J = 0% ground states. IBM calculations
indicated the likelihood of finding vibrational and rotational band structures.

In this paper, I will discuss the statistical nature of the 0% states for four different
random ensembles. These ensembles include the random quasiparticle ensemble (RQE,
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RQE-SPE) and the two-body random ensemble (TBRE, TBRE-SPE). The RQE and
TBRE do not include single particle energy splitting, while the RQE-SPE and TBRE-
SPE include single particle energies taken from the realistic sd-shell interaction. I use
several well-known statistical quantities to characterize the general behavior of the differ-
ent ensembles. These include the entropy, inverse participation ratio, and spectral rigidity.
I find that while the different random interactions can behave differently in ground-state
properties, in general the excitation spectra are statistically quite similar.

2. Two-body random interactions

The random interactions employed in shell-model studies preserve rotational and isospin
invariance as well as particle number conservation. I use a typical shell-model basis for
calculations. The single-particle states of the shell model are oscillator states classified by
the quantum numbers {nljmt,} for the principal quantum number, the orbital angular
momentum, the total momentum and its projection, and the isospin projection. The
Hamiltonian is given by
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I define the two-body matrix elements V,p(ab, cd) through an ensemble of two-particle
Hamiltonians. This is achieved by taking the matrix elements to be Gaussian distributed
with zero mean and with the widths possibly depending on J and 7 such that

<V.]2T;a,a’> = CJT(l + 504,(1')1_)2' (3)
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Here v is an overall energy scale. The coefficients c;r then define the ensemble. Note that
JT refer to quantum numbers of two-body states and not of the final many-body states
(typically consisting of 4-10 particles).

In order to study the statistical nature of the random interactions, I employ four basic
ensembles that may be specified by the c;r coefficients and the single-particle Hamil-
tonian, if present. The first of these is the Random Quasiparticle Ensemble (RQE). In
this case ¢;r = [(27°+1)(2J 4+ 1)]'. This relation for the ¢;7, which was discussed
in [1], follows from imposing on the ensemble the constraint that it should remain the
same in the particle-particle and particle-hole channels. Our second ensemble is the two-
body random ensemble (TBRE) for which ¢;r = constant. Historically, this was the
first two-particle random ensemble to be employed in studying statistical properties of
many-particle spectra [7]. These two ensembles assume degenerate single-particle ener-
gies. Realistic interactions do have nonzero single-particle energies, and these will, in
principle, affect various spectral properties. For these calculations in the sd shell, I take
single-particle energies from the Wildenthal interaction [8], scaling o = 3.84 MeV so as



to best match the widths of the two-particle matrix elements. The resulting interactions
with the single-particle splitting included are called the RQE-SPE and TBRE-SPE. The
RQE and TBRE are also scaled by this v.

3. Statistical characterization of random interactions

I diagonalized approximately 1000 random interactions generated from each of the
ensembles described in the previous section. In this paper, I concentrate on the system
24Mg which is comprised of 4 neutrons and 4 protons in the 1s-0d shell-model space. Thus,
the maximum spin state that I study in these systems is J = 12.

In Table 1, I indicate the relative abundances of 7 spin of ground states that are found
in the four ensembles for the 2*Mg system. In each case J = 0 dominates. Interestingly,
the J = 0 and J = Jnae are most often the ground states. The preponderance of the
J = 0 states for several ensembles was discussed in some detail in [1,2]. I note that the
introduction of single-particle energies reduces the number of J = 0 states in all cases
studied, both in previous work [2] and in this work. Another interesting feature is the
presence of high-spin ground states and their enhancement when single-particle splitting
is included.

Once the Hamiltonian is diagonalized, a given many-body state | o) is a superposition
of the (normalized) many-body basis states | k)
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‘2: 1. I define the entropy

where the coefficients of expansion obey the relation Y, | Ay
within this basis as [4]

S=-=> WinWg, (6)
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where W2 =| A% |* are the overlap intensities. Thus, S = 0 if only one many-body
basis state contributes to the sum (i.e., for a particular £ W2 = 1), whereas if all states
equally contribute, we obtain S = InD where D is the total number of many-body basis
states. Typically, instead of plotting S directly, we discuss for a given eigenstate of the
Hamiltonian P(a) = exp(S®). For the two extreme cases P(o) = 1 when the wave
function is equivalent to a single basis state, and P(a) = D when all basis states equally
contribute to the sum.

I now limit the discussion to those interactions that give J = 0 ground states. I show
in Fig. la the averaged entropy for the first 150 J = 07,7 = 0 wavefunctions for the
four ensembles. No statistical difference exists among the four ensembles. 1 also show
the entropy of the first 150 0" states in the USD interaction. Since there is no ensemble
average, the line is much less smooth, but the general agreement between the USD and
the random interactions is obvious. None of these interactions reach the GOE limit which
is 0.48D = 8415 in this case.

I also use the inverse participation ratio (IPR) to quantify the random ensembles [5].
The IPR is

IPR, =D i(w,g‘)2 , (7)



Table 1

Number of ground states with a given spin in the 2*Mg system for approximately 1000
random-interaction samples. The maximum spin obtainable by Mg in this model space
iS Jmax = 12. Results are shown for the four random ensembles discussed in this paper.

241\/[g

Spin | RQE TBRE RQE-SPE TBRE-SPE
0 703 048 612 494
1 39 30 41 35
2 164 135 231 193
3 12 20 7 18
4 38 85 42 96
3 4 3 3 7
6 8 21 13 20
7 3 7 2 9
8 22 85 42 91
9 1 8 0 9
10 4 17 10 22
11 0 2 0 0
12 0 3 0 6

and measures the inverse fraction of Fock states that participate in forming the full wave-
function | ). This measure emphasises the contribution of the large components of the
wave function. The extreme cases correspond to IPR, = 1 when all Fock states equally
contribute to the wave function | «), while IPR, = D when only one Fock state con-
tributes. As a point of reference, I calculated the IPR for the first 7 = 0" state using the
USD interaction and find IPR; = 64.18 and 13.48 with and without single-particle energy
splitting, respectively. As one would expect, the single-particle energy splitting enhances
the ds/; occupation and hence acts as a filter for choosing many-body basis states. I show
in Fig. 1b the IPR for the first 150 0" states. I see no statistically significant difference
in the character of the random ensembles beyond the first (o = 1) state. The inset shows
in more detail the first state. Both the RQE-SPE and TBRE-SPE show depressed IPRs
compared to the RQE and TBRE. This property is somewhat different than I anticipated
from the findings using the realistic two-body interaction. The RQE shows some enhance-
ment of order when compared to the RQE-SPE. Furthermore, the IPR for the random
interactions is somewhat larger than for the USD interaction.

Another quantity widely used to characterize the spectrum of states is the spectral
rigidity As(L) [6] which is defined as

Ag(L) = % <min(a, b) /L " o (N () — aa — b)2> , 8)

Z

where N () is the cumulative sum of states at a given energy « of the unfolded excitation
energy spectra. Unfolding removes the smooth part of the excitation spectrum, leaving
only the fluctuating part.
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Figure 1. a) Exponential of the entropy as a function of state number; b) the IPR as a
function of state number; inset: the IPR for the first few states.

After obtaining the unfolded energies, we proceed to calculate Az(L). This measure
characterizes the amount of chaos within a given spectrum of states with the same spin
and parity. Shown in Fig. 2 are the results for calculations of A3(L) using 200 07 states
in the **Mg nucleus. A Poisson-distributed spectrum yields Aj(L) = & as shown in the
figure. All distributions follow this line for small values of L < 5 which is the expected
behavior since one cannot distinguish random or non-random effects with just a small
window of levels. In the next region (from 5 < L < 18) we see a GOE character. The
deviation from GOE occurs at approximately L = Ly = 20 and is independent of the
single-particle Hamiltonian. I note that the deviation from a GOE distribution, starting
at Lg, is approximately equal to the ratio of the major shell structure, dc and the average
level spacing D. The average level spacing is D = 0.22,0.20,0.25,0.25 MeV for the
RQE-SPE, RQE, TBRE-SPE, and TBRE, respectively. These differences are statistically
insignificant as the statistical error in each case is roughly 0.05 MeV. One surmises from
the figure that in each case Ly ~ 18. Thus de¢ = 4.2 + 0.9 MeV and is independent of
the random interaction used. Thus I find no qualitative difference of the overall spectral
rigidity for the four interactions studied at lower values of L. As L reaches larger values,
we see the systematic trend that Az(L) is smaller when the single-particle energies are
included.

4. Conclusions

In this brief description, I have discussed some of the interesting aspects of the statis-
tical properties of random interactions, including the entropy, inverse participation ratio,
and the spectral rigidity. I have shown that the various random interactions behave very
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Figure 2. A3(L) as a function of L for the ensembles studied in this work.

similarly, and much like the realistic interactions, when the wave functions are viewed
through this type of analysis. Only in ground-state properties are there significant differ-
ences. Indeed, the IPR analysis indicates that the random interactions appear to give a
more correlated ground state when compared to realistic interactions.
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