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Abstract

Using  quantum  entanglement  as  a  simple  model  of  correlations  between  two  systems,  one

can show that a new causal category must be incorporated into any complete  description of physi-

cal  reality.  Such  “structural  causality”  is  related  to  the  structural  properties  of  the  product  space

underlying  a  functional  description  of  a  multipart  entity.  Aristotelian  causal  categories  and  the

restricted  derivative  notion  of  causality  prevalent  in  modern  science  necessarily  involve  an

exchange of matter  and energy between causally connected events if change is to occur. Structural

causality  is  fundamentally  different  in that no matter-energy  connectivity  is  required  for  events  to

be causally linked providing that the underlying entities are suitably entangled.

Aristotelian Causal Categories

Aristotle recognized  four causal categories:  the material and the formal spring from, simply,

matter  and form.  To these  two obvious  causes,  Aristotle  added efficient cause and final cause, but

recognized that all four causes may coincide in particular  instances. To know is to know by means

of  causes;  causes  are answers  to “why?”  questions.  In a relational  description  of an  organism,  the

organism  is  closed  to  efficient  cause  [Rosen,  1991]  and  the  material  cause  can  be  identified  with

the  final  cause;  that  is,  the  answer  to  the  question  “why  an  organism?”  is  based  in  the  physical

properties  of matter  and energy and needs no other explanation.  The ensuing  questions considered

relevant  to science  are  descriptive  and historical  only:  how matter  and energy  interact  to give  rise

to  complex  forms  and  what  particular  historical  path  led  from  undifferentiated  energy

(Schopenhauer’s  ñ¢••e) to the manifest and overwhelming complexity of the observer and observed

(Schopenhauer’s “subject” and “object”).



18th and 19th Century Causality

Humean  empiricism,  so  prevalent  in  modern  science,  makes  do  with  a  single  causal  cate-

gory, one that Hume identified with contiguity in space and succession in time, a property that  we

would call correlation. Hume’s skepticism could find no demonstrable way to infer the existence of

one  object  from  that  of  another,  leading  to  the  conclusion  that,  beyond  correlation,  causality  is  a

construction of the mind, a simple association of ideas. The inability of reductionist  science to deal

with living organisms is a direct result of this impoverished causal scheme. 

Kant  went  beyond  Hume  to  argue  that  we  do  not  acquire  our  ideas  of  space  and  time  by

reflecting  on  the empirically  given  since  the very  description  of  such  empirical  situations  presup-

pose  familiarity  with  both  space  and  time.  Thus,  the  notions  of  space  and  time  are  a  priori  intui-

tions  (a  Kantian  term),  that  are  built  in,  as  it  were,  by  the evolutionary  process,  as  one might  say

today. Schopenhauer, following Kant, made these arguments stronger and more forceful.

Schopenhauer’s  starting  point  was  the  simple  observation  taken  from  Kant  [Schopenhauer,

1969]  that  “time  and  space,  however,  each  by  itself,  can  be  represented  in  intuition  even  without

matter; but matter cannot be so represented without time and space.” Schopenhauer evidently gives

primacy to the material cause when he states that “the subjective correlate of matter or of causality,

for the two are one and the same, is the understanding,  and it is nothing more that this.” [Schopen-

hauer, p. 11]. He goes on to state that “the first, simplest,  everpresent  manifestation of understand-

ing  is  perception  of  the  actual  world.”  Thus,  causality,  like  time  and  space are  a  priori  categories

built  in  to  human  perception.  This  comprehensive  view  of  causality  subsumes  Hume’s  skeptic

approach while not ruling out intuitive and speculative insights.

20th Century Causality

In the 20th  century, with the advent of quantum mechanics  and relativity,  the view of causal

connections changed to a relationship between entities located in space-time. Entities may be taken

to include  matter  and radiation,  both forms  of energy  and manifestations  of Schopenhauer’s  ñ¢••ª.

The  last  vestiges  of  Aristotle’s  causal  categories  was  removed  from  science  by  black-listing  the

question:  ‘Why?’ allowing scientists  formulate answers  only to ‘How?’ An example is Feynman’s



famous  remark  on  the  understanding  of  quantum  mechanics  where  he  posed  the  rhetorical  ques-

tion,  “But how can it be like that?”  and answered,  “Nobody  knows how it can be like that.”  Both

the question and its answer are clear uses of “why” presented in the guise of “how.” For example,

in  plain  English,  one  would  simply  say,  “Nobody  knows  why  [quantum  entities  behave  as  they

do].” 

Rosen  [1987]  recognized  that  the  Aristotelian  causal  categories  must  be  brought  back  into

science  if  physics  and  biology  were  ever  to  deal  consistently  with  organisms.  The  ability  to  ask

‘why’  must  be  reintroduced  into  scientific  investigations.  To  be  sure,  the  often  contentious  and

pointless  questions  and arguments  found  in the past  under  the general  label  “teleology”  must  still

be  avoided.  Such  ‘why’  questions  are  still  best  left  for  poets  to  ponder,  but  Rosen  [1987,  1991,

1999] pointed  the way toward a rational  and meaningful  way to ask why within the framework of

science.

Einsteinian Causality

Einsteinian causality restricts the Humean notion to events that can be connected by a ray of

light  (events  lying within  the so-called light cone).  The prevalent  view in modern physics  harkens

back  to  the  naïve  view  of  Humean  correlation,  but  a  correlation  restricted  to  the  light  cone.  It  is

tacitly  assumed  but  seldom  directly  discussed,  while  maintaining  consistency  with  the  concept  of

the forward light cone, that two events must also actually be connected by matter or energy transfer

to  be  considered  causal;  a  direction  is  also  imposed  by  the  time  asymmetry  between  the  forward

light  cone  (the  future)  and  the  backward  one  (the  past).  This  notion  of  physical  causality  goes

beyond the Hume’s idea and permits  an extension of the causal beyond mere correlation. Einstein,

in his  famous 1935 paper [Einstein,  Poldosky,  and Rosen,  1935], opened the door to a new causal

category  based  on  quantum  entanglement.  Quantum  entanglement  is  simply  described  on  the

tensor product of two or more Hilbert spaces and is presented in some detail in a following section. 



Causality in Physics

Since the classical view of causality presupposes the forbidden question: “Why?”, contempo-

rary  science  limits  use of the word and concept  erstwhile  found in “causality”  to an impoverished

version of Hume’s empirical view. Causal connections are viewed in much the same way as James

Burke’s Connections: amusing and educational but hardly serious science. The notion of causes are

replaced  by  phase-space  trajectories  and their  temporal  evolution;  as  a system evolves  in time,  its

phase-space  point  moves  along  a  trajectory.  The ‘cause’  of  the  present  state  is nothing  more  than

its  preceding  state  and  the  equations  of  motion.  Such  a  view  is  computationally  fruitful  and  has

lead  to amazing  advances  in science  and engineering  over  the past  300 years.  However,  this  view

of  causality,  while  fruitful,  presupposes  that  the  system  under  consideration  is  described  by  a

Newtonian view to sufficient accuracy to explain (understand?) the relevant behaviors. If one loses

sight  of  this  underlying  assumption  and  blindly  applies  the  Newtonian  state-space  “paradigm”  to

an  arbitrary  natural  system,  confusion  and  contradiction  can  result.  An  example  is  to  view  the

energy-transfer  mechanisms  of  a  cell  under  the  umbrella  of  equilibrium  thermodynamics  (the

classic  example  of  a  state-space,  system-trajectory  model);  a  result  is  the  conclusion  that  muscle

efficiencies are greater than 100%, clearly an error if the Second Law (of thermodynamics) has any

meaning.

Quite often, understanding is relegated to the realm of “physical intuition” and replaced with

view  that  the  differential  equation  defining  the  trajectory  in phase  space  is  somehow  the primary

ontological  object.  World-class  scientists  have  both  an  extraordinary  physical  intuition  or  native

understanding  of how things work and a highly developed skill in state-space concepts and formal-

isms;  they  are  able  to  avoid  most  of  these  conceptual  traps.  While  understanding  causal  connec-

tions, they are able to work within the framework that restricts causality to correlations.



Structural Causality

To  formulate  the  ideas  underlying  structural  causality  and  to  support  the  assertion  that  it

represents a separate and novel causal category, a few of the basic concepts of quantum mechanics

and some of the mathematics  of Hilbert spaces must be presented. The formalism presented below

is an excerpt from a more extensive development [Dress, 1999], and contains just enough detail for

the reader to grasp the essentials of entanglement from a mathematical and physical perspective. 

The “essence”  of quantum mechanics,  that is where  it  differs  from classical  theories,  lies  in

the behavior  of amplitudes,  how amplitudes  are combined,  and how to derive testable  predictions,

including  statements  of  probability,  from  these  amplitudes.  Perhaps  the  most  dramatic  departure

from any classical  theory  is to be found in the predicted  and observed  correlations  between  quan-

tum entities such as electrons, photons, or atoms that are “entangled.” In fact, quantum interference

and  uncontrollable  disturbances  described  and  predicted  by  the  Uncertainty  Principle  pale  beside

the behavior of two entangled photons or electrons. Why? Simply because interference phenomena

and  the  Uncertainty  Principle  have  well-understood  analogues  in  classical  physics  whereas  the

behavior  of  two  entangled  quantum  particles  has  no  counterpart—unless  one  is  willing  to  admit

magic or faster-than-light actions-at-a-distance.

Entangled Dice—A model of entangled entities

Steps  sufficient  to obtain  entangled  states  involve  simple  linear  combinations  of  eigenfunc-

tions  of  operators  on  finite-dimensional  Hilbert  spaces.  The  interpretation  of  the  square  of  the

absolute value of the complex coefficients in such a linear expansion as a probability measure leads

directly  to a joint probability  table of observing,  or obtaining  in an experiment,  particular  states or

eigenvalues. 

The example for this development will be “magic” dice that have from 1 to k sides with each

side  distinctively  marked.  This  heuristic  allows  one  to  maintain  a  concrete  picture  of  discrete

objects with discrete states. Each die, or coin when k = 2, is represented on a k-dimensional Hilbert

space.  The  eigenvalues  and  functions  belong  to  an  operator  on  the  product  Hilbert  space  (one

Hilbert space for each die) and may be identified with observing the ‘up’ faces of dice in a tossing



game.  The behavior  of entangled  dice as  well  as quantum particles  is simply  and easily explained

while  their  existence  may  be  inferred  from  experimental  observations  on  a  dice  game  or  experi-

ments with photons or electrons.

Quantum mechanics on Hilbert space

Define a Hilbert space H as a complete inner-product  space over the complex numbers. The

completeness property, which assures convergence in H of sequences of elements of H, is required

for  dealing  with  infinite-dimensional  spaces  necessary  for  the  complete  development  of  quantum

mechanics.  Since the dice  of interest  have  a finite  number  of sides,  completeness  will  not be used

in  the  following  development  and  the  proofs  will  be  limited  to  the  finite-dimensional  case.  The

term “vector”  will  be  used interchangeably  with  “function”  when referring  to elements  of H.  The

complex-number  field  is  essential  to  describe  interference  phenomena;  as  the  examples  presented

below  do  not  require  interference,  the  phases  (arguments)  of  the  complex  numbers  are  generally

ignored.  Any vector in H  may be expanded as a linear combination,  with complex coefficients,  of

a suitable basis set of H. Dirac notation is a convenient way to represent vectors and operators in a

Hilbert  space,  for  example,  »a\  represents  a  vector  with  label  a  (usually  an  eigenvalue  of  some

operator)  while  Xa»  represents  the  corresponding  covector.  The  inner  product  of  two  vectors  is

represented  by Xa » b\ = Xb » a\* ,  where * is complex conjugation.  If {»j\} is a basis of H,  then any

vector  in H  may be represented  by a linear  expansion on that basis  as » y\ = ⁄ j c j » j\,  where  the

8cj< are complex numbers. If »y\ is normalized so that Xy » y\ = 1, then ⁄ j c j  c j
2 = 1. 

Define  (Bayesian)  probability  as  a  mapping  from  a denumerable  set  of  statements  X to  the

interval  [0,1]  such  that  p(x)  ≥  0,  p(«)  =  0,  and p(X)  = 1.  The  symbol,  p(x),  read  “the  probability

that statement x is true” or , simply, “the probability of x,” is always assumed to be conditioned on

some set of circumstances such as an experimental  arrangement. This conditioning or contextuality

may be explicitly given by the notation x|y which is read “x given that the statement y is true.” The

mapping  p obeys  the product  and sum rules  [Cox, 1946],  which state  that p(xy) = p(x)  p(y|x)  and

p(x+y)  =  p(x)  +  p(y)  -  p(xy),  where  x,y  œ  X,  “x+y”  is  the  disjunction  of  the  two  statements  and

“xy”  or  “x,y”  is  their  conjunction.  Note  that  both  conjunction  and  disjunction  are  associative  and

commutative, and that conjunction distributes over disjunction as in ordinary arithmetic. A probabil-



ity distribution {pj : pj  œ [0,1]} is a particular assignment to, or a mapping from, the elements xj  of

a denumerable set of statements, to the interval [0,1] such that pj  = pHx jL.

In  quantum  mechanics,  the  physical  state  of  a  quantum  system  is  represented  by  a  unique

direction  in Hilbert  space;  all proportional  vectors represent  the same state.  The concept  of a state

comes from Newtonian physics and is taken to be a primitive notion. The postulate tells us that the

vector  a|y\,  where a  ≠  0, and |y\  represent  the same state.  Any physical  observable  of a quantum

system is represented by a linear, self-adjoint  operator on the corresponding  Hilbert space, and the

square of the absolute value of an amplitude of a normalized vector in a Hilbert space is the proba-

bility of obtaining the eigenvalue belonging to that eigenvector in a measurement of the correspond-

ing  operator.  These  postulates  of  quantum  mechanics  and  the  definition  of  a  probability  distribu-

tion allow one to associate  a probability distribution on the discrete set of basis functions or eigen-

values.  Suppose  the probability  of obtaining  the eigenvalue  lm  belonging  to the eigenfunction  fm

in a measurement of the observable A on the state |y\ is pHlmL, then this probability distribution is

given by

(1)pHlkL = » Xfm » y\ »2 .

To  take  a  specific  example,  consider  a  die  with  k  sides.  The  physical-state  postulate  lets  us

represent the state of this possibly actual object by a vector in a suitable Hilbert space. If the observ-

able of interest is the number of spots appearing in a toss of the die, the space has k dimensions and

we assume that the number of spots that can show in a given toss is an element of the set Zk={1,…,

k}.  Of course,  spots  as  distinguishing  features  are  arbitrary,  so one could have  colors  or engraved

marks  or  any  other  symbol  set  to  distinguish  between  the  sides;  the  assumption  is  that  we  can

distinguish between each of the k sides in any toss.



Tensor products of Hilbert spaces

The single observable on a single Hilbert space adequately represents a game situation where

one die is tossed:  the states of a single die belong to a simple Hilbert  space as shown in the previ-

ous section.  To describe  a game with more than  one die,  a larger  space is  needed.  The states  of  a

set of dice in a single toss can also be considered as states in a new Hilbert space. The new space is

a  direct  product  of  the  individual,  simpler  spaces,  one  associated  with  each  die.  For  n  dice  of  k

sides each, the product space has k n dimensions. 

Define  the  direct  or  Cartesian  product  of  two  vector  spaces,  H1  and  H2  as  the  set  of  all

ordered  pairs  »a\»b\  where  the  first  factor  belongs  to the  first  space  and  the second  to  the second.

Such pairs are to represent  vectors in the Hilbert space denoted by H1 ≈H2. A state consisting of

two dice is then written as

(2)» y\ = ‚ ci, j … i] … j],

and we can now ask questions of the form, “What is the probability, in a single toss of a pair

of  dice,  of  observing  eigenvalue  m  for  one  die  and  eigenvalue  n  for  the  other?”  The  answers  to

such questions are joint probabilities  for the joint occurrences of the two states in the same experi-

ment or  toss.  The  joint  probability  for  obtaining  eigenvalue  m for  the state  on  H1  and the eigen-

value n for the state on H1 is given by

(3)pHm, nL = » Xm, n » y\ »2 = … ‚ ci, j  Xm » i\ Xn » j\ …2 = » cm,n »2

It  may  appear  that  multiple,  k-sided  dice  are  quite  boring  if  they  are  fair  (fairness  implies

uniform  marginal  probabilities).  Note  that  the  implication  chain  ‘uniform  conditionals’Ø‘uniform

joint’Ø‘uniform  marginals’Ø‘dice  are  fair’  is  valid  as  is  the  converse  starting  with  ‘unfair  dice.’

However,  it  is  easy  to  show that  the assumption  of  fair  dice  does  not  imply  uniform  conditionals

with the single counterexample of the joint probability for two quasi coins given by

(4)Pe1,e2 =
1
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Pe1,e2  is  uniform  with  all  entries  equal  to  1/4  only  on  a  countable  subset  of  the  continuous

parameter q, namely {q :q =(2n+1)p/4,n œ N}; for almost all values of q, Pe1,e2  is non-uniform with

non-uniform conditionals  given by sin2q and cos2q.  Yet the marginals are all 1/2 so both coins are

fair.  This  particular  joint  matrix  appearing  in  underlies  the  quantum-mechanical  “violation”  or

counterexample  to the famous  Bell inequalities  [Bell,  1987] where  q  is half  the angle between  the

two inhomogeneous  magnetic  field  directions,  one magnet  for  measuring  the polarization  of elec-

tron 1 and the other for electron 2.

Entangled Dice

We are now in a position to explain the subtle yet bizarre behavior of entangled particles. To

motivate  the  definition  of  entanglement,  note  that  the  state  of  a  pair  of  dice  as  given  above  can

produce  a  non-uniform joint  probability  array with  non-uniform conditional  probabilities  if  the kn

amplitudes  are  not  equal  in  absolute  value.  Such  a  situation  would  seem  to  imply  that  the  dice

would  be  unfair  and hence  easily detectable  in a game. However,  properly  entangled  dice may be

fair yet allow a magician to win consistently  in a game of dice. To explain this  situation,  we need

the following definition.

A function on the product space of n k-dimensional Hilbert spaces, ≈ jH j  where j ranges from 1 to n, is
unentangled if it can be written as a single term with n factors, one belonging to each of the n spaces H j .
If the function requires more than one but less than k terms, it is partially entangled; if it requires exactly
k terms, it is maximally entangled.

The expansion for a fair coin as in Eq. 2, with all coefficients  equal to 1ÅÅÅÅ
2

, may be written as

the product (|1\+|2\)/√2 (|1\+|2\)/√2 where the first factor belongs to H1  and the second to H2. On

the  other  hand,  the  vector  with  c1,1 = c2,2 = 0  given  by  » coins\ = c1,2 » 1\ » 2\ + c2,1 » 2\ » 1\  is

maximally entangled for any choice of the two remaining amplitudes, neither being zero. Entangle-

ment depends on the particular choice of the amplitudes, which are experimental parameters.

Imagine a game wherein two coins are tossed and the state of the pair is given by the normal-

ized vector |coins\ above with » c1,2 » = » c2,1 » . Suppose that the first coin is observed to land with

‘heads’  showing  while  the  second  one  is  still  in  the  air  spinning.  Entanglement  implies  that  the

second coin will necessarily  show ‘tails’ when it comes to rest. This is a deterministic  event in the



sense that it has probability  1 of happening  when conditioned  on the knowledge  of ‘heads’ for the

first  coin.  The  coins  never  show  the  same  face  no  matter  how  many  tosses  are  examined.  The

magician  always  wins by betting on ‘opposite’  even though  the toss is fair  (of course,  a particular

result  for  any given  coin cannot  be  predicted  with  certainty).  Entangled  coins and dice  are indeed

“magic”  whereas  gloves,  even  with  the  same  joint  and  conditional  probabilities,  are  not.  From  a

gaming standpoint,  even the most naïve “mark” allowed to bet on the occurrence of ‘same’ would

recognize immediately that the gloves or shoes are appearing in pairs, the first either left handed or

right handed, the second just the opposite.

In  some  sense,  there  is  a  mechanism  for  paring,  for  ensuring  that  paired  objects  such  as

gloves  are  produced  from the “glove  box.”  A mechanism  is  something  that  has  a function  (in the

mechanical  sense  of  “the  function  of  X is  to  perform  Y”).  The  presence  of  a  mechanism  renders

superfluous  the  need  for  actions-at-a-distance;  mechanisms  can  be  tenuous  such  as  gravitational

fields  or  involve  material  connections  such  as  rods  and  levers.  The  function  of  a  mechanism  is

described  by  means  of  variables  or  parameters.  One  might  say  that  the  mechanism  is  a  function

(now  in  the  mathematical  sense  of  the  word)  of  the  variables.  A  putative  mechanism  connecting

entangled  quantum particles  is termed  a “hidden-variable”  theory. The  assumption  of hidden vari-

ables,  which  implies  a  yet-undiscovered  mechanism,  has  testable  consequences  in  the  form  of

Bell’s  inequalities  [Bell,  1987],  which  restrict  the  range  of  certain  expectation  values  of  observ-

ables. All experimental tests of Bell’s inequalities made over the past 25 years are inconsistent with

the  assumption  of  hidden  variables.  No  hidden  variables,  no  hidden  mechanisms;  there  are  cer-

tainly no ostensible mechanisms governing entangled particles, thus there are no mechanisms.

For  describing  entangled  dice  (or  electrons),  a  mechanism  is  not  required.  Although  the

process  for producing entangled  states is given by the general quantum-mechanical  prescription  of

“bring two particles  together for a certain time, let them interact and then allow them to separate,”

quantum-mechanical  dice are not manufactured  in definite immutable states corresponding  to ‘left’

and ‘right’  as are gloves;  neither  are  actual  coins  or dice,  for that  matter  (exceptions  such as  two-

headed coins being forbidden  by the rules).  Thus,  any two electrons,  any two photons,  or any two

atoms  can be  entangled  by a  quantum procedure  wherein  the two objects  form a single  pure state



on  a  suitable  Hilbert  space;  it  is  the  procedure  that  produces  entanglement  and  the  result  of  the

procedure necessitates a description on a product space.

We  are  now  in  a  position  to  address  the  central  issue  of  this  discussion:  what  can  a

(measured)  joint  probability  table  tell  us  about  entanglement?  It  might  appear  that  a  non-uniform

joint  probability  array  is  a sure  sign of entanglement;  however,  this  turns  out to be too general  as

there  are  non-uniform  joint  arrays  that are  derivable  from non-entangled  particles.  To be specific,

consider two k-sided dice. Leaving the issue of fairness aside for now, the concept connecting non-

entangled  dice with the joint  probability  array is one of row or column dependence  from ordinary

linear algebra.

It is fairly straight forward to prove the following two lemmas.

A normalized,  unentangled  state  on a  product  space  generates  a joint  probability  array with  all  rows or
columns proportional.

A k by k  joint probability array with all rows or columns proportional represents  a normalized, unentan-
gled state on a product Hilbert space.

Combining  the  negation  of  the  converses  of  these  lemmas  proves  the  following  theorem

relating joint probabilities to entangled states.

On  a  product  space,  a  normalized  state  is  entangled  if  and  only  if  the  corresponding  joint  probability
array has two or more non-proportional rows or columns. 

Note  that  “all  rows  proportional”  is  a stronger  requirement  than  merely  demanding  that  the

determinant  of  the  joint  probability  array  vanish.  A  vanishing  determinant  means  merely  that  at

least one row or column is proportional to some other row or column (the vectors of the correspond-

ing rows or columns are parallel), indicating partial entanglement. 

Physically,  a  set  of  quantum  entities  is  entangled  if  a  measurement  of  a  property  of  one

member  of  the  set  allows  one  to  infer  information  about  the  others,  information  that  could  only

otherwise  be  obtained  by  performing  actual  measurements  on  the  remaining  entities.  To  take  a

specific example,  two electrons are entangled in the spin variable  if observation of the spin of one

electron allows one to infer the probability  distribution for the spin of the other beyond that which



is known before a measurement on the first electron. Consider  Eq. 1, which is the joint probability

array  for  two spin-entangled  electrons,  where  the array is assumed  to have rows labeled  with ‘up’

and  ‘down’  for  the  first  electron  and  columns  labeled  with  ‘up’  and  ‘down’  for  the  second.  Sup-

pose the spin of the first electron is measured and found to be ‘up.’ It can then be inferred, from the

way  in  which  the  entangled  state  was  originally  prepared,  that  the  probability  distribution  for  the

second electron  is precisely Hsin2q, cos2qL  for the two eigenvalues  ‘up’ and ‘down.’  Note that this

distribution  is  the  conditional  distribution  of  the  second  electron’s  spin  conditioned  on  specific

knowledge of that of the first. If the spins were uncorrelated,  the joint probability array would give

no  additional  information  about  the  second  electron.  Presented  in  this  prosaic  manner,  entangle-

ment  seems  not  at  all  strange.  Indeed,  as  Bell  remarked  [Bell,  p.  139],  “The  philosopher  in  the

street,  who  has  not  suffered  a  course  in  quantum  mechanics,  is  quite  unimpressed  by  Einstein-

Podolsky-Rosen  correlations  [entanglement].”  Had  Bell’s  philosopher  met  with  entangled  dice,

however, he might have been more curious.

A slightly more dramatic example,  one that illustrates  the physical  meaning of partial  entan-

glement as well, is found in the state representing a pair of k-sided dice where k = 3. Preparing the

state  by  selecting  certain  amplitudes  rather  than  others  produces  the joint  probability  array shown

in Table 1, where a2 + b2 = 1. 

Table 1

˘1˜ on die 2 ˘2˜ on die 2 ˘3˜ on die 2

˘1˜ on die 1 1ÅÅÅÅ
3

 a2 0 1ÅÅÅÅ
3

 b2

˘2˜ on die 1 0 1ÅÅÅÅ
3

0

˘3˜ on die 1 1ÅÅÅÅ
3

 b2 0 1ÅÅÅÅ
3

 a2

A Joint Probability Array for a Pair of 3-Sided Dice. The rows are labeled with the number of spots for the first
die; the columns with the number of spots for the second.

Suppose the first die is observed with one spot ‘up’, corresponding to the eigenvalue ‘1.’ The

first  row,  divided  by  the  sum  over  the  first  row,  gives  the  conditional  probability  distribution

Ha2, 0, b2L for observing the faces ‘1’ or ‘2’ or ‘3’ for the second die. That this knowledge of which

of the three possible probability distributions for the second die was not available until the first die

was observed.  Incidentally,  this distribution is unique among the three possibilities.  If the observa-



tion  of  the  first  die  gave  a  ‘2,’  then  the  probability  distribution  for  the  second  die  would  be

H0, 1, 0L, indicating  that the second  die would  necessarily  land with ‘2’ showing. This pair of dice

is maximally entangled since no row is proportional to any other.

The ability given to infer probability distributions for outcomes on other members of a set of

particles by making possibly remote observations on one of them is the physical meaning of entan-

glement.  The  mathematical  behavior,  presented  in  the  theorem  its  two  corollaries,  parallels  this

physical behavior and justifies the above definition of entanglement.

Entangled  coins and dice do exist and their behavior is precisely that suggested  by the theo-

rem.  Electrons  and photons  are two commonly  found quantum “coins”;  each has two states  of the

spin or polarization observable. Entangled photons are routinely produced in the process of paramet-

ric  down  conversion  wherein  a  single  photon  from  a  “pump”  laser  is  converted  into  two  fourth-

order correlated photons in a non-linear  optical crystal. Necessarily,  the sum of the energies of the

two  down-converted  photons  must  equal  that  of  the  original  pump  photon;  likewise,  their  vector

momenta must sum to that of the pump photon. The production process thus conserves both energy

and momentum and the corresponding state in Hilbert space must reflect this fact.

Can  one hope  to  manufacture  macroscopic  coins  or  dice  that  are  entangled?  This  is  still  an

open  question;  whatever  method  is  used,  it  must  take  strict  account  of  the  conservation  of  both

energy  and momentum  for  the particular  entities  involved.  There  must  be  no  “leakage”  of energy

or momentum to or from the environment until the dice are tossed and have come to rest. Conserva-

tion  laws  imply  the  selection  rules  that  choose  certain  amplitudes  rather  than  others,  producing

entangled  states.  The  particular  selection  of  c1,1  =  c2,2  =  0  illustrating  the  definition  is  a  case  in

point;  here  the  conservation  law  is  that  of  energy  supposing  the  two  basis  vectors  are  eigenfunc-

tions of the energy operator.



General product spaces

Hilbert space was chosen for the above illustration of quantum entanglement simply because

it  has  been  shown  experimentally  that  such  entangled  entities,  both  atoms  and  photons,  exist  and

play a role in quantum computing and information. The formalism of product spaces is not limited

to Hilbert space and any space admitting a tensor product is capable of supporting entangled behav-

iors. 

The  richness  of  this  product-space  formulation  was  recognized  by  Robert  Rosen  [1991]  to

distinguish descriptions of organisms from those of machines and simulations. In Rosen’s formula-

tion,  the entanglement  of  quantum  entities  is  replaced  by a more general  recursive  relation  within

the  Aristotelian  causal  structure:  an  organism  is  a  system  that  is  closed  to  efficient  cause.  Rosen

further goes on to show that a mechanism or simulation of a natural system is described on a direct-

sum  space  of  the  component  parts  and  that  an  organism  must  be  described  on  the  direct-product

space.

Contextuality & structural causality

Entanglement  in quantum mechanics  can serve as a guide on extending the causal categories

of  Aristotle  and Shopenhauer’s  causality  as understanding  to include  what  might  be termed  struc-

tural causality. “Structural” because its concept and action depend on the mathematical  structure of

product  spaces  and “causality”  because  this  action,  or  correlation  to harken  back to Hume, can be

shown  to  induce  change.  Quite  properly,  entangled  quantum  entities  exhibit  correlations  as

described  by  the  joint  probability  relationships  discussed  above.  The  rather  bizarre  correlations

arising  from entangled  particles  have  been  known  for  over  25 years.  The  idea  that  the manifesta-

tions  of  entanglement  go  beyond  correlations  is  seldom  openly  discussed;  such  possibilities  are

most  often  denied  by  appeal  to  relativity  or  common  sense.  Yet  Bell  [1987]  carefully  considered

the  issues  involved  and  seemed  inclined  to  give  up  Einsteinian  causality  and local  realism  before

denying that such influences were impossible.

Furthermore,  it  would seem that the Kochen-Specker  Theorem [Kochen and Specker,  1967]

and Fine’s Equivalences  [Fine, 1982] would preclude just the type of joint-probability  correlations



discussed above. However, both of these important theorems make the assumption of non-contextu-

ality to show that quantum mechanics is incompatible with joint probabilities  and hidden variables.

If one takes experimental arrangements  to be contextual in nature, that is, the particular experiment

being  done  determines  what  answers  will  be  found  just  as  much  as  the nature  of  the  particles  on

which  the experiment  is  performed,  then  both  local  realism  needs  to  be  abandoned  and  structural

causality begins to make realistic sense.

The  most  direct  way  to  incorporate  structural  causality  into  quantum  physics  is  to  take  the

“transactional”  approach as developed by Cramer [1986] from Feynman-Wheeler  absorber  theory.

Simply put, a transaction in quantum mechanics  is three-part  process wherein a system desiring to

emit  a  particle  first  sends  out  “offer”  waves.  These  waves  are  solutions  of  the  relativistic

Schrödinger  equation  and  accordingly  consist  of  a  temporally  forward-traveling  part  (retarded

wave) and a temporally backward-traveling  part (advanced wave). The offer wave is absorbed at a

suitable absorber and re-emitted, again as retarded and advanced waves. This “confirmation” wave

travels  back in  time  to the emitter;  if  all  boundary  conditions  are  satisfied,  the transaction  is con-

firmed  and  an  actual  absorption  takes  place  at  the  absorber.  All  relevant  probabilities  as  found  in

the usual quantum computations are present and the theory seems fully relativistic.

From  the  joint-probability  examples  above,  it  is  a  straightforward  inference,  in  view  of

assumed  contextuality,  that a change in a configuration  from a high probability  of interaction of a

particular  state  of  one  of  two  entangled  particles  to  a  low  probability  of  interaction  will  alter  the

probability  of finding the second particle in one of its possible states. In this sense, the structure of

the  product  space  describing  the  entanglement  of  two  (or  more)  particles  guides,  within  context,

the changes that a system can undergo. Structure is thus a form of causality.



Reaction Dynamics

Consider  a  catalytic  reaction  at  the  quantum  level  where,  perhaps,  individual  molecules  are

being  assembled  from  metabolites  by  cellular  machinery.  The  delicate  nature  of  entanglement,

which  can be quickly destroyed by interaction with the environment  (the “decoherence”  effect),  is

assumed  to be preserved  within  the cell wall.  Assume  that  the catalyst  can take  two forms,  active

and passive; these forms are quantum states of the underlying enzyme. The products of the reaction

are  disposed  elsewhere  in  the  cell,  perhaps  leaving  the  cell  altogether  through  appropriate  gates.

Given  the  contextual  nature  of  quantum  entanglement  discussed  above,  it  is  likely  that  the  active

state  of  the  enzyme,  which  is  entangled  with  its  product,  is  maintained  as  long  as  the  reaction

product  interacts  with  the  cell  gate  in  a  particular  manner  (it  escapes,  perhaps).  Once  the  gate  is

signaled to close, by presumably external causes, the context of the entangled distributions change,

immediately  projecting the enzyme onto its passive  state.  There would  be no need for the product

to build up to the point where diffusion can provide a signal to shut down the reaction.

Reaction  dynamics  based  on  entanglement  would  appear  to  be  much  more  efficient  than

those  based  on  the  diffusion  equation.  Such  efficiency  would  certainly  exceed  that  based  on  an

equilibrium-thermodynamic  calculation  and  might  be  just  what  evolution  needed  to  provide  a

cellular  machinery  for  organisms  and  life.  If  entangled,  contextually  based  reactions  occur  at  the

molecular level and within a protected environment to guard against decoherence, a new thermody-

namics of quantum-entangled reactions will be required.
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