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Abstract

This paper presents our initial results in comparing

three algorithms for autonomous robotic mapping us-

ing two types of laser scanner data. The algorithms

compared are the Markov localization approach of

Thrun, the Lu and Milios iterative dual correspon-

dence algorithm, and the Touzet model-free landmark

extraction algorithm. The two types of laser scanner

data utilized are the AccuRange laser scanner from

Acuity and the SICK laser scanner. We compare these

algorithms in terms of the quality of mapped results,

computational requirements, and sensitivity to data

and odometry error. While the complete compari-

son of these algorithms on all these measures is not

yet accomplished, our results to date indicate that

laser mapping algorithms are not immediately trans-

ferrable from one type of laser scanner data to another.

Instead, algorithms appear to make implicit assump-

tions on the quality or content of laser data that play

a strong role in the quality of the mapping results.

1 Introduction

Assembling 2D laser or sonar scans into a coherent

map is an area of interest to many robotics researchers.

Many promising approaches have been developed and

have been demonstrated to operate successfully within

certain constraints. Some algorithms, for example,

yield highly precise maps but are computationally in-

tensive. Other algorithms may operate quickly, but

with reduced quality in the resulting map. Some al-

gorithms require reasonably accurate odometric data

and scans with relatively low noise, whereas other ap-

proaches are more robust to uncertainties. Nearly all

algorithms, however, are demonstrated in operation

on one speci�c type of laser scanner data. This paper

reports the results of our initial investigations of the

strengths and weaknesses of alternative techniques for

laser scanner mapping, developing quantitative and

qualitative measures of their similarities and di�er-

ences when applied to data generated from two di�er-

ent types of laser scanners { the Acuity and the SICK.

Our approach focuses on three very di�erent algo-

rithms for laser scanner mapping: (1) Thrun's map-

ping based on Markov localization [4], (2) Lu and

Milios' iterative dual correspondence algorithm [1],

and (3) Touzet's model-free landmark extraction al-

gorithm [5]. We present the initial results of our ex-

perimentation of these algorithms on this data, com-

paring them in terms of the quality of the resulting

map, computational requirements, and sensitivity to

odometry error and sensor noise. We have not yet

completed a comparison of all the algorithms on all

the data sets for all of the identi�ed issues of sensory

and odometry noise. However, the results developed

to date are instructive and begin to show the charac-

teristics and contrasts of the capabilities of the various

mapping algorithms.

In the next section, we provide some background of the

three approaches and the two types of laser scanners.

We then present the results of our comparisons in the

remaining sections.

2 Background

Assembling laser or sonar scans of a 2D indoor envi-

ronment into a coherent map is an area that has been

extensively studied in robotics research. Recent devel-

opments in robotic scan map assembly are aimed at

improvements in the areas of accuracy of scan assem-

bly and computational eÆciency (e.g., [3]). Achieving

both can be very diÆcult; some highly accurate algo-

rithms require the comparison of each point in a scan

to every other point in the preceding scan, which is

computationally intensive. Conversely, achieving real

time map production often requires some shortcuts,

resulting in scan matching falling into local minima

instead of the true orientation. Ideally, an algorithm



for real time map scan assembly would be an e�ective

compromise of accuracy and quickness. By �tting only

some points in each scan with selected points from the

map, some scan orientation accuracy is sacri�ced in

order to realize a drastically reduced run time.

Three interesting approaches to mapping are the iter-

ative dual correspondence (IDC) approach developed

by Lu and Milios [1] the Markov localization approach

of Thrun [4], and the model-free landmark matching

algorithm of Touzet [5]. The IDC algorithm works

by comparing two scans and initially reorienting the

second scan into the coordinates of the �rst using odo-

metric readings, then �nding the best �t by translat-

ing and rotating the second scan until they are opti-

mally placed. The key idea in the Thrun algorithm

is to compute a discrete approximation of a probabil-

ity distribution over all possible poses in the environ-

ment, and then base the mapping upon this accurate

localization. The Touzet approach is based upon the

use of simple but robust primitives to extract implicit

landmarks that enable a scan matching to become in-

dependent of the number of laser scan range measures,

thus making real-time on-board mapping possible.

Two types of laser scanners were used to gather data

to test these algorithms: the SICK and the Accu-

Range, shown in Figure 2. These scanners return a

list of points corresponding to the intersection points

of a laser beam with objects in the robot's environ-

ment. The laser beam rotates in a horizontal plane

and emanates from the sensor mounted on the robot.

A range scan is a 2D slice of the environment. Points

in the range scan are given in a polar coordinate sys-

tem whose origin is the position of the laser scanner.

The direction of each range measure may be provided

by the laser scanner.

The AccuRange scanner is a more lightweight, less

power-demanding sensor than the SICK. However, its

accuracy is less than the SICK scanner, and the data is

less consistent (e.g., missing data points are common).

These inconsistencies in the AccuRange data lead to

distortions of 
at surfaces that make coherent map-

making quite diÆcult.

The Thrun algorithm was originally implemented and

tested using SICK laser scanner data1. The Lu

and Milios algorithm was implemented and tested by

our colleagues [2], and was initially implemented and

tested using AccuRange laser data. The Touzet al-

gorithm was implemented by us and was tested using

AccuRange laser data.

1We obtained this implementation and data directly from

Thrun.

Figure 1: The Urban Robot, whose tracks provide only

minimal odometry information.

The noise associated with a range scan is important.

Such noise is usually reduced by statistical methods.

However, the energy consumption associated to laser

scanner operation makes this solution prohibitive for

mobile robots. The scan rate frequency is kept at the

bare minimum (order(s) of magnitude smaller than

what could be achieved). Therefore, range scans are

inherently noisy, and scan matching methods must ac-

count for it.

For a long time, odometry { i.e., the ability to compute

the robot position by monitoring the motor encoders

{ has been the only tool available to locate a robot

in its environment. It supposes that a model of the

map has been made available for the robot. However,

even in controlled environments, small errors due to

friction and slippery tends to accumulate, until the

position estimation is of no use. Today, odometry is

mostly used in combination with sensors such as sonar,

stereo-vision and laser range. A local odometry can

be very helpful for scan matching, since the distance

traveled between two following scans is usually small,

and the odometry is reset after each match. However,

more recent robots, such as the Urban Robot shown in

Figure 1, are equipped with tracks to enable naviga-

tion in more challenging terrains. However, tracks, as

opposed to wheels, do not even allow for a minimum

odometric performance. Therefore, mapping methods

for robots such as the Urban Robot must be based

primarily on range scan matching.

3 Approach

In our experiments to date, we have collected compar-

ative data of both Thrun's algorithm and the Lu and



Figure 2: The SICK and AccuRange laser scanners.

The SICK has a range of about 50 meters, coverage

of 180 degrees, with a resolution of � 50 mm. The

AccuRange 4000 laser has a range of about 25 meters,

coverage of 360 degrees (minus the support structure

for the mirror), and a resolution of � 50 mm.

Milios algorithm when running the SICK laser data,

as well as two sets of AccuRange data. We have also

investigated the sensitivity of the Thrun approach to

data error rates and odometry error rates when pro-

cessing SICK laser data. We have run the Touzet

approach using AccuRange data, and have compared

these results with the Lu and Milios approach for Ac-

cuRange data.

We tested these algorithms both qualitatively as well

as quantitatively. We subjectively observed the qual-

ity of the resulting maps to ensure their coherence.

We collected quantitative data on the computational

requirements of the approaches, as well as the sensi-

tivity of the Thrun algorithm to data and odometry

error rates. The computational time comparisons were

calculated while running the algorithms on a 60 MHz

Sparc-20 computer with 64 megabytes of RAM and a

36 kilobyte cache. The number of scans processed and

the total length of time to �nish were recorded. The

experiments were run using data collected from the

same environment, the complete 
oorplan of which is

shown in Figure 3.

Figure 3: The complete 
oorplan of the area in which

the SICK and AccuRange laser data was collected.

4 Results

Our most important result shows the dependence of

the mapping algorithms on the type of laser scanner

data used. The algorithms vary considerably in all

the aspects we studied - map quality, computational

requirements, and sensitivity to odometric and sensor

noise. No single algorithm is best in all factors for

both types of laser data. Our results illustrate the

importance of fully understanding the requirements

of the application and sensory data characteristics in

selecting an algorithm for autonomous robot indoor

map building.

Figure 4 shows the qualitative comparisons of the

Thrun approach using SICK data, the Lu and Mil-

ios approach using AccuRange data, and the Touzet

approach using AccuRange data. These results show

the algorithms in their \best case", running the laser

scanner data for which they were designed.

Table 1 shows the runtime comparisons of these ap-

proaches. For the Lu and Milios algorithm, the Acuity

data #1 took 75.8 seconds per scan, the Acuity data

#2 took 116.1 seconds per scan, while the SICK data

only required 6.04 seconds per scan. This is not sur-

prising; given that the SICK data has 180 points per

scan and the Acuity data has between 1200 and 1500

points per scan, an O(n2) algorithm should process

the SICK data 52 times as fast. Since the SICK data

was only processed twelve times as fast as the Acuity

data set #1 and nineteen times as fast as the Acuity



Figure 4: Qualitative comparisons of the Thrun, Lu

and Milios, and Touzet approaches to mapping.

data set #2, this indicates that there is a constant

amount of time per scan in addition to the O(n2) part

that is required for building the map.

Table 1 also shows the results of the two sets of Acu-

ity laser data and the SICK data using Thrun's al-

gorithm. The �rst Acuity data set took 3.48 seconds

per scan, the second Acuity data set took 0.795 sec-

onds per scan, and the SICK data took only 0.473

seconds per scan. Once again, the di�erences between

run times of the data sets are to be expected. A larger

set of points per scan will require more processor time

to correlate with each other.

The second Acuity data set has an anomalously low

run time; we believe this is due to the display func-

tion. The �rst Acuity data set had a scaling factor

applied to each data point to increase the size of the

displayed map without changing proportions. The sec-

ond Acuity data set had data values too large to ap-

ply a scaling factor to, but produced a smaller dimen-

sioned map than either the �rst Acuity data set or

the SICK data, and thus ran faster during the display

function. The interesting comparison is between run

times for Thrun's program and run times for Liu and

Milios. While the SICK data only ran 12.8 times faster

on Thrun's algorithm than Lu and Milios, the Acuity

set 1 ran 21.8 times as fast. This is a signi�cant re-

duction in time and allows a map to be assembled as

the robot is taking the data. From this perspective,

the Thrun algorithm is very time eÆcient.

Comparing the Lu and Milios map with the Touzet

map, as shown in Figure 4, shows that they result in

similar qualities. Similar diÆculties, relative to the ac-

cumulation of errors generating a corridor curvature,

is present. The major di�erence lies in the computa-

tion time. The Touzet fast indoor mapping algorithm

only requires an average of 0.3 seconds per scan, which

is a signi�cant savings.

Testing for map assembly accuracy was more involved

than testing for time eÆciency. Thrun's algorithm

was unable to consistently piece together many scans

from the Acuity laser data, whether or not odometry

information was used. This seems to imply that one

of the following is true: Thrun's program is not gen-

eral enough to accurately assemble other sets of data,

the Acuity laser data is not accurate to within the

requirements of the program, or the simulated odom-

etry is not accurate to within the required bounds of

the program. We chose to operate on the assumption

that the laser data and odometry data had exceeded

the acceptable amount of error.

To test these assumptions, error was introduced into



Acuity data #1 Acuity data #2 SICK data

Lu & Milios

Scans used: 1032 1082 101

Runtime: 75.8 sec/scan 116.1 sec/scan 6.04 sec/scan

Thrun

Scans used: 600 450 1559

Runtime: 3.48 sec/scan 0.795 sec/scan 0.473 sec/scan

Touzet

Scans used: 1032 1082

Runtime: 0.3 sec/scan 0.3 sec/scan

Table 1: Comparative results of two sets of Acuity laser data and one set of SICK data, when processed by the

mapping algorithms.

the SICK data and were run using Thurn's algorithm.

The assumptions were that the data in the SICK pack-

age realistically re
ected the environment, i.e., the

odometry had a negligible amount of error and the

laser data was a true indication of distance, and that

introduced error would 
uctuate randomly around the

original value but be held within constraints. Thus, we

would be modeling a laser and odometry device that

guaranteed values within a certain error percentage

of the \true value." Error percentages based on the

amount of movement of the robot were used. Twenty

trials were run for each set of values for odometry error

and data value error.

Our results, shown in Figure 5, were somewhat sur-

prising. We had expected that measurements made by

the lower quality laser AccuRange laser were the main

reason that Thrun's program was unable to consis-

tently piece together the Acuity scans. However, the

tests show that 15% 
uctuation in data values above

or below the \true value" still resulted in success over

60% of the time. The map outlines are signi�cantly

blurred beyond what would be reasonable to expect

from a functioning laser, but the program can still as-

semble the scans. Thus, it is not likely that low laser

quality is the cause of map incoherence while utilizing

odometry.

However, a mere 4% 
uctuation above or below the

\true value" for the odometry with no data error re-

sulted in only a 35% success rate, with an average of

.75 failures per trial. Adding data error did a�ect the

failure rate somewhat, but mostly it seemed linked to

the odometry. With 4% 
uctuation in odometry and

17.5% in data, the success rate had fallen to 20% and

there was an average of 1.2 failures per trial. At 4%


uctuation, there were twenty-�ve occurrences of two

failures per trial and two more occurrences where there

were three failures per trial. Out of 112 failures, 34

occurred between scans 500 and 600, and another 37

Figure 5: Failure rates versus data error rates, for

odometry error rates of 5% and 8%, for the Thrun

algorithm applied to SICK laser scanner data.



failures occurred between scans 1000 and 1100. These

are both spots where the robot executed a turn and

there was a strong opportunity for scans to become

misaligned. At 2.5% 
uctuation, there were only thir-

teen occurrences of two failures per trial, and none

with three failures. Out of 74 failures, 40 occurred

between scans 500 and 600, and another 22 failures

occurred between scans 1000 and 1100.

5 Conclusions and Future Work

It seems obvious that Thrun's and Touzet's algorithms

are superior in the area of time eÆciency over the

Lu and Milios algorithm. Thrun's algorithm provides

high map accuracy when measured by error tolerances.

Certainly it is robust when considering data measure-

ments that have random error, although consistent er-

rors or a bias might cause di�erent behavior. However,

it seems to require only a little odometric error to de-

stroy map coherence. Possible future studies might

propose a more realistic model of odometric error, such

as accumulated error or only add error when the robot

turns through an angle. Other studies might test the

performance of Thrun's algorithm at more commonly

experienced error levels, such as 2-5% laser error.

This paper has presented the initial studies of compar-

ing three very di�erent approaches to autonomous in-

door mapping based upon two types laser range data.

While the results are still incomplete, they seem to in-

dicate the importance of identifying the requirements

of the application and the characteristics of the avail-

able sensor in determining the most appropriate algo-

rithm for autonomous indoor mapping. Our results

should be useful for future applications of robot map-

ping, by providing guidance for making the appropri-

ate algorithm selection given the constraints of the

current application and sensors.
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