
LEARNING AND ADAPTATION IN MULTI-ROBOT TEAMS

Lynne E. Parker, Claude Touzet, and David Jung

Center for Engineering Science Advanced Research, Computer Science and Mathematics Division
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6355

ABSTRACT

While considerable progress has been made in recent years toward the development of multi-
robot teams, much work remains to be done before these teams are used widely in real-world
applications. Of particular need are the development of mechanisms that enable robot
teams to autonomously generate cooperative behaviors. This paper examines the issue of
multi-robot learning and looks at various types of multi-robot learning. We brie
y review
various multi-robot learning approaches we have studied. The paper then presents the
Cooperative Multi-robot Observation of Multiple Moving Targets (CMOMMT) application
as a rich domain for studying the issues of multi-robot learning of new behaviors. We discuss
the results of our hand-generated algorithm for CMOMMT and the potential for learning
that was discovered from the hand-generated approach. We then describe our research in
generating multi-robot learning techniques for the CMOMMT application and compare the
results to the hand-generated solutions. Our results show that, while the learning approach
performs better than random, naive approaches, much room still remains to match the
results obtained from the hand-generated approach. The ultimate goal of this research
is to develop techniques for multi-robot learning and adaptation that will generalize to
cooperative robot applications in many domains, thus facilitating the practical use of multi-
robot teams in a wide variety of real-world applications.

INTRODUCTION

Research in multi-robot cooperation has grown signi�cantly in recent years. While the growth of this
research is due in part to a pure scienti�c interest in teams of autonomous robots, much of the growth is due
to the increasing realization by the user community that teams of robots may provide solutions to diÆcult
problems that previously were untenable. Certainly, it has been shown (e.g., in [1] and elsewhere) that
multi-robot teams can increase the reliability,
exibility, robustness, and eÆciency of automated solutions
by taking advantage of the redundancy and parallelism of multiple team members.

However, before multi-robot teams will ever become widely used in practice, we believe that advances
must be made in the development of mechanisms that enable the robot teams to autonomously generate
cooperative behaviors and techniques. With the current state of the art, the implementation of cooperative
behaviors on physical robot teams requires expert behavior programming and experimentation, followed by
extensive tuning and revision of the cooperative control algorithms. It is unlikely that a signi�cant real-world
impact of cooperative robot teams will occur as long as the current level of e�ort is required to implement
these systems.

Researchers have recognized that an approach with more potential for the development of cooperative
control mechanisms is autonomous learning. Hence, much current work is ongoing in the �eld of multi-agent
learning (e.g., [2]). Brooks and Mataric [3] identify four types of learning in robotic systems:

� Learning numerical functions for calibration or parameter adjustment,

� Learning about the world,

� Learning to coordinate behaviors, and

� Learning new behaviors.

Our research has examined several of these learning areas. In the �rst area { learning for parameter adjust-
ment { we have developed the L-ALLIANCE architecture [4], which enables robots to adapt their behavior
over time in response to changing team capabilities, team composition, and mission environment. This
architecture, which is an extension of our earlier work on ALLIANCE [5], is a distributed, behavior-based
architecture aimed for use in applications consisting of a collection of independent tasks. The key issue
addressed in L-ALLIANCE is the determination of which tasks robots should select to perform during their
mission, even when multiple robots with heterogeneous, continually changing capabilities are present on
the team. In this approach, robots monitor the performance of their teammates performing common tasks,
and evaluate their performance based upon the time of task completion. Robots then use this informa-
tion throughout the lifetime of their mission to automatically update their control parameters according
to the L-ALLIANCE update mechanism. We note, however, that the parameter update strategy used by
L-ALLIANCE is dependent upon the assumption of independent subtasks whose performance can be evalu-
ated based upon the time of task completion. This assumption does not hold for the CMOMMT application
domain that we describe in this paper.

We have also addressed approaches for learning in the second area { learning about the world. We
have implemented a multi-robot system in which one robot learns to communicate symbolic information
about the environment to another robot [6, 7]. In particular, we developed a two-robot team that was
speci�cally designed to be heterogeneous, such that neither could successfully achieve the task alone. The
robots were also endowed with a mechanism for learning to communicate task-speci�c symbolic information.
To accomplish learning, a number of self-organized levels build upon each other. First, each of the robots
learns a topological map of its environment. Once the topological map self-organizes suÆciently, the robots
can learn successively higher-level relationships between locations, resulting in the emergence of a navigation
capability. When the robots have a consistent concept of \location" as de�ned in terms of their sensory and
behavioral suite, they will begin to have success in communicating task-speci�c information. Speci�cally,
each robot is endowed with behavior that results in the robots communicating in order to ground speci�c
symbols to particular locations. Having learned a shared grounding that maps a set of symbols to locations,
the robots can communicate important task-speci�c locations to each other. The receiving robot can interpret
the communicated information, drive to the communicated location, and perform mission-speci�c tasks. The
robot soon learns that this reliably assists in the completion of its tasks, and is more eÆcient than performing
the task without communication. The result is that the robots together learn to adapt their behavior toward
more eÆcient mission completion by learning to represent and navigate around their environment and to
communicate about it [8]. This approach has been successfully demonstrated in a laboratory cleaning task.

In the remainder of this paper, we discuss our research in the fourth topic area { that of learning new
behaviors in multi-robot teams. The types of applications that are typically studied for this area of multi-
robot learning vary considerably in their characteristics. Some of the applications include air
eet control
[9], predator/prey [10, 11, 12], box pushing [13], foraging [14], and multi-robot soccer [15, 16]. Particularly
challenging domains for multi-robot learning are those tasks that are inherently cooperative. By this, we mean
that the utility of the action of one robot is dependent upon the current actions of the other team members.
Inherently cooperative tasks cannot be decomposed into independent subtasks to be solved by a distributed
robot team. Instead, the success of the team throughout its execution is measured by the combined actions
of the robot team, rather than the individual robot actions. This type of task is a particular challenge in
multi-robot learning, due to the diÆculty of assigning credit for the individual actions of the robot team
members.

Of these previous application domains that have been studied in the context of multi-robot learning,
only the multi-robot soccer domain addresses inherently cooperative tasks with more than two robots while
also addressing the real-world complexities of embodied robotics, such as noisy and inaccurate sensors and
e�ectors in a dynamic environment that is poorly modeled. To add to the �eld of challenging application
domains for multi-robot learning, we have de�ned and have been studying a new application domain {
the Cooperative Multi-robot Observation of Multiple Moving Targets (CMOMMT) { that is not only an
inherently cooperative task, but, unlike the multi-robot soccer domain, is also a domain that must deal with
issues of scalability to large numbers of robots.

In the next section, we de�ne the CMOMMT application. We then describe a hand-generated solution to
this problem, along with the results we obtained with this approach. We then de�ne a learning approach to
enable robot teams to autonomously generate viable solutions to the CMOMMT application and compare
the results to the hand-generated approach. The �nal section of the paper concludes with some summary
remarks.

THE CMOMMT APPLICATION

The application domain that we are studying for use as a multi-robot learning testbed is the problem
we entitle Cooperative Multi-robot Observation of Multiple Moving Targets (CMOMMT). This problem is
de�ned as follows. Given:

S : a two-dimensional, bounded, enclosed spatial region
V : a team of m robot vehicles, vi; i = 1; 2; :::m, with 3600 �eld of view observation sensors

that are noisy and of limited range
O(t) : a set of n targets, oj(t), j = 1; 2; :::; n, such that target oj(t) is located within

region S at time t

We say that a robot, vi, is observing a target when the target is within vi's sensing range.
De�ne an m� n matrix B(t), as follows:

B(t) = [bij(t)]m�n such that bij(t) =

�
1 if robot vi is observing target oj(t) in S at time t
0 otherwise

Then, the goal is to develop an algorithm, which we call A-CMOMMT, that maximizes the following
metric A:

A =

TX
t=1

nX
j=1

g(B(t); j)

T

where:

g(B(t); j) =

�
1 if there exists an i such that bij(t) = 1
0 otherwise

In other words, the goal of the robots is to maximize the average number of targets in S that are being
observed by at least one robot throughout the mission that is of length T time units. Additionally, we de�ne
sensor coverage(vi) as the region visible to robot vi's observation sensors, for vi 2 V . Then we assume that,
in general, the maximum region covered by the observation sensors of the robot team is much less than the
total region to be observed. That is,

[
vi2V

sensor coverage(vi)� S:

This implies that �xed robot sensing locations or sensing paths will not be adequate in general, and instead,
the robots must move dynamically as targets appear in order to maintain their target observations and to
maximize the coverage.

The CMOMMT application is an excellent domain for embodied multi-robot learning and adaptation.
CMOMMT o�ers a rich testbed for research in multi-robot cooperation, learning, and adaptation because it
is an inherently cooperative task. In addition, many variations on the dynamic, distributed sensory coverage
problem are possible, making the CMOMMT problem arbitrarily more diÆcult. For example, the relative
numbers and speeds of the robots and the targets to be tracked can vary, the availability of inter-robot
communication can vary, the robots can di�er in their sensing and movement capabilities, the terrain may
be either enclosed or have entrances that allow objects to enter and exit the area of interest, and so forth.
Many other subproblems can also be addressed, including the physical tracking of targets (e.g. using vision,
sonar, IR, or laser range), prediction of target movements, multi-sensor fusion, and so forth.

A HAND-GENERATED SOLUTION TO CMOMMT

We have developed a hand-generated solution [17, 18] to the CMOMMT problem that performs well
when compared to various control approaches. This solution has been implemented on both physical and
simulated robots to demonstrate its e�ectiveness. The hand-generated solution, which we call A-CMOMMT,
is described brie
y as follows. Robots use weighted local force vectors that attract them to nearby targets
and repel them from nearby robots. The weights are computed in real time by a higher-level reasoning system
in each robot, and are based on the relative locations of the nearby robots and targets. The weights are
aimed at generating an improved collective behavior across robots when utilized by all robot team members.

Figure 1: Simulation results of three robots and six targets (�rst image), and �ve robots and twenty targets
(second image), with the robots using the hand-generated solution to CMOMMT, and the targets moving
randomly.

The local force vectors are calculated as follows. The magnitude of the force vector attraction of robot
vl relative to target ok, denoted j flk j, for parameters 0 < do1 < do2 < do3, is:

j flk j=

8>><
>>:

�1

do1
for d(vl; ok) � do1

1

do2�do1
for do1 < d(vl; ok) � do2

�do2
do3�do2

for do2 < d(vl; ok) � do3

0 otherwise

where d(a; b) returns the distance between two entities (i.e., robots and/or targets). The magnitude of the
force vector repulsion of robot vl relative to robot vi, denoted j gli j, for parameters 0 < dr1 < dr2, is:

j gli j=

8<
:

�1 for d(vl; vi) � dr1
1

dr2�dr1
for dr1 < d(vl; vi) � dr2

0 otherwise

Determining the proper setting of the parameters do1; do2; do3; dr1, and dr2 is one approach to solving
the CMOMMT multi-robot learning task using a a priori model-based technique.

Using only local force vectors for this problem neglects higher-level information that may be used to
improve the team performance. Thus, the hand-generated approach enhances the control approach by
including higher-level control to weight the contributions of each target's force �eld on the total computed
�eld. This higher-level knowledge can express any information or heuristics that are known to result in
more e�ective global control when used by each robot team member locally. The hand-generated approach
expresses this higher-level knowledge in the form of a weight, wlk, that reduces robot rl's attraction to a
nearby target ok if that target is within the �eld of view of another nearby robot. Using these weights helps
reduce the overlap of robot sensory areas toward the goal of minimizing the likelihood of a target escaping
detection.

The higher-level weight information is combined with the local force vectors to generate the commanded
direction of robot movement. This direction of movement for robot vl is given by:

nX
k=1

wlkflk +

mX
i=1;i6=l

gli

where flk is the force vector attributed to target ok by robot vl and gli is the force vector attributed to robot
vi by robot vl. To generate an (x; y) coordinate indicating the desired location of the robot corresponding to
the resultant force vector, we scale the resultant force vector based upon the size of the robot. The robot's
speed and steering commands are then computed to move the robot in the direction of that desired location.

Figure 2: Robot team executing hand-generated solution to CMOMMT. The �rst photo shows robots oper-
ating in area with no obstacles. The second photo shows the robots amidst random distributed obstacles.

Results from Hand-Generated Solution

Figure 1 shows two of the simulation runs of the hand-generated algorithm (out of over 1,000,000 simu-
lation test runs), in which (�rst image) three robots attempt to observe six targets, and (second image) �ve
robots attempt to observe twenty targets. Figure 2 shows snapshots of two of the physical robot experiments
(out of over 800) in which the the robots perform the task either with no obstacles in the work area (�rst
photo) or with randomly distributed obstacles (second photo).

The results of the hand-generated approach to CMOMMT vary depending upon a number of factors,
including the relative numbers of robots and targets, the size of the work area, the motions of the targets
(i.e., whether random or evasive), and the setting of the weights. In general, the A-CMOMMT algorithm
performed best for a ratio of targets to robots greater than 1/2. We compared the hand-generated A-

CMOMMT approach with a non-weighted local force vector approach, as well as two control cases in which
robots either maintained �xed positions or are moved randomly. Figure 3 gives a typical set of these
comparative results. Refer to [17] for more details on these results.

LEARNING IN THE CMOMMT APPLICATION

We have studied the CMOMMT problem from a learning perspective without the assumption of an
a priori model [19]. This approach uses a combination of reinforcement learning, lazy learning, and a
Pessimistic algorithm able to compute for each team member a lower bound on the utility of executing an
action in a given situation. The challenges in this multi-robot learning problem include a very large search
space, the need for communication or awareness of robot team members, and the diÆculty of assigning credit
in an inherently cooperative problem.

In this learning approach, lazy learning [20] is used to enable robot team members to build a memory of
situation-action pairs through random exploration of the CMOMMT problem. A reinforcement function gives
the utility of a given situation. The pessimistic algorithm for each robot then uses the utility values to select
the action that maximizes the lower bound on utility. The resulting algorithm is able to perform considerably
better than a random action policy, although it is still signi�cantly inferior to the hand-generated algorithm
described in the previous section. However, even with a performance less than that of the hand-generated
solution, this approach makes an important contribution because it does not assume the existence of a model
(as is the case in the Partially Observable Markov Decision Process (POMDP) domain), the existence of
local indicators that help individual robots perform their tasks, nor the use of symbolic representations. The
following subsections describe this approach and its results in more detail.

Lazy learning and Q-learning

Lazy learning [20] { also called instance-based learning { promotes the principle of delaying the use
of the gathered information until the necessity arises (see Fig. 4). The same pool of information (i.e.,
memory) is used for di�erent behavior syntheses. The lazy memory provides a good way of reducing the
duration of any robotic learning application. In the context of reinforcement learning, lazy learning provides
an instantaneous set of situation-action pairs (after the initial and unique sampling phase). Lazy learning
samples the situation-action space according to a random action selection policy, storing the succession

0

0.2

0.4

0.6

0.8

1

0 10,000 20,000 30,000 40,000 50,000

(a) n/m = 1/5, Targets move randomly

A-CMOMMT
Local
Random
Fixed

N
or

m
al

iz
ed

 A
ve

ra
ge

 A

Radius of work area (R)

0

0.2

0.4

0.6

0.8

1

0 10,000 20,000 30,000 40,000 50,000

(b) n/m = 1/2, Targets move randomly

A-CMOMMT
Local
Random
Fixed

N
or

m
al

iz
ed

 A
ve

ra
ge

 A

Radius of work area (R)

0

0.2

0.4

0.6

0.8

1

0 10,000 20,000 30,000 40,000 50,000

(c) n/m = 1, Targets move randomly

A-CMOMMT
Local
Random
Fixed

N
or

m
al

iz
ed

 A
ve

ra
ge

 A

Radius of work area (R)

0

0.2

0.4

0.6

0.8

1

0 10,000 20,000 30,000 40,000 50,000

(d) n/m = 4, Targets move randomly

A-CMOMMT
Local
Random
Fixed

N
or

m
al

iz
ed

 A
ve

ra
ge

 A

Radius of work area (R)

0

0.2

0.4

0.6

0.8

1

0 10,000 20,000 30,000 40,000 50,000

(e) n/m = 10, Targets move randomly

A-CMOMMT
Local
Random
Fixed

N
or

m
al

iz
ed

 A
ve

ra
ge

 A

Radius of work area (R)

Figure 3: Simulation results of four distributed approaches to cooperative observation, for random/linear
target movements, for various ratios of number of targets (n) to number of robots (m).

of events in memory and, when needed, probes the memory for the best action. The exploration phase
is performed only once. By storing situation-action pairs, a lazy memory builds a model of the situation
transition function.

In order to express a behavior, the memory must be probed. To do this probing, we use a modi�ed version
of the technique proposed in [21]. In [21] the objective is to provide a method for predicting the rewards
for state-action pairs without explicitly generating them. For the current real world situation, a situation
matcher locates all the states in the memory that are within a given distance. If the situation matcher has
failed to �nd any nearby situations, the action comparator selects an action at random. Otherwise, the
action comparator examines the expected rewards associated with each of these situations and selects the
action with the highest expected reward. This action is then executed, resulting in a new situation. There
is a �xed probability (0.3) of generating a random action regardless of the outcome of the situation matcher.
New situation-action pairs are added to the memory, along with a Q-value computed in the classical way [22].
Among similar situation-action pairs in the memory, an update of the stored Q-values is made. However,
there is a limit to the generality of this lazy memory because the Q-values associated with the situation-
action pairs only apply for a particular behavior. With the desire of reducing the learning time as much as
possible, as well as preserving the generality of the lazy memory, we modi�ed the algorithm as follows: (1)
the situation matcher always proposes the set of nearest situations { no maximum distance is involved, (2)
there is no random selection of actions by the action comparator, and (3) the Q-values are not stored with
the situation-action pairs, but computed dynamically as the need arises.

The Pessimistic Algorithm

We de�ne a Pessimistic Algorithm for the selection of the best action to execute for a given robot in
its current local situation as follows: �nd the lower bounds of the utility value associated with the various
potential actions that may be conducted in the current situation, then choose the action with the greatest
utility. A lower bound is de�ned as the lowest utility value associated with a set of similar situations.

The idea behind the Pessimistic Algorithm is that a local robot situation is an incomplete observation
of the true state of the system. Thus, instead of trying to solve the observation problem by completing
the observation (usual POMDP approach), we are only interested in ranking the utility of the actions. If
we use a unique instance of the memory to obtain the utility of the situation, then chances are that the

World

Action

Randomly built
lookup table:
situation, action

Situation matcher

Reinforcement
function

Evaluation
function

Situation

Figure 4: Lazy learning: randomly sampled situation-action pairs in the lookup table are used by the situation
matcher to select the action to execute in the current situation. The reinforcement function quali�es the
actions proposed, helping to select the best one.

utility attributed to this local situation is due in fact to other robot's actions. This probability decreases
proportionally with the number of similar situations that are taken into account. If a large number of
situations are considered, then there must be at least one for which the reward directly depends on the local
situation. By taking the minimum utility value of the set of similar situations, we are guaranteed that, if
the value is null, then the situation achieved does not imply loosing target(s).

The Pessimistic Algorithm is then given as follows:

� Let M be the memory, a lookup table of situation-action pairs gathered during

an exploration phase -- M = [(s(1); a(1)); :::; (s(t); a(t)); (s(t + 1); a(t+ 1)); :::].

� Let sit be the current situation.

� Find S(sit), the set of n situations of M similar to sit.

� Let Sfollow(sit) be the set of the situations that directly follows each

situation of S(sit).

� Compute the lower bound (LB) of the utility value (U) associated with each situation

s(k) 2 Sfollow(sit):

{ LB(s(k)) = min(U(s(m))), for s(m) 2 S(s(k)), the set of situations similar

to s(k).

� Execute the action that should take the robot to the new situation s
�: s

� =
max(LB(s)) and s 2 Sfollow(sit).

The utility U associated with a given situation can be computed in many ways. It can be the exact
value of the reinforcement function for this particular situation-action pair, or it can be a more elaborate
variable. For example, in our experience we store the situation-action pairs, plus the number of targets
under observation in the lookup table (M). However, the value that is used as utility is +1 if one or more
targets have been acquired compared to the previous situation, -1 if one or more targets have been lost, or
0 otherwise. An exact Q value requires running the Q-learning algorithm with the samples stored in the
memory.

Results of Learning Approach

We studied the eÆciency of the Pessimistic Algorithm by comparing the performance of a team of robots
with a purely random action selection policy, a user-de�ned non-cooperative policy and A-CMOMMT. In
these experiments, each robot situation is a vector of two times 16 components. The �rst 16 components
code the position and orientation of the targets. It simulates a ring of 16 sensors uniformly distributed
around the robot body. Each sensor measures the distance to the nearest target. The sensor position around
the body gives the orientation. The second ring of 16 components code in the same manner the position and
orientation of neighboring robots. The maximum range for a target or a robot to be seen is 1, for an arena
radius of 5. The actions of each robot are rotation and forward movement. The measure of performance is
the mean observation time of all targets.

A-CMOMMT

Pessimistic Lazy Learning

Random

Local

Lazy memory size

% targets under
observation

Figure 5: Performances of the Pessimistic lazy Q-learning approach compared to a random action selection
policy, a user-de�ned non-cooperative policy and the hand-generated solution A-CMOMMT. The size of the
lazy memory varies between 100 to 900 situation-action pairs. There are 10 robots and 10 randomly moving
targets. The results are the mean of 10 di�erent experiments per point for lazy learning policy, and 100
experiments for the other 3 policies. Each experiment duration is 1000 iterations.

Figure 5 shows the performance of a Pessimistic lazy Q-learning policy versus the size of the lazy memory,
from 100 to 900 situation-action pairs. Each point is the average of 10 experiments. The standard deviation
is also plotted on the graph. The lazy memories are obtained through an initial exploration involving from 15
to 25 targets and a single robot. During the sampling, the targets are �xed and the robot's policy is random
action selection (with 5% chance of direction and orientation changes). The reinforcement function returns
+1 if the total number of targets under observation increases, -1 if this number decreases, or 0 otherwise.

As we see there is an important performance gain associated with the Pessimistic lazy Q-learning over
a purely random selection policy. This clearly demonstrates the importance of lazy Q-learning as a learn-
ing technique. Even more interestingly, lazy Q-learning performs much better than the user-de�ned non-
cooperative policy (Local). It is important to note that neither policy is aware of the existence of the other
robots. Both policies use the same sensory information { i.e., the distance and orientation of nearby targets.
It is our opinion that the variation of performance is due to the fact that the lazy Q-learned behavior is
somewhat less rigid than the user-de�ned policy. A lazy Q-learning guided robot will follow a target further
than it could be, and, in doing so, will exhibit an erratic path, moving from one side of the target to another,
back and forth without losing the target. In doing so, the surface under observation per unit of time is larger
than the covered surface by the more rigid center-of-gravity-oriented robot. On the other hand, because it
does not take into account the neighboring robots, it is easy to understand why the lazy Q-learned behavior
performance cannot reach the level of the A-CMOMMT performance.

CONCLUSIONS

In this paper, we have proposed that the Cooperative Multi-robot Observation of Multiple Moving
Targets (CMOMMT) application domain provides a rich testbed for learning and adaptation in multi-robot
cooperative teams. We have described the need for learning and adaptation in multi-robot teams, and have
de�ned the CMOMMT application, along with the characteristics that make it an interesting testbed for
learning and adaptation. We reported on a hand-generated solution to the CMOMMT problem and discussed
how the results from the implementation of this solution reveal the need for learning and adaptation in this
domain. We discussed our work that uses the CMOMMT problem as a learning domain. The ultimate
objective is to develop learning techniques using the CMOMMT domain that will generalize to other real-
world domains, and will thus help realize the ultimate goal of enabling the widespread, practical use of
multi-robot teams.

ACKNOWLEDGEMENTS

This research is sponsored by the Engineering Research Program of the OÆce of Basic Energy Sciences,
U. S. Department of Energy. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or allow others to do so, for U. S. Government
purposes. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Dept. of Energy
under contract DE-AC05-00OR22725.

REFERENCES

[1] L. E. Parker. On the design of behavior-based multi-robot teams. Journal of Advanced Robotics, 1996.

[2] Gerhard Weiss and Sandip Sen, editors. Adaption and Learning in Multi-Agent Systems. Springer, 1996.

[3] Rodney A. Brooks and Maja J. Mataric. Real robots, real learning problems. In Jonathan H. Connell and
Sridhar Mahadevan, editors, Robot Learning. Kluwer Academic Publishers, 1993.

[4] L. E. Parker. Lifelong adaptation in heterogeneous teams: Response to continual variation in individual robot
performance. Autonomous Robots, 8(3), July 2000.

[5] L. E. Parker. ALLIANCE: An architecture for fault-tolerant multi-robot cooperation. IEEE Transactions on

Robotics and Automation, 14(2):220{240, 1998.

[6] David Jung, Gordon Cheng, and Alexander Zelinsky. Robot cleaning: An application of distributed planning
and real-time vision. In Alexander Zelinsky, editor, Field and Service Robotics, pages 187{194. Springer, 1998.

[7] David Jung and Alexander Zelinsky. An architecture for distributed cooperative planning in a behaviour-based
multi-robot system. Robotics and Autonomous Systems, 26:149{174, 1999.

[8] David Jung and Alexander Zelinsky. Grounded symbolic communication between heterogeneous cooperating
robots. Autonomous Robots, 8(3), July 2000.

[9] Randall Steeb, Stephanie Cammarata, Frederick Hayes-Roth, Perry Thorndyke, and Robert Wesson. Distributed
intelligence for air
eet control. Technical Report R-2728-AFPA, Rand Corp., 1981.

[10] M. Benda, V. Jagannathan, and R. Dodhiawalla. On optimal cooperation of knowledge sources. Technical
Report BCS-G2010-28, Boeing AI Center, August 1985.

[11] R. Korf. A simple solution to pursuit games. In Working Papers of the 11th International Workshop on

Distributed Arti�cial Intelligence, pages 183{194, 1992.

[12] Thomas Haynes and Sandip Sen. Evolving behavioral strategies in predators and prey. In Gerard Weiss and
Sandip Sen, editors, Adaptation and Learning in Multi-Agent Systems, pages 113{126. Springer, 1986.

[13] S. Mahadevan and J. Connell. Automatic programming of behavior-based robots using reinforcement learning.
In Proceedings of AAAI-91, pages 8{14, 1991.

[14] Maja Mataric. Interaction and Intelligent Behavior. PhD thesis, Massachusetts Institute of Technology, 1994.

[15] P. Stone and M. Veloso. A layered approach to learning client behaviors in the robocup soccer server. Applied
Arti�cial Intelligence, 12:165{188, 1998.

[16] S. Marsella, J. Adibi, Y. Al-Onaizan, G. Kaminka, I. Muslea, and M. Tambe. On being a teammage: Experiences
acquired in the design of robocup teams. In O. Etzioni, J. Muller, and J. Bradshaw, editors, Proceedings of the
Third Annual Conference on Autonomous Agents, pages 221{227, 1999.

[17] L. E. Parker. Distributed algorithms for multi-robot observation of multiple moving targets. To appear in

Autonomous Robots, 2000.

[18] L. E. Parker. Cooperative robotics for multi-target observation. Intelligent Automation and Soft Computing,

special issue on Robotics Research at Oak Ridge National Laboratory, 5(1):5{19, 1999.

[19] C. Touzet. Distributed lazy q-learning for cooperative mobile robots. Submitted for publication, 2000.

[20] D. Aha, editor. Lazy Learning. Kluwer Academic Publishers, 1997.

[21] J.W. Sheppard and S.L. Salzberg. A teaching strategy for memory-based control. In D. Aha, editor, Lazy
Learning, pages 343{370. Kluwer Academic Publishers, 1997.

[22] C. Watkins. Learning from Delayed Rewards. PhD thesis, King's College, Cambridge, 1989.

