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What is a Composite Material?

A new material formed from two or more materials
combined on a macroscopic scale

 Composites can exhibit the best qualities of the
constituents as well as new characteristics

 Composites have the advantages of flexibility and
tailorability
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History of Composites

* First Man-Made Composites
— Israelites - straw in mud bricks
— Egyptians - plywood
— Medieval knights - swords and armor

« Natural Composites
— Wood
— Bone
— Celery
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Types of Composites

 Laminated
— Bimetals, safety glass, clad metals, plywood, Formica

e Particulate

— Concrete, aluminum flakes in paint, short fiber/whisker
reinforced materials, SIC

* Fibrous
— Fiberglass, advanced composites
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Composites with Different Reinforcements
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Two Basic Classes of Fiber
Reinforced Composites

 Advanced (Aerospace) Composites
* Primarily used when performance is the driving issue
Used primarily for weight advantage
Usually long (continuous) filaments
High specific strength and stiffness
Anisotropic, or directional, bulk properties

« Commercial Composites
e Low to medium performance
» Usually short fiber or particle reinforcements

» Fiberglass is the most common composite used in
manufacturing
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Advanced Composites

e Fibers

Provide the mechanical
properties (load
bearing component)

e Matrix

Maintains alignment,
protects the fibers, and
transfers load between
the fibers
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Fiber Reinforcements

e Glass

e Carbon

Strength - 325 Ksi
Stiffness - 33.5 Msi
(Longitudinal direction)

e Aramid (Kevlar)

N\

Strength - 1 Ksi
Stiffness - 3.25 Msi
(Transverse or radial direction)

* Polyethylene (Spectra)
« Silicon Carbide

e Boron
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Fiber Reinforcements

e Long fibers are inherently much stronger and stiffer
than the same bulk material
— More perfect structurally
— Crystal alignment (near crystal sized diameter)
— Fewer internal defects

 Whiskers are generally short and stubby compared to
fibers, but have even fewer imperfections in
crystalline structure
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Carbon (Graphite) Fibers

o Used primarily in aerospace and sporting goods
applications

« Trade-off between high strength and high stiffness
(modulus)
Tensile Strength 270 - 1000 Ksi
Tensile Modulus 30 - 100 Msi

Failure Strain <2 % (typical)
Low negative coefficient of thermal expansion (CTE)

* Higher performance correlates with higher cost
M
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Glass Fibers

Used primarily in high-volume commercial applications

Moisture and corrosion resistant
Tensile Strength 300 - 500 ksi
Tensile Modulus 10 - 12 Msi
Failure Strain 5%
Low coefficient of thermal expansion (CTE)

E-Glass: lowest cost and most widely used
S-Glass: aerospace version (higher modulus and strength)
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Aramid Fibers

 Used in aerospace and armor (bullet-proof vests)
Tensile Strength 525 ksi
Tensile Modulus 18 Msi

 Damage tolerant

 Hygroscopic

e Difficult to machine

Oak RIDGE NATIONAL LABORATORY

U. 5. DEPARTMENT OF ENERGY Kent State University UT-BATTELLE




Boron Fibers

* Deposited on tungsten or graphite filament substrate
Tensile Strength 500 ksi
Tensile Modulus 60 Msi

o Large diameter (140 um)

e Difficult to machine
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Matrix Materials

* In fibrous composites, the matrix supports and
protects the fibers, provides load transfer between
fibers, and governs the composite shear and
compressive properties

 The load from a broken fiber or whisker is transferred
to adjacent fibers or whiskers by shearing stresses in
the matrix
— Generally isotropic
— Must flow and bond to fiber
— Low moisture uptake
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Types of Matrix Materials

o Metallic  Organic
— Aluminum — Thermosetting polymer
— Titanium — Thermoplastic polymer
— Copper
« Ceramic « Carbon
— Glass — High modulus (pitch-derived)
— Silicon carbide — High strength (acrylonitrile-derived)
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Polymer Matrix Materials

 Thermoset Resins
— Supplied in “liquid” form
— Viscosity is a function of polymerization chemistry
— Chemical triggers (hardeners) cause solidification
— Heating used to accelerate solidification and crosslinking
— Cannot be reprocessed by additional heating

* Epoxy, phenolic, polyester, vinyl ester, polyimide
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Polymer Matrix Materials

 Thermoplastic Resins
— Supplied in “solid” form
— Viscosity is a function of temperature
— Liquified by heating in fabrication processes
— Solidified and hardened by cooling
— May be softened and re-processed by additional heating

Oak RIDGE NATIONAL LABORATORY

U. 5. DEPARTMENT OF ENERGY Kent State University UT-BATTELLE




Fabrication of Polymer Matrix Composites

REINFORCEMENT RESIN
FABRICATION
TECHNIQUE
CURE

(HEAT, PRESSURE)

!

USABLE FORM

Oak RIDGE NATIONAL LABORATORY

U. 5. DEPARTMENT OF ENERGY Kent State University UT-BATTELLE




Fabrication Techniques - Prepreg

* Unidirectional prepreg is made in the form of tape or tow
» Cloth prepreg can also be made using woven products
o Usually the lay-up of prepreg is done by hand
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Fabrication Techniques - Hand Lay-Up

« Simplest fabrication method PREPREG MFG—

FREEZER

« Matrix applied by brush, spray,
or roller (unless using prepreg)

 Low quality, inexpensive
o Part-to-part variability

e Labor intensive

Autoclave or press required il
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Fabrication Techniques -

Inexpensive equipment

Flexible part size

Limited control of
fiber placement ‘

Fiber Roving
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Fabrication Techniques - Filament Winding
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» High-speed, automated process

* Precise and repetitive in fiber placement

» Little waste, no joints, near net-shape parts
* Material costs lower than for prepreg
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Fabrication Techniques - Filament Winding

Design Considerations

e Shape must permit mandrel removal unless it
becomes a part of the structure

* Problems with reverse curvature parts
« Generally poor external surface
e Winding variables: fiber tension, fiber angle

e Usually requires an axis of symmetry
Oak RIDGE NaT1oNAL LABORATORY M

U. 5. DEPARTMENT OF ENERGY Kent State University UT-BATTELLE




Fabrication Techniques - Pultrusion

‘bevice I Device.
DEVICE

DIP POT

Constant cross section (poles, boxes, angles)
Continuous process, continuous reinforcement
Cure is part of the processing

Low cost, minimum waste, fast
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Fabrication Techniques
Reaction Injection Molding (RIM)

RESIM

JRESIN POT
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Fabrication Techniques - Injection Molding
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« Complex parts e Short fibers
e High speed « EXxpensive equipment

Oak RIDGE NATIONAL LABORATORY

U. 5. DEPARTMENT OF ENERGY Kent State University UT-BATTELLE




Fabrication Technigques
Resin Transfer Molding (RTM)

« Injection of a resin system T

Into a closed tool containing .
a fiber preform, foam, and r;l‘wg ATDENER
Inserts 2 = il RESIM POT]
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— Bathtubs, keyboards
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Typical Cure Cycle for Thermoset Resin

» Heating rate and cooling rate are important
 Vacuum may be needed to remove volatiles and trapped air

pressure

_______________

temperature

time

 Oven curing may use vacuum, but does not use pressure
« Most resins cure at 250°F to 450°F
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Radiation Curing Of Composites

e Radiation processing is a revolutionary technology for
manufacturing high-performance composite parts
efficiently and inexpensively

 lonizing radiation - in the form of high energy
electrons or x-rays - is used at controlled rates to
cure polymers

* Result is very fast, non-thermal, non-autoclave curing
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Polymer Matrix Composites - Advantages

« Weight savings (high specific strength and specific
stiffness).

e Material properties can be tailored by orientation and

location of reinforcements
— Stiffness (modulus)

— Strength

— Vibration damping

— Thermal properties

— Sound transmision
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Polymer Matrix Composites - Advantages

Corrosion and wear resistance

Mechanical properties

Dimensional stability Ease of fabrication and assembly

Fracture resistance Net shape fabrication

Fatigue life  Reduced number of parts
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Polymer Matrix Composites - Concerns

« Complex analysis required due to anisotropy

« Failure modes are often difficult to predict

« Can be environmentally sensitive
— Moisture absorption
— Solvents, fuels
— Radiation
— Erosion
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Polymer Matrix Composites - Concerns

 Mechanical properties can depend on
temperature, time and/or loading rate

e Scatter in properties of fibrous composites

« Cost of materials and some manufacturing
processes

* Process repeatability

» Inspection difficult

Reprocess/rework/repair
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