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Abstract We consider a multiple sensor system such that for each sensor the outputs are
related to the actual feature values according to a certain probability distribution.
We present an overview of informational and computational aspects of a fuser
that is required to combine the sensor outputs to more accurately predict the
feature, when the sensor distributions are unknown but iid measurements are
given. Our focus is on methods to compute a fuser with probabilistic guarantees
in terms of distribution-free performance bounds based on a finite sample. We first
discuss a number of methods based on the empirical risk minimization approach.
These methods yield a fuser which is guaranteed, with a high probability, to
be close to an optimal fuser (computable only under a complete knowledge of
sensor distributions). Then we describe the isolation fusers that are guaranteed
to perform at least as good as the best sensor, and the projective fusers that are
guaranteed to perform at least as good as the best subset of sensors. Then we
consider physical systems wherein the training data consisting of actual physical
values is not available. We discuss methods that utilize the physical laws to obtain
a suitable fuser under these conditions.

Keywords: Sensor fusion, information fusion, empirical risk minimization, vector spaces,
neural networks.

1. INTRODUCTION

Fusion or combination of information from multiple sources to achieve
performances exceeding those of individual sources has been recognized for
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centuries in diverse areas such as political economy models (Grofman and
Owen, 1986), and composite methods (de Laplace, 1818); a brief overview of
these works can be found in (Madan and Rao, 1999). In the twentieth cen-
tury, such fusion methods continued to be applied in a wide spectrum of areas
such as reliability (von Neumann, 1956), forecasting (Granger, 1989), pattern
recognition (Chow, 1965), neural networks (Hashem et al., 1994), decision fu-
sion (Dasarathy, 1994; Varshney, 1996), and statistical estimation (Brieman,
1996; Juditsky and Nemirovski, 1996).

In engineering systems, the fusion methods have been proven to be par-
ticularly important since they can provide multiple sensor capabilities, which
are significantly beyond those of single sensor systems. In particular, many
researchers realized the fundamental limitations of single sensor systems in a
number of application areas such as robotics (Brady, 1988; Abidi and Gon-
zalez, 1992), and tracking (Bar-Shalom and Li, 1995), thereby motivating the
deployment of multiple sensors. Information fusion is very important in such
multiple sensor systems, and is often referred to asmultisensor fusionor simply
sensor fusion. The overall objective is the same across the disciplines, namely
to “fuse” the information from many different sensors to overcome the limita-
tions of a single sensor. Although one would expect a fuser to perform better
than any of the sensors, it is not at clear as to how to design such fuser. Thus,
systematic approaches to fuser design are very critical to the overall perfor-
mance, for an inappropriate fuser can render the system worse than the worst
individual sensor.

In engineering systems, the sensor fusion problems present technical chal-
lenges in ways unprecedented in other disciplines. Early information fusion
methods require either independence of sensor errors or closed-form analytical
expressions for sensor distributions. In the first case, a general majority rule
suffices, while in the second a fusion rule can be computed using the Bayesian
methods. Several popular distributed decision fusion methods belong to the
latter class (Dasarathy, 1994; Varshney, 1996). In engineering systems, how-
ever, independence can seldom be assured and, in fact, may not be satisfied.
Bayesian methods are not particularly conducive either from an information
or from a cost perspective. Typically, the fusion rules are “selected” from a
specific function class chosen by the designer to ensure the convergence of the
fuser computation. On the other hand, the sensor distributions are not within
the hands of the user, and can be arbitrarily complicated in complex engineering
systems. As a result, the problem of obtaining the sensor distributions required
by the Bayesian methods is more difficult, in an information-theoretic sense,
than the fusion problem itself (Vapnik, 1982). In addition, deriving closed
form expressions for sensor distributions is a very difficult and expensive task
in these systems since it requires the knowledge of a variety of areas such as
device physics, electrical engineering, and statistical modeling.
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The fusion problems arising in operational engineering and robotic systems,
however, have a positive side: it is easy to collect “data” by sensing objects and
environments with known parameters. Thus, practical solutions to these sensor
fusion problems must exploit the empirical data available from the observation
and/or experimentation, which is the main topic of this paper. We present a
summary of methods for fusion rule estimation from empirical data, which has
became possible largely due to the developments in empirical process theory
and computational learning theory. Our main focus is on methods that provide
performance guarantees based on finite samplesfrom a statistical perspective.
In particular, we do not cover adhoc fusion rules with no performance bounds
or results based on asymptotic guarantees that are validonlyas the sample size
approaches infinity. Our approach is based on a statistical formulation of the
problem for the most part with the exception of physical systems in Section 8.
In this respect, our solutions do not fully capture the non-statistical aspects such
as calibration and registration, which can be incorporated into a suitable cost
function. But, our results provide an analytical justification of sample-based
approaches to the sensor fusion problem, and establish the basic tractability
of the solutions. We believe that our performance bounds can be improved in
specific cases by suitably incorporating the application specific details.

The organization of this paper is as follows. We present the problem for-
mulation in Section 2. In Section 3, we present several solutions based on the
empirical risk minimization methods. In Section 4, we present solutions based
on non-linear statistical estimators. We describe applications of these methods
in Section 5. In Section 6, we address the issues of relative performance of the
composite system and the individual sensors. We describe the metafusers in
Section 7. Then, in Section 8, we discuss a special class of the fusion problem
which can be efficiently solved by utilizing the physical laws. In Section 9, we
present an approach to incorporating known conditional distributions into the
fuser computation. Our presentation is tutorial in nature in that we describe
only the main results, and the specific details can be found in the references.

2. PROBLEM FORMULATION

In a generic sensor systemof N sensors, the sensorSi, i = 1; 2; : : : ; N ,
outputsY (i) 2 <d corresponding to inputX 2 <d according to the distribution
PY (i)jX . The inputX is the quantity that needs to be “estimated” or “measured”
by the sensors, such as the presence of a target or a value of the feature vector.
Theexpected errorof the sensorSi is given by

I(Si) =

Z
C
�
X;Y (i)

�
dPY (i);X ;

whereC : <d � <d 7! < is a cost function.I(Si) is a measure of how good
the sensorSi is in “sensing” the input featureX. For example, ifSi is a target
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detector or classifier, a choice could beX 2 f0; 1g andY (i) 2 f0; 1g, where
X = 1 (0) corresponds to the presence (absence) of a target. Then

I(Si) =

Z h
X � Y (i)

i
dPY (i);X

corresponds to the probability of misclassification (false alarm or missed de-
tection) ofSi, where� is the exclusive-OR operation.

There are two types of errors that a sensor can make. Themeasurement error
corresponds to the randomness involved in measuring a particular value of the
featureX, which is distributed according toPY (i)jX . Thesystematic errorat

X corresponds toE[C(X;Y (i))jX] which must be0 in the case of a perfect
sensor.

Example 2.1: Consider a sensor system consisting of two sensors. For the first
sensor, we haveY (1) = a1X + Z, whereZ is normally distributed with zero
mean, and is independent ofX. That is, first sensor has a scaling error and
a random additive error. For the second sensor, we haveY (2) = a2X + b2,
which has a scaling and bias error. LetX be uniformly distributed over[0; 1],
andC[X;Y ] = (X � Y )2. Then, we haveI(S1) = (1 � a1)

2 andI(S2) =
(1� a2 � b2)

2, which are non zero in general.

We consider a fuserf : <Nd 7! <d that combines the outputs of sensors
Y =

�
Y (1); Y (2); : : : ; Y (N)

�
to produce the fused outputf(Y ). Theexpected

error of the fuserf is given by

IF (f) =

Z
C(X; f(Y ))dPY;X

whereY =
�
Y (1); Y (2); : : : ; Y (N)

�
. The objective of fusion is to ensure

that IF (f) is as small as possible. Note that a fuser must account for both
the systematic and measurement errors of the sensors in order to achieve a
low expected error. The fuser can be chosen from a family of fusion rules
F = ff : <N 7! <g and, theexpected bestfusion rulef� minimizesIF (:)
overF , i.e.

IF (f
�) = min

f2F
IF (f):

For example,F could be the set of sigmoidal neural networks obtained by
varying the weight vector for a fixed architecture. In this casef� = fw�
corresponding to the weight vectorw� that minimizesIF (:) over all the weight
vectors.

Example 2.1: (Continued) Consider the fuser

f
�
Y (1); Y (2)

�
=
Y (1)

2a1
+

1

2a2
(Y (2) � b):
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For this fuser, we haveIF (f) = 0, since the biasb is subtracted fromY (2) and
the multipliers cancel the scaling error. In practice, however, such fuser can be
designed only when the sensor distributions are known.

In our formulation, sinceIF (:) depends on theunknownerror distribution
PY;X , f� cannot be computed even in principle. We consider that only an
independently and identically distributed (iid)l-sample

(X1; Y1); (X2; Y2); : : : ; (Xl; Yl)

is given, whereYi =
�
Y

(1)
i ; Y

(2)
i ; : : : ; Y

(N)
i

�
andY (j)

i is the output ofSj in
response to inputXi. Now the question is what type of performance guarantees
are reasonable to expect under this formulation ? The answer can be found in the
area of Probably Approximately Correct (PAC) learning (Vapnik, 1982; Valiant,
1984). We consider methods to compute an estimatorf̂ , basedonly on a
sufficiently large sample, such that

P l
Y;X

h
IF (f̂)� IF (f

�) > �
i
< Æ (1.1)

where� > 0 and0 < Æ < 1, andP l
Y;X is the distribution of iidl-samples.

For simplicity, we denoteP l
Y;X by P . Informally, this condition states that

the “error” of f̂ is within � of the optimal error (off�) with an arbitrary high
probability1�Æ, irrespectiveof the underlying sensor distributions. Intuitively,
it is a reasonable criterion sincêf is to be “choosen” from an infinite set, namely
F , based only on a finite sample. More concretely, conditions that are strictly
stronger than Eq 1.1 are generally not possible. For example, consider the
conditionP l

Y;X [IF (f̂) > �] < Æ for the caseF = ff : [0; 1]N 7! f0; 1gg. This
condition cannot be satisfied, since for anyf 2 F , there exists a distribution
for which IF (f) > 1=2 � � for any� 2 [0; 1]; see Theorem 7.1 of (Devroye
et al., 1996) for details.

Example 2.1: (Continued) To illustrate the effects of finite samples, con-
sider that we generate three values forX given byf0:1; 0:5; 0:9g with cor-
respondingZ values given byf0:1;�0:1;�0:3g. The corresponding values
for Y (1) andY (2) are given byf0:1a1 + 0:1; 0:5a1 � 0:1; 0:9a1 � 0:3g and
f0:1a2 + b2; 0:5a2 + b2; 0:9a1 + b2g respectively. Consider the class of linear

fusers suchf
�
Y (1); Y (2)

�
= w1Y

(1) +w2Y
(2) +w3. Based on the measure-

ments, the following weights enable the fuser outputs to exactly matchX values
for each of the measurements:

w1 =
1

0:2 � 0:4a1
; w2 =

1

0:4a2
and w3 =

0:1a1 + 0:1

0:4a1 + 0:1
�

0:1a2 + b2
0:4a2

:

While the fuser with these weights achieves zero error on the measurements
it does not achieve zero value forIF . Note that a fuser with zero expected
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error exists, and can be computed if the sensor distributions are given. The idea
behind the criterion in Eq 1.1 is to achieve performances close to optimal fuser
using only a sample. To meet this criterion one needs to select a suitableF ,
and then achieve small error on a sufficiently large sample, as will be illustrated
subsequently.

The generic sensor fusion problem formulated here is fairly general and re-
quires very little information about the sensors: a sensor could be a hardware
device, a software module or a combination. We now briefly describe some
concrete examples, which are described in detail in Section 5. In the door de-
tection example (Rao, 1997b),Si is an ultrasonic or infrared detector, and the
objective is to detect doors that are wide enough for a robot to pass through.
In the example of function estimation (Rao, 1997a),Si is a software module
that predicts a function value with certain errors, and the objective is to fuse
a number of such modules to improve the prediction accuracy. In both exam-
ples, the sensors are available so that the training sample can be collected by
experimentation.

2.1 RELATED WORKS

Due to the generic nature of the sensor fusion problem described here, it is
related to a number of similar problems applied in a wide variety of areas. Here
we briefly show its relationship to some of the well-known methods in engi-
neering areas. If the sensor error distributions are known, several fusion rule
estimation problems have been solved by methods not requiring the samples.
Some of the earlier work in this direction is due to (Chow, 1965). This prob-
lem is also related to the group decision models studied extensively in political
economy; for example see (Grofman and Owen, 1986). Indeed, early major-
ity methods of combining the outputs of probabilistic Boolean elements date
back to 1786 under the name of Condorcet jury models. The distributed detec-
tion problem based on probabilistic formulations has been extensively studied
(Varshney, 1996). These problems are special cases of the generic fusion prob-
lem such thatX 2 f0; 1g andY 2 f0; 1gN , but the difference is that they
assume that various probabilities are available. In the systems where only mea-
surements are available the existing methods are not useful, but the solutions to
the generic sensor fusion problem are applicable. In general, however, much
tighter performance bounds are possible since distribution detection is a special
(namely Boolean) case of the generic sensor fusion problem (Rao and Oblow,
1994; Rao and Oblow, 1997). Also, in many cases the solutions based on known
distributions case can be converted to sample-based ones (Rao, 1996).

Many of the existing information integration techniques are based on max-
imizing a posteriori probabilities of hypotheses under a suitable probabilistic
model. However, in situations where the probability densities are unknown (or
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difficult to estimate) such methods are ineffective. One alternative is to estimate
the density based on a sample. But, as illustrated in general by (Vapnik, 1982),
the density estimation is more difficult than the subsequent problem of esti-
mating a function chosen from a family with bounded capacity. This property
holds for several pattern recognition and regression estimation problems (Vap-
nik, 1982). In the context of feedforward neural networks that are employed
to “learn” a function based on sample, the problem is to identify the weights
of a network of chosen architecture. The choice of weights picks a particular
networkf̂ from a familyF of neural networks of a particular architecture. This
family F satisfies bounded capacity (Anthony, 1994) and Lipshitz property
(Tang and Koehler, 1994). Both these properties are conducive for the statis-
tical estimation off̂ as explained in the next section. On the other hand, no
such information is available about the class from which the unknown density
is chosen, which makes it difficult to estimate the density.

3. EMPIRICAL RISK MINIMIZATION

In this section we present fusion solutions based on the empirical risk mini-
mization methods (Vapnik, 1982). Consider that the empirical estimate

Iemp(f) =
1

l

lX
i=1

h
Xi � f

�
Y

(1)
i ; Y

(2)
i ; : : : ; Y

(N)
i

�i2

is minimized byf̂ 2 F . Using Vapnik’s empirical risk minimization method
(Vapnik, 1982), for example, we can show (Rao, 1995) that ifF has finite
capacity, then under bounded error, or bounded relative error for sufficiently
large sample

P l
Y;X

h
IF (f̂)� IF (f

�) > �
i
< Æ

for arbitrarily specified� > 0 andÆ, 0 < Æ < 1. Typically, the required sample
size is expressed in terms of� andÆ and the parameters ofF .

In this section, we describe several different classes ofF and their sample
size estimators. We first describe the most general condition available onF
under which the performance guarantee in Eq 1.1 can be assured. The sample
sizes in this case are based on the scale-sensitive dimension (Alon et al., 1993).
Then we present specific cases of feedforward networks and vector spaces that
will also provide the performance guarantees. We apply the specific properties
of these function classes to derive the sample size estimates, which are in general
tighter than the general bounds.

3.1 SCALE-SENSITIVE DIMENSION

We first present the definition of scale-sensitive dimension (Alon et al., 1993);
also see (Anthony and Bartlett, 1999) for a more detailed discussion. LetF be
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a class of[0; 1]-valued functions on some domain setD and let� be a positive
real number. We say thatF P�-shattersa setA � D if there exists a function
s : A 7! [0; 1] such that for everyE � A there exists somefE 2 F satisfying:
for everyx 2 A�E, fE(x) � s(x)��, and for everyx 2 E, fE(x) � s(x)+�.
Let theP�-dimensionofF , denoted byP�-dim (F), be the maximal cardinality
of a setA � D that isP�-shattered byF .

The following theorem presents an estimate of the sample size to ensure the
condition in Eq 1.1 whenF has finite a scale-sensitive dimension (Alon et al.,
1993) andX 2 [0; 1].

Theorem 1 (Rao, 1999b) Letf� andf̂ denote the expected best and empirical
best fusion rules chosen from a function classF with range [0; 1]. Given a
sample of size

5040

�2
max

�
dS ln

2 50dS
�

; ln
48

Æ

�

wheredS = P�=4-dim (F), we haveP
h
IF (f̂)� IF (f

�) > �
i
< Æ.

Theorem 1 provides us the sufficient sample size as a function of�, Æ and
dS . One needs to simply computêf that minimizes the empirical error on
a sample of sufficient size to ensure the performance condition. The scale-
sensitive dimension is known for several classes such as neural networks and
linear combinations (Anthony and Bartlett, 1999). While the above bound is
not tight (due to its general applicability), it does establish that the fuser rule
estimation is a tractable problem from a statistical standpoint. The result of
Theorem 1 is more general than that in (Rao, 1994; Rao, 1995) which is based
on capacity ofF (Vapnik, 1982) in that finiteness of capacity implies that of
scale-sensitive dimension but not vice versa.

This theorem can be generalized in a straight forward manner to handle the
cases: (a)Y (i) is a multi-dimensional vector from<d, and/or (b)X 2 [0; � ],
� > 0. The cost function can also be generalized to Lipschitz cost functions
with an appropriate change in the sample size (Rao and Protopopescu, 1998).

The sample bound is based on uniform convergence of empirical means to
their expectations for function classes, which are available from the empirical
process theory (Pollard, 1990; van der Vaart and Wellner, 1996; Talagrand,
1994) and its applications to machine learning (Vapnik, 1995; Haussler, 1992).
Results of this kind are available based on a number of characterizations of
F such as pseudo-dimension (Pollard, 1990), fat VC-dimension (Kearns and
Schapire, 1994), scale-sensitive dimension (Alon et al., 1993), graph dimension
(Dudley, 1987), and Euclidean parameters (Talagrand, 1994; Nolan and Pol-
lard, 1987), which can be used to obtain sample size estimates along the lines of
Theorem 1. Finiteness of these parameters is only sufficient for the “learnabil-
ity” of bounded functions, while that of the scale sensitive dimension is both
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necessary and sufficient (Alon et al., 1993). Moreover, the latter is only such
deterministic quantity known to us, while other similar quantities are based on
expected capacity or entropy (Vapnik, 1995; van der Vaart and Wellner, 1996).

The empirical risk minimization simply requires thatf̂ minimize the empir-
ical error, and does not specify methods tocomputeit. In general computation
of f̂ in this general framework is intractable. For example, in the special case
thatF is set of feedforward neural networks with threshold hidden units, this
problem is NP-complete even for simple architectures (Blum and Rivest, 1992).
Also, since no restrictions are placed on the information of the sensors, even if
there is no probabilistic error in the sensors, several multisensor fusion problems
are NP-complete (Tsitsiklis and Athans, 1985; Rao, 1991; Rao et al., 1993). For
the more restrictive cases whereF is chosen to be a special class, the computa-
tional problems is not always easier. Indeed very few subclasses of the fusion
estimation problems are known to be inherently polynomial-time solvable. In
linearly separable systems (Rao, 1994), the associated computational problem
can be solved (exactly) as a quadratic programming problem, which be solved
in polynomial time.

In the next two sections, we describe two practical solutions to the sensor
fusion problem. The first method is based on feedforward neural networks. It is
applied in a number of practical cases with good results although the underlying
computational problem is not known to be polynomial-time computable. The
second method is based on the vector space method which includes linear fusers
as a special case. This method is widely used in practice and has the advantage
of being polynomial-time solvable. Thus, the choice ofF has a significant
effect on both the sample complexity as well as computational complexity.

3.2 FEEDFORWARD SIGMOIDAL NETWORKS

We consider a feedforward network with a single hidden layer ofk nodes and
a single output node. The output of thejth hidden node is�(bTj y + tj), where
y 2 [�B;B]N , bj 2 <N , tj 2 <, and the nondecreasing� : < 7! [�1;+1]
is called theactivation function. The output of the network corresponding to
input y is given by

fw(y) =
kX

j=1

aj�(b
T
j y + tj)

wherew = (w1; w2; : : : ; wk(d+2)) is theweight vectorof the network consisting
of a1, a2, : : :, ak, b11; b12; : : : ; b1d; : : :, bk1; : : : bkd, andt1; t2; : : : ; tk. Let the
set ofsigmoidal feedforward networkswith bounded weightsbe denoted by

F

W = ffw : w 2 [�W;W ]k(d+2)g

where0 < 
 <1, and�(z) = tanh�1(
z); 0 < W <1.
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The following theorem provides several sample size estimates for the fusion
rule estimation problem based on the different properties of neural networks.

Theorem 2 (Rao, 1999a) Consider the class of feedforward neural networks
F

W .LetX 2 [�A;A] andR = 8(A+ kW )2. Given a sample of size at least

16R

�2

�
ln(18=Æ) + 2 ln(8R=�2) + ln(2
2W 2kR=�)

+

W 2kR

�

2
4
 

W 2kR

�
� 1

!N�1
+ 1

3
5
1
A ;

the empirical best neural network̂fw inF

W approximates the expected bestf�w

in F

W such that

P
h
IF (f̂w)� IF (f

�
w) > �

i
< Æ:

The same condition can also be ensured under the sample size

16R

�2

�
ln(18=Æ) + 2 ln(8R=�2) + k(d+ 2) ln(LwR=�)]

�

whereLw = max(1;WB
2=4;W
2=4), or, for 
 = 1,

128R

�2
max

�
ln

�
8

Æ

�
; ln

�
16e(k + 1)R

�

��
:

These sample sizes are based on three qualitatively different parameters of
F , namely, (a) Lipschitz property off(y) 2 F with respect to inputy (Rao,
1994), (b) compactness of weight set and smoothness off 2 F with respect
to weights, and (c) VC-dimension of translates of sigmoid units (Lugosi and
Zeger, 1995). The three sample estimates provide three different means for
controlling the sample size depending on the available information and intrinsic
characteristics of the neural network classF


W . The sample sizes in the first
and second bounds can be modified by changing the parameter
. For example,
by choosing
 = �

W 2kR
the first sample size can be reduced to a simpler form

16R

�2

�
ln(18=Æ) + ln

�
128R

W 2k�2

��
:

Also, by choosing
2 = 4
W max(1;B) , we have a simpler form of the second

sample size estimate

16R

�2

�
ln

�
1152

Æ

�
+ k(d+ 2) ln(R=�)

�
;
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for R � 1. In practice, it could be useful to compute all three bounds and
choose the smallest one.

These three sample bounds are based on utilizing the boundedness of weights
of neural network. If boundedness is not satisfied, one utilizes either VC-
bounds (Koiran and Sontag, 1997) or scale-sensitive dimension (Anthony and
Bartlett, 1999) to estimate the sample size, which in general results in larger
sample bounds; see (Rao, 1999e) for details. We believe, however, in practical
implementations the weights are always bounded.

The problem of computing the empirical best neural networkf̂w is still
difficult, and is NP-complete for very general subclass ofF


W (Sima, 1996).
However, in several practical cases very good results have been obtained us-
ing the backpropagation algorithm which provides an approximation tof̂w.
This algorithm is very easy to implement, and is also available in a number of
commercial neural network packages. For the vector space method in the next
section, the computation problem is polynomial-time solvable.

3.3 VECTOR SPACE METHODS

We now present a method that is attractive from an analytical point of view.
Consider thatF forms a finite dimensional vector space. In this case: (a)
sample size is a simple function of the dimensionality ofF , (b) f̂ can be easily
computed by well-known least square methods in polynomial time, and (c) no
smoothness conditions are required on the functions or distributions.

Theorem 3 (Rao, 1998c)Letf� andf̂ denote the expected best and empirical
best fusion functions chosen from a vector spaceF of dimensiondV and range
[0; 1]. Given an iid sample of size

512

�2

�
dV ln

�
64e

�
+ ln

64e

�

�
+ ln(8=Æ)

�
;

we haveP
h
IF (f̂)� IF (f

�) > �
i
< Æ.

If ff1; f2; : : : ; fdV g is a basis ofF , f 2 F can be written asf(y) =
dVP
i=1

aifi(y) for ai 2 <. Then consider

f̂ =
dVX
i=1

âifi(y)

such that̂a = (â1; â2; : : : ; âdV ) minimizes the cost expressed as

Iemp(a) =
1

l

lX
k=1

0
@Xk �

dVX
i=1

aifi(Yk)

1
A

2

;
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wherea = (a1; a2; : : : ; adV ). NowIemp(a) can be written in the quadratic form
aTCa + aTD, whereC = [cij ] is a positive definite symmetric matrix, and
D is a vector. This problem can be solved in polynomial-time using quadratic
programming methods (Vavasis, 1991).

This method subsumes two very important cases:

(a) Potential Functions:The potential functions of Aizermanet al. (Aiz-
erman et al., 1970), wherefi(y) is of the formexp((y � �)2=�) for
suitably chosen constants� and�, constitute an example of the vector
space methods. An incremental algorithm was originally proposed for
the computation of the coefficient vectora, for which finite sample results
have been derived recently (Rao et al., 1996) under certain conditions.
The sample size estimate of Theorem 3 is simpler compared to the ex-
isting finite sample results. Note that the above sample size is valid only
for the method that minimizesIemp(:) and is not valid for the original
incremental algorithm of the potential functions.

(b) Special Neural Networks:In two-layer sigmoidal networks of (Kurkova,
1992), the unknown weights are only in the output layer. The specific
form of these networks enables us to express each network in the form
dVP
k=1

ai�i(y)where�i(:)’s are universal. These networks have been shown

to approximate classes of the continuous functions with arbitrarily spec-
ified precision in a manner similar to the general single layer sigmoidal
networks as shown in (Cybenko, 1989).

3.4 ASYMPTOTIC CONSISTENCY

In statistics literature, the asymptotic consistency results are more common.
The finite sample guarantees in Eq 1.1 often lead to asymptotic results by a
direct application of the Borel-Cantelli Lemma (Billingsley, 1986) as will be
shown here. The estimatêf is consistentif IF (f̂) ! IF (f

�) with probability
one asl !1. In several cases,Æ can be rewritten as a function of the sample
size,�, and parameters ofF . We consider the general case in Section 3.1. In
this case we have (Rao, 1999b)

Æ = 48l

�
4608l

�2

�dS log2(96en=(d�))

e��
2l=144

wheredS = P�=4-dim (F). Under the finiteness ofdS , the consistency result
follows from the Borel-Cantelli if

1X
l=1

48l

�
4608l

�2

�d log2(96en=(dS�))
e��

2l=144 � 1
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for every� > 0, which can be easily shown. Similar results can be shown for
various conditions used for sigmoid neural networks, and vector space methods.

4. STATISTICAL ESTIMATORS

The fusion rule estimation problem is very similar to the regression estima-
tion problem. In this section we present a polynomial-time (in sample sizel)
computable estimator which guarantees the criterion in Eq 1.1 under additional
smoothness conditions. Our presentation is based on Nadaraya-Watson esti-
mator applied to the sensor fusion problem. As is the case with most available
statistical estimators, their original performance guarantees are asymptotic. In
general finite sample results had to be derived for these estimators to be applied
the sensor fusion problem under criterion in Eq 1.1.

We first present some preliminaries needed for the main result. LetQ denote
the unit cube[0; 1]N andC(Q) denote the set of all continuous functions defined
onQ. The modulus of smoothness off 2 C(Q) is defined as

!1(f ; r) = sup
ky�zk1<r; y;z2Q

jf(y)� f(z)j

wherek y�z k1=
M

max
i=1

jyi�zij. Form = 0; 1; : : :, letQm denote a family of

diadic cubes (Haar system) such thatQ =
S

J2Qm

J , J \J 0 = ; for J 6= J 0, and

theN -dimensional volume ofJ , denoted byjJ j, is2�Nm. Let1J(y) denote the
indicator function ofJ 2 Qm: 1J(y) = 1 if y 2 J , and1J(y) = 0 otherwise.
For givenm, we define the mapPm on C(Q) as follows: forf 2 C(Q), we
havePm(f) = Pmf defined by

Pmf(y) =
1

jJ j

Z
J
f(z)dz

for y 2 J and J 2 Qm (Ciesielski, 1988). Note thatPmf : Q 7! [0; 1]
is a discontinuous (in general) function which takes constant values on each
J 2 Qm. TheHaar kernelis given by

Pm(y; z) =
1

jJ j

X
J2Qm

1J(y)1J (z)

for y; z 2 Q.
Given l-sample, the Nadaraya-Watson estimator based on Haar kernels is

defined by

f̂m;l(y) =

lP
j=1

XjPm(y; Yj)

lP
j=1

Pm(y; Yj)

=

P
Yj2J

Xj

P
Yj2J

1J(Yj)
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for y 2 J (Rao, 1983; Engel, 1994). The second expression indicates that
f̂m;l(y) is the mean of the function values corresponding toYj ’s in J that
containsy. This property is the key to efficient computation of the estimate
(Rao and Protopopescu, 1996).

The Nadaraya-Watson estimator based on more general kernels is well-
known in statistics literature (Nadaraya, 1989). This estimator was found to be
very effective in a number of applications involving nonlinear regression esti-
mation. The typical results about the performance of this estimator are in terms
of asymptotic results, and are not particularly targeted towards fast computa-
tion. The above computationally efficient version based on Haar kernels is due
to (Engel, 1994), which was subsequently shown to yield finite sample guaran-
tees in (Rao and Protopopescu, 1996). The result of (Rao and Protopopescu,
1996) requires finiteness of capacity ofF in addition to smoothness, and the
following theorem specifies the sample size based only on smoothness.

Theorem 4 (Rao, 1997a)Consider a family of functionsF � C(Q) with range
[0; 1] such that!1(f ; r) � kr for some0 < k <1. We assume that: (i) there
exists a family of densitiesP � C(Q); (ii) for eachp 2 P, !1(p; r) � kr; and
(iii) there exists� > 0 such that for eachp 2 P, p(y) > �for all y 2 [0; 1]N .
Suppose that the sample size,l, is larger than

22m+4

�21

" 
k2m

�1

"�
k2m

�1
� 1

�N�1
+ 1

#
+m

!
ln
�
2m+1k=�1

�

+ ln

 
22m+6

(Æ � �)�41

!#

where�1 = �(�� �)=4, 0 < � < N
2(N+1) ,m = d log l�N e and

� = b

�
2

�

�1=N+1�1=2�

+ b

�
2

�1

�1=N+1�1=2�

:

Then for anyf 2 F , we haveP
h
IF (f̂m;l)� IF (f

�)j > �
i
< Æ:

The value off̂m;l(y) at a giveny is the ratio of local sum ofXi’s to the
number ofYi’s in J that containsy. The range-tree (Preparata and Shamos,
1985) can be constructed to store the cellsJ that contain at least oneYi; with
each such cell, we store the number of theYi’s that are contained inJ and the
sum of the correspondingXi’s. The time complexity of this construction is
O(l(log l)N�1) (Preparata and Shamos, 1985). Using the range tree, the values
of J containingy can be retrieved inO((log l)N ) time (Rao and Protopopescu,
1996).
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Training Testing Nadaraya- Nearest Neural
Set Set Watson Neighbor Network

100 10 0.000902 0.002430 0.048654
1000 100 0.001955 0.003538 0.049281
10000 1000 0.001948 0.003743 0.050942

(a)d = 3

Training Testing Nadaraya- Nearest Neural
Set Set Watson Neighbor Network

100 10 0.004421 0.014400 0.018042
1000 100 0.002944 0.003737 0.021447
10000 1000 0.001949 0.003490 0.023953

(b) d = 5

Table 1.1 Fusion of function estimators: mean square error over test set.

The smoothness conditions required in Theorem 4 are not very easy to verify
in practice. However, this estimator is found to perform well in a number of
applications including those that do not have smoothness properties (see next
section). Several other statistical estimators can also be used for fusion rule
estimation, but finite sample results must be derived to ensure the condition in Eq
1.1. Such finite sample results are available for adapted nearest-neighbor rules
and regressograms (Rao and Protopopescu, 1996) which can also be applied
for the fuser estimation problem.

5. APPLICATIONS

We present three concrete applications to illustrate the performance of meth-
ods described in the previous sections – the first two are simulation examples
and the third one is an experimental system. In addition, the first two examples
also provide results obtained with the nearest neighbor rule, which is analyzed
elsewhere (Rao, 1994). In the second example, we also consider another esti-
mate, namely, the empirical decision rule described in (Rao and Iyengar, 1996).
Pseudo random number generators are used in both the simulation examples.

Example 5.1: Fusion of Noisy Function Estimators:(Rao, 1997a) Consider
five estimators of a fuctiong : [0; 1] 7! [0; 1] such thatith estimator out-
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puts a corrupted valueY (i) = gi(X) of g(X) when presented with input
X 2 [0; 1]d. The fused estimatef(g1(X); : : : ; g5(X)) must closely approx-
imate g(X). Hereg is realized by a feedforward neural network, and, for
i = 1; 2; : : : ; 5, gi(X) = g(X)(1=2+ iZ=10) whereZ is uniformly distributed
over[�1; 1]. Thus we have1=2�i=10 � gi(X)=g(X) � 1=2+i=10. Table 1.1
corresponds to the mean square error in the estimation off for d = 3 andd = 5,
respectively, using the Nadaraya-Watson estimator, nearest neighbor rule, and
a feedforward neural network with backpropagation learning algorithm. Note
the superior performance of the Nadaraya-Watson estimator.

Example 5.2: Decision Fusion: (Rao and Iyengar, 1996; Rao, 1999a) We
consider 5 sensors such thatY 2 fH0;H1g

5 such thatX 2 fH0;H1g corre-
sponds to “correct” decision, which is generated with equal probabilities, i. e.,
P (X = H0) = P (X = H1) = 1=2. The error of sensorSi, i = 1; 2; : : : ; 5,
is described as follows: the outputY (i) is correct decision with probability of
1� i=10, and is the opposite with probabilityi=10. The task is to combine the
outputs of the sensors to predict the correct decision. The percentage error of
the individual detectors and the fused system based on the Nadaraya-Watson
estimator is presented in Table 1.2. Note that the fuser is consistently better
than the best sensorS1 beyond the sample sizes of the order of 1000. The per-
formance results of the Nadaraya-Watson estimator, empirical decision rule,
nearest neighbor rule, and the Bayesian rule based on the analytical formu-
lae are presented in Table 1.3. The Bayesian rule is computed based on the
formulae used in the data generation and is provided for comparison only.

Example 5.4: Door Detection Using Ultrasonic and Infrared Sensors:Con-
sider the problem of recognizing a door (an opening) wide enough for a mobile
robot to move through. The mobile robot (TRC Labmate) is equipped with an

Sample Test S1 S2 S3 S4 S5 Nadaraya-
Size set Watson

100 100 7.0 20.0 33.0 35.0 55.0 12.0
1000 1000 11.3 18.5 29.8 38.7 51.6 10.6

10000 10000 9.5 20.1 30.3 39.8 49.6 8.58
50000 50000 10.0 20.1 29.8 39.9 50.1 8.860

Table 1.2 Performance of Nadaraya-Watson estimator for decision fusion.
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Sample Test Bayesian Empirical Nearest Nadaraya-
Size Size Fuser Decision Neighbor Watson

100 100 91.91 23.00 82.83 88.00
1000 1000 91.99 82.58 90.39 89.40

10000 10000 91.11 90.15 90.81 91.42
50000 50000 91.19 90.99 91.13 91.14

Table 1.3 Comparative Performance.

array of four ultrasonic and four infrared Boolean sensors on each of four sides
as shown in Figure 1.1. We address only the problem of detecting a wide enough
door when the sensor array of any side is facing it. The ultrasonic sensors return
a measurement corresponding to distance to an object within a certain cone as
illustrated in Figure 1.1. The infrared sensors return Boolean values based on
the light reflected by an object in the line-of-sight of the sensor; white smooth
objects are detected due to high reflectivity, while objects with black or rough
surface are generally not detected. In practice, both ultrasonic and infrared sen-
sors are unreliable, and it is very difficult to obtain accurate error distributions
of these sensors. The ultrasonic sensors are susceptible to multiple reflections
and the profiles of the edges of the door. The infrared sensors are susceptible to
surface texture and color of the wall and edges of the door. Accurate derivation
of probabilistic models for these sensors requires a detailed knowledge of the
physics and engineering of the device as well as a priori statistical information.
Consequently, a Bayesian solution to this problem is very hard to implement.
On the other hand, it is relatively easy to collect experimental data by presenting
to the robot doors that are wide enough as well as those that are narrower than
the robot. We employ the Nadaraya-Watson estimator to derive a non-linear
relationship between the width of the door and the sensor readings. Here the
training sample is generated by actually recording the measurements while the
sensor system is facing the door. Positive examples are generated if the door is
wide enough for the robot, and the sensory system is facing the door. Negative
examples are generated when the door is not wide enough or the sensory sys-
tem is not correctly facing a door (wide enough or not). The robot is manually
located in various positions to generate the data. Consider the sensor array of
a particular side of the mobile robot. HereY (1); Y (2); Y (3); Y (4) correspond
to the normalized distance measurements from the four ultrasonic sensors, and
Y (5); Y (6); Y (7); Y (8) correspond to the Boolean measurements of the infrared
sensors.X is 1 if the sensor system is correctly facing a wide enough door, and
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mobile
platform

infrared

 ultrasonic

TRC Labmate Mobile Robot

Figure 1.1 Schematic of sensory system (only the side sensor arrays are shown for simplicity).

is 0 otherwise. The training data included 6 positive examples and 12 negative
examples. The test data included 3 positive examples and 7 negative examples.
The Nadaraya-Watson estimator predicted the correct output in all examples of
test data.

6. PERFORMANCE OF FUSED SYSTEM

In the empirical risk minization methodsIF (f̂) is shown to be close to
IF (f

�), which depends onF . In generalIF (f�) could be very large for par-
ticular fuser classes. Note that one cannot simply choose an arbitrary largeF :
if so, the performance guarantees of the type in Eq1.1 cannot be guaranteed.
If IF (f�) > I(Si), then fusion is not useful, since one is better off just using
Si. In practice, however, such condition cannot be verified if the distributions
are not known. In this section, we address the issue of the relative performance
of the composite system, composed of the fuser andS1; S2; : : : ; SN , and the
individual sensors or sensor subsets. We obtain sufficiency conditions under
which the composite system can be shown to be at least as good as the best
sensor or best subset of sensors.
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For simplicity, we consider a system ofN sensors such thatX 2 [0; 1],
Y (i) 2 [0; 1] and theexpected square erroris given by

IS(Si) =

Z
[X � Y (i)]2dPY (i);X :

Theexpected square errorof the fuserf is given by

IF (f) =

Z
[X � f(Y )]2dPY;X

respectively, whereY =
�
Y (1); Y (2); : : : ; Y (N)

�
.

6.1 ISOLATION FUSERS

If the distributions are known, one can derive the best sensorSi� such that

IS(Si�) =
N
min
i=1

IS(Si):

In the present formulation, the availability ofonlya sample makes the selection
(with probability 1) of the best sensor infeasible, even in the special case of
the target detection problem (Devroye et al., 1996). In this section, we present
a method that circumvents this difficulty by fusing the sensors such that the
performance of best sensor is achieved as a minimum. The method is fully
sample-based in that no comparative performance of the sensors is needed – in
particular, the best sensor may be unknown.

A function classF = ff : [0; 1]k 7! [0; 1]g has theisolation propertyif it
contains the functionsf i(y1; y2; : : : ; yk) = yi for all i = 1; 2; : : : ; k. If F has
the isolation property, we have

IF (f
�) = min

f2F

Z
(X � f(Y ))2dPY;X �

Z �
X � f i(Y )

�2
dPY;X

=

Z �
X � Y (i)

�2
dPY;X = IS(Si);

which impliesIF (f�) =
N
min
i=1

IS(Si) � � for some� 2 [0;1). Due to the

isolation property, we have� � 0, which implies that the error off� is no
higher thanI(Si�), but can be significantly smaller. The precise value of�

depends onF , but the isolation property guarantees thatIF (f
�) �

N
min
i=1

IS(Si)

as a minimum.
Let the setS be equipped with a pseuodometric�. Thecovering number

NC(�; �; S) under metric� is defined as the smallest number of closed balls
of radius�, and centers inS, whose union coversS. For a set of functions
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G = fg : <M 7! [0; 1]g, we consider two metrics defined as follows: for
g1; g2 2 G we have

dP (g1; g2) =

Z
z2<M

jg1(z)� g2(z)jdP;

for the probability distributionP defined on<M , and

d1(g1; g2) = sup
z2<M

jg1(z)� g2(z)j:

This definition is applied to functions defined onA � <M by extending them
to take value 0 on<M nA.

Theorem 5 (Rao, 1998a) Consider a fuser classF = ff : [0; 1]N 7! [0; 1]g;

such thatIF (f�) = min
f2F

IF (f) andÎF (f̂) = min
f2F

ÎF (f): If F has the isolation

property, we have

IF (f
�) =

N
min
i=1

IS(Si)��;

for � 2 [0;1), and

P l
Y;X

�
IF (f̂)�

N
min
i=1

IS(Si) + � > �

�
< Æ

given the sample sizel of at least

2048

�2
[lnNC(�=64;F) + ln(4=Æ)]

for cases: (i)NC(�;F) = NC(�; d1;F), and (ii)NC(�;F) = NC(�; dP ;F)
for all distributionsP .

If F has the isolation property, the fuser is guaranteed to perform at least as
good as the best sensor in PAC sense. No information other than the iid sample
is needed to ensure this result. Since� � 0, under the sample size of Theorem
5, we trivially have

P

�
IF (f̂)�

N
min
i=1

IS(Si) > �

�
< Æ:

The sample size needed is expressed in terms ofd1 or distribution-free covers
for F . Note that for smooth fusers such as sigmiod neural networks, we have
simpled1 cover bounds. The pseudo-dimension and scale-sensitive dimension
of F provide the distribution-free cover bounds needed in Theorem 5 when
smoothness conditions may not be satisfied.
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The isolation property was first proposed in (Rao et al., 1994b; Rao, 1994)
for concept and sensor fusion problems. For linear combinations, i. e.

f(y1; y2; : : : ; yk) = w1y1 + w2y2 + : : : +wkyk;

for wi 2 <; this property is trivially satisfied. For several well-known fuction
classes such as potential functions (Aizerman et al., 1970) and feedforward
sigmoid networks (Roychowdhury et al., 1994), this property is not satisfied in
general; see (Rao, 2000) for a more detailed discussion on the isolation property
and various function classes that have this property.

Consider the special case whereSi’s are classifiers obtained using different
methods as in (Mojirsheibani, 1997). For Boolean functions, the isolation
property is satisfied ifF contains all Boolean functions onk variables. Si
computed based an iidl-sample isconsistentif IS(Si) ! IS(S

�), whereS�

is the Bayes classifier. By the isolation property, if one of the classifiers is
consistent, the fused classifier system (trained byl-sample independent from
n-sample used by the classifiers) can be seen to be consistent. Such result was
obtained in (Mojirsheibani, 1997) for linear combinations (for whichNC(�;F)
is finite). Our result does not require the linearity, but pinpoints the essential
property, namely the isolation. More generally, linear combinations have been
extensively used as fusers in various applications such as combining neural
network estimators (Hashem, 1997), regression estimators (Brieman, 1996;
Taniguchi and Tresp, 1997), and classifiers (Mojirsheibani, 1997). Since the
linear combinations possess the isolation property, Theorem 5 can be viewed
as providing some analytical justification for these methods. A more detailed
treatment of Boolean problems, namely for classifier problems, can be found
in (Rao, 1998b).

6.2 PROJECTIVE FUSERS

A projective fuser(Rao, 1999c),fP , corresponding to apartition P =

f�1; �2; : : : ; �kg, k � N , of input space<d (�i � [0; 1]d,
kS
i=1

�i = <d, and

�i \ �j = � for i 6= j), assigns each block�i to a sensorSj such that

fP (Y ) = Y (j)

for all X 2 �i, i.e. the fuser simply transfers the output of the sensorSj for
every point in�i. An optimal projective fuser, denoted byfP �, minimizesI(:)
over all projective fusers corresponding to all partitions of<d and assignments
of blocks to sensorsS1; S2; : : : SN .

We define theerror regressionof the sensorSi and fuserfF as

E(X;Si) =
Z
C(X;Y (i))dPY jX
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and
E(X; fP ) =

Z
C(X; fP (Y ))dPY jX ;

respectively. Theprojective fuserbased on the lower envelope of error regres-
sions of sensors is defined by

fLE(Y ) = Y (iLE(X))

where
iLE(X) = arg min

i=1;2;:::;N
E(X;Si):

We haveE(X; fLE) = min
i=1;:::;N

E(X;Si), or equivalently the error regression

of fLE is the lower envelope with respect toX of the set of error regressions
of sensors given byfE(X;S1); : : : ; E(X;SN )g.

Example 6.1: (Rao, 1999c) Consider thatX is uniformly distributed over[0; 1],
which is measured by two sensorsS1 andS2. LetC(X;Y (i)) = (X � Y (i))2.
ConsiderY (1) = X+jX�1=2j+U andY (2) = X+1=[4(1+jX�1=2j)]+U ,
whereU is an independent random variable with zero mean. Thus, for both
sensors the measurement error at anyX is represented byU . Note that

E[Y (1) �X] = jX � 1=2j

E[Y (2) �X] = 1=[4(1 + jX � 1=2j)]:

Thus,S1 achieves a low error in the middle of the range[0; 1], andS2 achieves
a low error towards the end point of the range[0; 1]. The error regressions of
the sensors are given by

E(X;S1) = (X � 1=2)2 +E[U2]

E(X;S2) = 1=[16(1 + jX � 1=2j)2] +E[U2]:

We have

I(S1) = 0:0833 +E[U2] and I(S2) = 0:125 +E[U2];

which indicates thatS1 is the better of the two sensors. Now consider the pro-
jective fuserfLE specified as follows, which corresponds to the lower envelope
of E(X;S1) andE(X;S2).

range forX sensor to be projected

[0; 0:134] S2
[0:134; 0:866] S1
[0:866; 1] S2
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Figure 1.2 Illustration for example

Then, we haveI(fLE) = 0:0828 + E[U2], which is lower than that of the
best sensor.

Example 6.2: (Rao, 1999c) We consider a classification example such that
X 2 [0; 1] � f0; 1g is specified by a functionfX = 1[1=4;3=4], where1A(z)
is the indicator function(which has a value 1 if and only ifz 2 A and has
value 0 otherwise). The value ofX is generated as follows: a random variable
Z is generated uniformly in the interval[0; 1] as the first component, and then
fX(Z) forms the second component, i.e.X = (Z; fX(Z)). In the context of
the detection problem, the second component ofX corresponds to the presence
(fX(Z) = 1) or absence (fX(Z) = 0) of a target, which is represented by a
featureZ taking a value in the interval[1=4; 3=4]. Each sensor consists of a
device to measure the first component ofX and an algorithm to compute the
second component. We consider thatS1 andS2 have ideal devices that measure
Z without an error, but make errors in utilizing the measured features. Consider
thatY (1) = (Z; 1[1=4��1;3=4](Z)) andY (2) = (Z; 1[1=4;3=4��2 ](Z)) for some
0 < �1; �2 < 1=4 (see Figure 1.2). In other words, there is no measurement
noise in the sensors but just a systematic error due to how the feature value is
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utilized; addition of independent measurement noise as in Example 6.1 does
not change the basic conclusions of the example. Now consider the quadratic
cost functionC(X;Y (i)) = (X � Y (i))T (X � Y (i)). The error regressions
are given byE(X;S1) = 1[1=4��1;1=4](Z) andE(X;S2) = 1[3=4��2;3=4](Z),
which corresponds to disjoint intervals ofZ as shown in Figure 1.3. The lower
envelope of the two regressions is the zero function henceI(fLE) = 0, where
as bothI(S1) andI(S2) are positive. The profile offLE is shown at the bottom
of Figure 1.2, whereinS1 andS2 are projected based on the first component of
X in the intervals[3=4� �2; 3=4] and[1=4� �1; 1=4], respectively, and in other
regions either sensor can be projected.

f   (Z)
X

f   (Z)
X

1/4

3/4

(x,S )1ε

(x,S  )2ε

Z

Z

Figure 1.3 Illustration of error regressions.

The projective fuser based on error regressions is optimal as in the following
theorem.

Theorem 6 (Rao, 1999c) The projective fuser based on the lower envelope of
error regressions is optimal among all projective fusers.

A special case of this theorem for function estimation can be found in (Rao,
1999d), and for classifiers can be found in (Rao, 1998b). A sample-based
version of projective fuser is discussed in (Rao, 1999c).

We close this section by emphasizing thatfLE may not be optimal in a larger
class of fusers where some function of the sensor output (as opposed to just the
output) can be projected.

Example 6.3: (Rao, 1999c) In Example 2.2, considerfX = 1[1=4;3=4],

Y (1)(X) = (Z; 1[1=4��1 ;3=4��1](Z))

Y (2)(X) = (Z; 1[1=4;3=4��2 ](Z))
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for some0 < �1; �2 < 1=8, and �1 < �2. Thus, we haveE(X;S1) =
1[1=4��1;1=4](Z) and E(X;S2) = 1[3=4��2;3=4](Z), whose lower envelope is
not the zero function. Thus, we haveE(X; fLE) = 1[3=4��2;3=4��1](Z) and
I(fLE) =

R
[3=4��2;3=4��1]

dPZ . By changing the assignmentY (1) of fLE to

1� Y (1) for Z 2 [3=4 � �2; 3=4 � �1], one can easily achieve zero error.

7. METAFUSERS

In this section, we first compare projective fusers to linear fusers and show
that they have complementary performances. Thus it is natural to combine
the fusers – much the same ways as sensors – to exploit the relative merits
of individual fusers. Such approach leads to the idea ofmetafusers. There are
manypossible ways of designing metafusers, andhere we describe how isolation
property can be utilized to develop systems that exploit the complementary
performances sensors as well as fusers.

The output of linear fuser corresponding to inputX and sensor outputY =
(Y (1); : : : ; Y (N)) is defined as

fL(Y ) =
NX
i=1

�iY
(i)

where�i is ad�dmatrix. For simplicity, we consider the cased = 1 such that
(�1; : : : ; �N ) 2 <N . An optimal linear combination fuser, denoted byfL�,
minimizesI(:) over all linear combinations. In terms of relative performance,
fLE is better thanfL� if the individual sensors perform better in certain localized
regions of<d. On the other hand, if the sensors are equally distributed around
certain values in global sense,fL performs better as illustrated follows.

Example 6.4: (Rao, 1999c) In the Example 6.2, forfL = �1Y
(1) + �2Y

(N),
we have

I(fL) = �21

Z
[1=4��1;1=4)

dPZ

+ (1� �1 � �2)
2

Z
[1=4;3=4��2)

dPZ

+ (1� �1)
2

Z
[3=4��2;3=4]

dPZ

which is non-zero no matter what the coefficient are. The error regressions ofS1
andS2 take non-zero values in the intervals[1=4� �1; 1=4] and[3=4� �2; 3=4]
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of Z, respectively. Since, these intervals are disjoint, there is no possibility of
the error of one sensor being canceled by a scaler multiplier of the other.

In general, the argument of Example 6.4 is true: if the error regressions of
the sensors take non-zero values on disjoint intervals, then any linear fuser will
have non-zero error. On the other hand, the disjointness yieldsE(X; fLE) = 0,
for all X, and henceI(fLE) = 0. We now present an example where a linear
fuser outperformsfLE .

Example 6.5: Consider that in Example 6.2,fX = 1 for Z 2 [0; 1],

Y (1)(X) = (Z; �Z + 1� �)

Y (2)(X) = (Z;��Z + 1 + �);

for 0 < � < 1. The optimal linear fuser is given byfL�(Y ) = 1=2(Y (1) +
Y (2)) = 1, andI(fL�) = 0. At everyX 2 [0; 1], we have

E(X;S1) = E(X;S2) = �2(1� Z)2 = E(X; fLE):

Thus,I(fLE) = �2
R

[0;1]

(1� Z)2dPZ > 0, whereasI(fL�) = 0.

In summary, the performance of the optimal linear and projective fusers are
complementary in general. We now combine linear and projective fusers to
realize various metafusers that are guaranteed to be at least as good as the best
sensor as well as best sensor. By including the optimal linear combination
asSN+1, we can guarantee thatI(fLE) � I(fL�) by the isolation property
of projective fusers (Rao, 1999c). Since linear combinations also satisfy the
isolation property, we in turn haveI(fL�) � min

i=1;:::;N
I(Si).

The roles offL� andfLE can be switched – by includingfLE as one of the
components offL� – to show that

I(fL�) � I(fLE) � min
i=1;:::;N

I(Si):

One can design a metafuser by utilizing the available sensors which are
combined using a number of fusers including a fuser based on isolation property
(for example, a linear combination). Consider that we employ a metafuser based
on a linear combination of the fusers. Then the fused system is guaranteed to
be at least as good as the best of the fusers as well as the best sensor. If at a
latter point, a new sensor or a fuser is developed, it can be easily integrated
into the system by retraining the fuser and/or metafuser as needed. As a result,
we have a system guaranteed (in PAC sense) to perform at least as good as the
best available sensor and fuser at all times. Also, the computational problem
of updating the fuser and/or metafuser is a simple least squares estimation that
can be solved using a number of available methods.
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8. FUSERS FOR PHYSICAL SYSTEMS

In this section, we consider a multisensor fusion problem that does not exactly
fit into the classical formulation of the fusion problem. Consider a physical
system described by a set of parameters, such that each parameter is either
measured by a number of sensors or estimated by a set of computer programs
using sensor measurements. As a result, the resultant parameter values could
be widely varying. In comparison with the traditional fusion problems, there
is no training set that provides the actual parameter values. Furthermore, since
every parameter is measured or estimated, there are no parameters whose actual
values are known. In this section, we describe a fuser based on the least violation
of the physical laws that relate the parameters. Under very general conditions
on the physical law, we derive distribution-free performance bounds based on
finite samples. We illustrate the effectiveness of this method for a practical
problem of fusing well-log data in methane hydrate exploration.

8.1 PHYSICAL LAWS

We consider a physical system specified by the parameters

P (z) = (p1(z); p2(z); : : : ; pn(z))

with pi(z) 2 <, wherez is one-dimensional variable such as time or position.
Each parameterpi is measured byai instruments and estimated bybi estimators
(ai � 0, bi � 0, andai + bi � 1). The measurements corresponding topi(z)
are denoted by

mi(z) = fmi;1(z);mi;2(z); : : : ;mi;ai(z)g

and the corresponding estimators are denoted by

ei(z) = fei;1(z); ei;2(z); : : : ; ei;bi(z)g:

The measurements are noisy in that repeated measurements by a sensor of
pi(z) = x for a fixed value are distributed independently according to the
distributionPmi;j jx, which is denoted byPmi;j jpi(z). Thus,mi;j is a random
variable. The estimatorei;j is a (deterministic) function of the measurements,
and hence is also a random variable. The joint distribution of the measurements
is denoted byPm1;m2;:::;mnjp1;p2;:::;pn . Note that there areai + bi competing
values for each parameter, and in general we do not know which one is more
accurate.

There is a physical law

L[p1(z); p2(z); : : : pn(z)] = 0

which relates the actual parameters corresponding toz. We assume thatL[:]
satisfies the reasonablemonotonicitycondition: for anyy1; y2, jy1j � jy2j, we
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have

jL[p1(z); : : : ; pi(z)+y1; : : : ; pn(z)]j � jL[p1(z); : : : ; pi(z)+y2; : : : ; pn(z)]j:

This condition means that accurate parameter estimators yield no lesser “mag-
nitude” of violation of the law compared to less accurate estimators.

Let us choose a single estimator or measurementp̂i for the parameter. The
closeness ofL[p̂1(z); p̂2(z); : : : ; p̂n(z)] to 0 determines how closely the law is
satisfied. Let abasic set, denoted byS, be a set of measurements and estimators
such that for each parameter we choose precisely one measurement or estimator
(but not both). The total error due toS is given by

Ê(S) =
X
z

L[p̂1(z); p̂2(z); : : : ; p̂n(z)]:

Note that in all there are
nQ
i=1

(ai+ bi) possible basic sets, and̂S be the one with

least error such that̂E(Ŝ) = min
S
Ê(S): The expected error ofS is denoted by

E(S) =
X
z

Z
L [p̂1(z); p̂2(z); : : : ; p̂n(z)]Pm1;:::;mnjp1;:::;pn ;

and letS� be the one with the least expectederror such thatE(S�) = min
S
E(S�):

Note thatS� minimizes the expected error butŜ in general does not. More de-
tailed discussion of the physical laws can be found in (Rao et al., 2000a).

Example 8.1: (Rao et al., 2000a) We consider a simple illustrative example of
known massm subjected to a constant forcef in a friction-free environment.
In this case the physical law isf = ma, which can be rewritten asL[f; a] =
(f � ma)2 = 0, wherea is acceleration andf is force. Letp1(z) = f
andp2(z) = a. We are given a sensor that measures force and two sensors that
measure acceleration. The force measurements have simple bias error such that
m1;1(z) = f + �, for some deterministic�. The acceleration measurements are
given bym2;1 = a+ Æ, m2;2 = 0:7a, whereÆ is a small normally distributed
error. Then, we have

L[m1;1;m2;1] = (��mÆ)2

L[m1;1;m2;2] = (�+ 0:3ma)2

Consider thata > 0, and� � mÆ. If jÆj � j0:3aj, we have

L[m1;1;m2;1] � L[m1;1;m2;2];

i.e. for large values ofa, the better choice ism2;1, otherwisem2;2 is a better
choice.
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8.2 FUSER COMPUTATION

The fusion functionfi 2 Fi for parameterpi combines the measurements
and estimators such thatfi(mi(z); ei(z)) is an estimate ofpi(z). Let f =
(f1; : : : ; fn) denote thefuserfor all parameters. The expected error due to the
fused estimate is

E(f) =
X
z

Z
L [f1(m1(z); e1(z)); : : : ; fn(mn(z); en(z))] dPm1 ;:::;mnjp1;:::;pn;

and letf� 2 F1� : : :�Fn be the one with the least expected error. As before
E(f) cannot be computed if the error distributions are not known, and hence
f� is not computable. In stead, we computef̂ that minimizes the empirical cost
given by

Ê(f) =
X
z

L [f1(m1(z); e1(z)); : : : ; fn(mn(z); en(z))] ;

based on a set of iid measurements (also called the sample)

f<(m1(z); e1(z)); : : : ; (mn(z); en(z))>: z = 1; : : : ; sg:

We now describe methods that ensureE(f�) � E(S�), and more importantly
based on a computablêf that

E(f̂) < E(S�);

with a specified probability based entirely on the measurements and without
any knowledge of the underlying distributions.

If eachFi satisfies the isolation property, then the following conditions are
directly satisfied.

E(f�) � E(S�) and Ê(f̂) � Ê(Ŝ):

The first condition is useful only iff� can be computed, which in turn requires
the knowledge of the distributions. If the distributions are not known, thenf̂ can
be used as an approximation. We subsequently show finite samples guarantees
for such fuser.

8.3 SMOOTH PHYSICAL LAWS

For any functiong : [�A;A]d 7! <, let

k g(r) k1= sup
r2[�A;A]d

jg(r)j:

A function g(y) : [�A;A]d 7! <a is Lipschitzwith constantkg if for all
y1; y2 2 [�A;A]d, we have

k g(y1)� g(y2) k1� kg k y1 � y2 k1 :
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For example, the sigmoid neural networks are Lipschitz with constant specified
by the parameters of the network (Rao, 1999e).

Theorem 7 (Rao et al., 2000a) Consider that the physical law is Lipschitz
with constantkL, and parameters, estimators and measurements are bounded
such thatp 2 [�C;C]n, mi 2 [�A;A]ai , and ei 2 [�B;B]bi . Let each

fuser classFi be Lipschitz with constantkfi . Let d =
nP
i=1

(ai + bi) andk =

kLmax(kf1 ; kf2 ; : : : ; kfn): Then given a sample size

s =
512k(A +B)

�2

�
d ln

�
32k(A +B)

�

�
+ ln(8=Æ)

�
;

we have
P
h
E(f̂)�E(f�) > �

i
� Æ;

irrespective of the sensor distributions. Furthermore,E(f̂) ! E(f�), as
s!1.

This theorem provides a distribution-free finite sample result: given a suffi-
ciently large sample size, with a probability1� Æ, the cost of the sample-based
solution is within� of the lowest achievable cost (which can only be computed if
all error distributions are known). Results similar to the asymptotic result shown
in the above theorem are more common in the statistics literature (Rao, 1983).
The finite sample result, however, is stronger in that it implies the asymptotic
result, and also establishes that the method is justified even for small sample
sizes.

The smoothness conditions required in this theorem are quite reasonable.
The Lipschitz condition is satisfied for a number of physical laws, although not
always guaranteed. Similar condition was used in converting the decision fusion
rules designed for known distributions to sample-based ones in (Rao, 1996).
The isolation and Lipschitz properties required of the fusers are satisfied in
a number of cases such as linear combinations with bounded coefficients and
piecewise linear feedforward networks (Rao, 1998a; Rao, 2000).

Example 8.2: (Rao et al., 2000a) Consider the scenario in Example 8.1, and

f2(m2;1;m2;2) = w1m2;1 + w2m2;2:

For the choicew1 = 0:3 andw2 = 1, we havef2(m2;1;m2;2) = a+0:3Æ, and

L[m1;1; f2(m2;1;m2;2)] = (�� 0:3mÆ)2;

which is always smaller thanL[m1;1;m2;1], and is smaller thanL[m1;1;m2;2]
for smallÆ � awhich is true with probability one sinceÆ is a zero-mean random
variable.
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8.4 NON-SMOOTH PHYSICAL LAWS

In general physical laws may not be Lipschitz, especially if they involve
discrete components or discontinuities. For example, consider the simple case
ofH2O heated in a container, wherep1 denotes the temperature andp2 2 f0; 1g
is the state, i. e.p2 = 0 denotes liquid andp2 = 1 denotes steam. LetT0 denote
the boiling temperature under this condition. Then, one of the physical laws is:
p2 = 0 if p1 < T0 andp2 = 1 otherwise. This law can be represented as

L[p1; p2] = p21fp1<T0g + (p2 � 1)1fp1�T0g = 0;

where the indicator function1C is 1 if conditionC is true and is 0 otherwise.
Here,L[:] is not Lipschitz. The class of functions with bounded variation (Apos-
tol, 1974), allow for discontinuities and discrete values, and include Lipschitz
functions as a subclass. We now describe a generalization of the results of last
section, which enable the utilization of non-smooth physical laws.

Consider a function one-dimensional functionh : [�A;A] 7! <. ForA <
1, a set of pointsP = fx0; x1; : : : ; xng such that�A = x0 < x1 < : : : <
xn = A is called apartition of [�A;A]. The collection of all possible partitions
of [�A;A] is denoted byP[�A;A]. A functiong : [�A;A] 7! < is ofbounded
variation, if there existsM such that for any partitionP = fx0; x1; : : : ; xng,

we have
P
(P ) =

nP
k=1

jf(xk) � f(xk�1)j � M: A multivariate functiong :

[�A;A]d 7! < is of bounded variation if it is so in each of its input variable for
every value of the other input variables.

The following are facts about the functions of bounded variation: (i) not
all continuous functions are of bounded variation, e.g.g(x) = x cos(�=(2x))
for x 6= 0 andg(0) = 0; (ii) differentiable functions on compact domains are
of bounded variation; and (iii) absolutely continuous functions, which include
Lipschitz functions, are of bounded variation.

For the case of non-smooth physical laws, we utilize the fuser classes with
finite pseudo-dimension (Anthony and Bartlett, 1999), which is described as
follows. LetG be a set of functions mapping from a domainX to < and
suppose thatS = fx1; x2; : : : ; xmg � X. ThenS is pseudo-shatteredby F if
there are real numbersr1, r2, : : :, rm such that for eachb 2 f0; 1gm there is a
function g0 in G with sgn(fb(xi) � ri) = bi for 1 � i � m. ThenG has the
pseudo-dimensiond if d is the maximum cardinality of a subsetS of X that is
pseudo-shattered byG. If no such maximum exists, we say thatG has infinite
pseudo-dimension. The pseudo-dimension ofG is denotedPdim(G). Pseudo-
dimensions are known for several classes such as sigmoid neural networks,
vector spaces, and linear combinations (Anthony and Bartlett, 1999).

Theorem 8 (Rao et al., 2000b) Consider that the physical law is of bounded
variation such thatjL(p)j �ML for all p. Let parameters, estimators and mea-
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surements are bounded. Let each fuser classFi have finite pseudo-dimension
di, and each fuser functiong be bounded such thatjg(:)j �M for all parame-

ters. Letd =
nP
i=1

di. Then given a sample of size

s =
256M2

L

�2

�
4d ln

�
128eM

�

�
+ (n+ 1) ln(4=Æ)

�
;

we have
P

h
E(f̂)�E(f�) > �

i
� Æ;

irrespective of the sensor distributions. Furthermore,E(f̂) ! E(f�), as
s!1.

The following corollary is a weaker version of Theorem 8 sinceE(f�) �

E(S�) � E(Ŝ).

Corollary 1 LetFi satisfy the isolation property for alli = 1; 2; : : : ; n. Under
the same conditions as Theorem 8, we have following conditions satisfied.

P

h
E(f̂)�E(S�) > �

i
� Æ and P

h
E(f̂)�E(Ŝ) > �

i
� Æ:

Informally speaking, this corrollary shows that the error of the computed fuser
f̂ is not likely to be much higher than that of the best basic set, and could be
much smaller. Theorem 8 offers a stronger result:f̂ will be closer tof� which
can have much smaller error thanS�.

8.5 METHANE HYDRATES WELL LOGS

We now briefly describe a practical application of the proposed fusion method
based on physical laws. Gas hydrates are crystalline substances composed
of water and gas, in which gas molecules are contained in cage-like lattices
formed by solid water. A challenge is to predict the prescence of hydrates
using measurements collected at wells located in certain locations such as off
the US coast in mid-Atlantic and Mackenzie Delta in Northwest Canada. A
number of measurements are collected at each well using a suite of sensors.
These measurements include density, neutron porosity, acoustic transit-time,
and electric resistivity, collected at various depths in the well (Dallimore et al.,
1999). We consider only the estimation of theporosityat various depths. Our
data consists of 3045 sets of measurements each collected at different depths
in a single well. There are a variety of methods to estimate porosity based
on different principles and utilizing different measurements. We employed six
known methods for estimating the porosity based on neutron measurements
(�̂1), density measurements (�̂2), fluid velocity equation (̂�3), acoustic travel
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time based on S-wave (�̂4), time-average equation based on P-wave (�̂5), and
Wood’s equation (̂�6).

We consider one of the well-established physical laws relates the parameters
of porosity (�), density (�), and hydrate concentration ( ), as follows

L[�;  ; �] = (�[�m � (1�  )�w +  �h]� �+ �m)
2 = 0;

where�m, �w, and�h are known constants. In this equation, we use the only
one measurement for densitŷ� and and a single estimator̂ for the hydrate
concentration using the Archie’s equation. We consider a fuser based on the
linear combination of the estimators

�̂F = w7 +
6X
i=1

wi�̂i;

where(w1; : : : ; w7) 2 <7 is the weight vector that minimizes the error based
on measurements. The error achieved by�̂F is about 20 times better than that
of the best estimator̂�4 (details can be found in (Rao et al., 2000a)). Note
thatL[:] and the fusers employed here satisfy the conditions of Corollary 1.
Incidentally, they also satisfy the smoothness conditions of (Rao et al., 2000a).

9. KNOWN DISTRIBUTIONS

It is not necessary that all sensor distributions be unknown to apply the
main results of this paper. Consider that the joint conditional distribution
PY (1);:::;Y (M)jY (M+1;:::;Y (N) of the sensorsS1; : : : ; SM , for M < N , is known.
Then we can rewrite

IF (f) =

Z
�(X; f(Y ))dPY (M+1);:::;Y (N);X

where�(:) is suitably derived from the original cost functionC(:) and the
known part of the conditional distribution. Then various theorems can be ap-
plied to this new cost function with only a minor modification. Since the number
of variables with unknown distribution is reduced now, the statistical estima-
tion process is easier. It is important note that it is not sufficient to know the
individual distributions of the sensors, but thejoint conditional distributions are
required. In the special case of statistical independence of sensors the joint dis-
tribution is just the product, which makes the transformation easier. In general
for sensor fusion problems, however, the interdependence between the sensors
is a main feature to be exploited to overcome the limitations of single sensors.

10. CONCLUSIONS

In a multiple sensor system, we considered that for each sensor the outputs are
related to the actual feature values according to a certain probability distribution.
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We presented an overview of informational and computational aspects of a
fuser that combines the sensor outputs to more accurately predict the feature,
when the sensor distributions are unknown but iid measurements are given. Our
performance criterion is the probabilistic guarantees in terms of distribution-free
sample bounds based entirely on a finite sample. We first discussed a number
of methods based on the empirical risk minimization approach, which yield a
fuser that is guaranteed, with a high probability, to be close to an optimal fuser.
Note that the optimal fuser is computable only under a complete knowledge of
sensor distributions. Then we described the isolation fusers that are guaranteed
to perform at least as good as the best sensor. We then discussed the projective
fusers that are guaranteed to perform at least as good as the best subset of
sensors. We briefly discussed the notion of metafusers that can combine fusers
of different types. We considered physical systems wherein the training data
consisting of actual physical values is not available. For this case, we discussed
methods that utilize the physical laws to obtain a suitable fuser.

The overall focus of this paper is very limited: we only considered sample-
based fuser methods that provide finite sample performance guarantees. Even
then, there are a number of important issues for the fuser rule computation that
have not been covered in this paper. We did not discuss stochastic algorithms
for fuser computation (Rao, 1994; Rao et al., 1994a). Another important as-
pect is the utilization of fusers that have been designed for known distribution
cases for the sample-based case. In many important cases, the fuser formulas
expressed in terms of probabilities can be converted into sample-based ones by
utilizing suitable estimators (Rao, 1996). For the most part, we only considered
stationary systems, and it would of future interest to study sample-based fusers
for time-varying systems.
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