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Phases: from nuclei to quantum dots

D.J. Deana�

aPhysics Division, Oak Ridge National Laboratory P.O. Box 2008, Oak Ridge,
Tennessee 37831 USA

Many con�ned quantum systems exhibit intrinsic shapes that may be perturbed or
qualitatively changed as a function of parameters such as particle number, temperature,
angular frequency, and magnetic �eld. In this proceedings, I explore various manifes-
tations of shapes and their changes in both selected nuclei and semiconductor quantum
dots.

1. Introduction

Con�ned quantum many-body systems of a given particle number exhibit a variety
of intrinsic shape characteristics as a function of increasing external �eld, and internal
thermal excitation. The shell model is an important tool for the theoretical description of
these various structures and transitions in nuclei. Another system in which correlations
beyond the mean �eld may play an important role is semiconductor quantum dots. In
this proceedings, I will compare nuclei and quantum dots and their various deformation
properties. I will report on shell-model calculations in nuclei and some very recent mean-
�eld calculations in quantum dots. I will also discuss a �rst application of auxiliary �eld
Monte Carlo (AFMC) techniques to the quantum dot problem.

2. Phases in nuclei

Nuclei often exhibit di�erent intrinsic structures within the same system. Experimental
and theoretical comparisons for 56Ni con�rmed the existence of a spherical ground-state
band and a prolate deformed band beginning with a measured 2+ state at 5.3 MeV
excitation energy [1] (the second 0+ state was experimentally inaccessible). This structure,
which is present in shell-model calculations, was shown to have an intrinsic deformation
by investigating the energy surface generated from cranked Hartree-Fock calculations [2].
This is just one example demonstrating how nuclear spectra often exhibit a band structure
that is related to the intrinsic deformation in the system.
Some nuclei show interesting structure in their ground states. For example, nuclei in

the 124Xe region are known to be 
-soft. Detailed shell-model Monte Carlo (SMMC)
calculations in this region con�rmed that e�ective two-body interactions will give rise to
such structures [3]. As one increases the temperature in these systems, they tend toward
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Figure 1. Occupations of the sd-fp shell for the Ne and Mg chains near N = 20.

sphericity. This e�ect has also been seen in rare-earth calculations [4,5]. Many rare-earth
systems are known to have well-deformed ground states. SMMC calculations of intrinsic
shapes in these nuclei con�rm this in the shell-model context by using a Kumar-Baranger
e�ective interaction [5].
Another interesting phenomena occurs when one approaches shell closures in neutron-

rich nuclei. For example, many calculations suggest that in 32Mg the 0f7=2 sub-shell
begins to �ll before the sd-shell is completely full. The large B(E2) value of 32Mg [6]
cannot be explained unless one allows neutrons to occupy fp-shell orbitals. Recent SMMC
results [7,8] con�rm the picture that an island of inversion exists in the 32Mg region [9].
These calculations were performed using the SMMC technique in the full 1s-0d-0f -1p
model space. The e�ective shell-model interaction was derived from the realistic charge-
dependent Bonn potential [10], with modi�cations to the monopole terms [11] to alleviate
diÆculties in the saturation properties of the interaction. Since this calculation was
performed in two major oscillator shells, extrapolation procedures to eliminate center-of-
mass contamination of the energies were implemented for SMMC technique. With the
center-of-mass elimination and a realistic e�ective interaction, we were able to reproduce
both ground-state masses and B(E2) values across the sd-fp region, both for stable and
unstable nuclei. Details are given in [7]. The occupations are shown in Fig. 1 for a chain
of Mg and Ne nuclei near N = 20. Approximately two neutrons occupy the fp shell at
N = 20, while at N = 24 the sd-shell is nearly full.
Recently, Barmore et al. [12] investigated the deformation properties of the sd-fp

shell-model interaction used in the SMMC calculations just described. By constraining
the deformation in the HFB Hamiltonian, the energy surface may be calculated as a
function of deformation. Preliminary results are shown in Fig. 2 for the 32Mg region using
two interactions, HJZ from Ref. [7] and WBM, a modi�ed version of the Warburton-
Brown interaction [13]. Clearly, this region exhibits a large amount of shape coexistence,
which is another feature of interacting fermion systems.
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Figure 2. Constrained HFB energies for 32Mg. I compare the interaction HJZ from Ref.
[7] and WBM, a slightly modi�ed version of the Warburton-Brown interaction [13] for the
same region.

3. Phases in quantum dots

I now turn to another con�ned quantum mechanical system that exhibits interesting
many-body features. Semi-conductor quantum dots are typically formed in III-V sub-
strates, such as GaAs. They may be laterally constructed so that their spatial dimension
in the vertical dimension (z direction) is small compared to the horizontal (x, y) dimen-
sions. The GaAs may be constructed in such a way that a physical con�ning barrier
is also included, thus giving rise to con�nement in all three dimensions. Electrons may
then be placed into this con�ned structure by conductance spectroscopy, and the system
may be studied. The correlations among the electrons are fairly strong and have been
experimentally shown to require many-body techniques for their description [14]. In the
following I will brie
y describe some interesting thermal e�ects within these systems, and
I will discuss a �rst application of AFMC techniques to quantum dots.

3.1. Quantum dots in magnetic �elds: thermal response of broken symmetry

phases

In studies of many-body phenomena in quantum dots, experimental e�orts have focused
on mapping the magnetic �eld dependence of their ground-state structure by measuring
the chemical potential via capacitance spectroscopy [15]. Cusps and steps in the chemical
potential were found to clearly separate di�erent ranges of magnetic �elds [15,14]. These
features were identi�ed with phase transitions in the charge density of the quantum dot.
At magnetic �eld strengths on the order of a few tesla, all electrons become spin-polarized
initiating the maximum density droplet (MDD) phase [15], in which the density is constant
and homogeneous at the maximum value that can be reached in the lowest Landau level.
The stability of the MDD is determined by a competition among the kinetic energy, ex-
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ternal con�nement, the Coulomb repulsion between electrons, and the attraction created
by the Coulomb exchange term. For increasing magnetic �eld, the charge-density distri-
bution of the droplet reconstructs [16] with a ring of electrons breaking o� from the MDD
phase. This edge reconstruction has been shown via mean-�eld [17] and density functional
theory [18] calculations to result from a rotational symmetry-breaking phase transition
from the MDD to a Wigner molecule or Wigner crystal phase. These calculations are
in good qualitative agreement with recent experimental results where instabilities of the
MDD state and other transitions in the high magnetic �eld region were accompanied by
a redistribution of the charge density [14].
In describing the ground-state and low-lying (intra-band) excitations of the N -electron

semiconductor nanostructures, it is often suÆcient to restrict consideration to the con-
duction band using the e�ective-mass approximation [19]. We consider the problem of
N electrons of e�ective mass m� in a plane, (x; y), con�ned by an external parabolic po-

tential, V (r) = 1
2
m�!2

0r
2, and subject to a strong magnetic �eld ~B = B0~ez. We consider

the Zeeman splitting but neglect the spin-orbit interaction. The Hamiltonian for such a
system is

Ĥ =
X
i

2
64
�
~p� e

c
~A
�2

2m�
+ V (ri) +

g��B
�h

~B � ~Si

3
75 +X

i<j

e2

"j~ri � ~rjj
; (1)

where the vector potential is ~A(~ri) = (B0=2)(�yi; xi; 0), g
� = 0:54, " = 12:9, m� =

0:067me, and �h!0 = 3 meV.
We solve this equation at the �nite-temperature Hartree{Fock level [20]. We use a Fock{

Darwin basis expansion to solve the �nite-temperature Hartree-Fock equations. Since we
use a high (� 12 T) magnetic �eld, we consider only angular momentum states with the
n = 0 principal quantum number. The electrons carry spin, and so our states are labeled
by k = flk; skg, where lk is the angular momentum projection of the k-th state and sk is
the spin of that state. We found convergence using �fty states for the N � 8 systems. We
also checked our zero-temperature results with other publications [17] for various numbers
of electrons in the dot and found satisfactory agreement.
We begin the discussion of our results by investigating the electron charge, angular

momentum, and spin densities as a function of increasing temperature for the N = 6
system at B0 = 12:15 T. We show densities at representative temperatures of 3.87 K
(the low temperature limit, � = 6), 11.97 K (before the �rst phase transition, � = 6),
13.65 K (in the second phase, � = 5), and 14.32 K (in the third phase, � = 4), where �
is the number of de�nable high-density regions (or vortices) in the charge density plots.
The density, shown in Fig. 3a-d, begins as a fairly well-de�ned Wigner crystal at 3.87 K,
which exhibits some degree of thermal broadening at 11.97 K. The � = 5 and � = 4
phases continue to show a similar amount of density in the remaining vortices, while the
density of the thermally dissipated vortices have e�ectively spread through the entire
dot. The angular momentum along the B-�eld direction, shown in Fig. 3e-h, exhibits
well-de�ned structures at low temperatures which tend to decrease rapidly as one moves
through the various phases. Although the high charge density regions in the � = 4
phase are still well de�ned, the angular momentum in this high-temperature phase has
nearly washed out. Finally, we show in Fig. 3i-l the spin density de�ned as �s(x; y) =
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Figure 3. Panels a-d, the charge density; panels e-h, the angular momentum density (in
the z-direction); panels i-l, the spin density. In each panel, �8 nm� x; y � 8 nm.

[�"(x; y)� �#(x; y)] = [�"(x; y) + �#(x; y)], where �" (�#) refer to the spin up (down) density.
At these temperatures, little appreciable spin depolarization occurs and the spin density
remains above 0.8 for the entire region where there is appreciable charge density.
The suddenness of the phase transitions seen in Fig. 3 become quite evident when

the internal energy of the quantum dot is plotted as a function of the temperature. We
show the three phases of the dot in Fig. 4a. Note that the � = 6 phase exists as an
excited con�guration when the most probable Hartree{Fock solution is the � = 5 phase.
Similarly, the � = 4 con�guration exists as a possible excited con�guration of the system
even at fairly low temperatures. The speci�c heat, Cv = dhHi=dT (with T in units
of eV), is shown in Fig. 4b. Clearly, when the energy undergoes a phase transition, the
speci�c heat shows a sharp structure. This occurs since the energy is piece-wise continuous
along the three phases. These calculations suggest that the quantum dot exhibits a band
structure of many-body levels. The low-temperature states all have the same intrinsic
shape characteristic (the same vortex structure). As we increase the temperature, other
� phases become accessible. At the point when two bands of di�erent intrinsic character
cross in energy, we �nd a phase transition. Similar phenomena are found in nuclear
physics, where at higher nuclear excitation energies the eigenstates of the system may
be of a di�erent intrinsic deformation when compared to states of the ground-state band
[21].
The occupation probabilities of the Fock{Darwin states, nFD, for the temperature con-

ditions of Fig. 3 are shown in Fig. 4c. In the low-temperature phase (3.9 K, solid line),
the l = 0 state is occupied, while an edge reconstruction has occurred for the remaining
�ve electrons. As we increase the temperature to 12 K (dotted line), we see a spreading
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Figure 4. a) Expectation value of the energy as a function of temperature showing the
three phases as discussed in the text. b) The speci�c heat for the lowest-energy con�gura-
tion of the quantum dot as a function of temperature. c) Occupation of the Fock{Darwin
states. d) Occupation of the Hartree{Fock states.

of the occupations in both the low and high angular momentum channels with about 0.8
particles in the l = 0 state. The � = 5 phase brings a dramatic decrease of occupation in
the l = 0 state and a shift to lower angular momentum for the reconstructed edge. This
trend continues after the � = 4 transition.
Signatures of the density transitions that we have seen also appear in the Hartree{

Fock occupations nHF as shown in Fig. 4d. At low temperatures (3.9 K) the familiar
step-function behavior is evident from the �gure. At 12 K in the � = 6 phase, we see a
decrease of occupation to roughly 0.8 in the lowest six Hartree{Fock levels and a spreading
to higher energy states. As the system undergoes the transition to � = 5, we see only �ve
Hartree{Fock levels signi�cantly �lled (with nHF > 0:7), and �nally in the � = 4 phase,
only four Hartree{Fock levels are signi�cantly �lled. The occupation number-spreading,
which is due to thermal excitation of the system, is enhanced signi�cantly when the system
undergoes a phase transition.
The phase transitions that we have shown in the preceding discussion have de�nite

observable consequences. In Fig. 5a we plot the chemical potential, that is, the separation
energy �(N; T ) = EN (T )�EN�1(T ) to remove a particle from the quantum dot at a given
temperature. Since this is an energy di�erence, �(N; T ) will be in
uenced by transitions
within both the N = 6 and N = 5 systems, and we expect changes in slope at the
transition points. The � = 5 to � = 4 transition in the N = 5 dot occurs at roughly 12 K,
causing a sharp rise in �(N = 6). A slope change in �(N = 6) is seen at � 13 K, where
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Figure 5. a) Chemical potential, � and b) inverse compressibility, �2 for the N = 6
system as a function of the temperature.

the � = 6 to � = 5 transition occurs in the N = 6 system. The decrease from 14� 14:3 K
occurs when the N = 6 system makes the transition from � = 5 to � = 4. A �nal change
in slope occurs when the N = 5 dot makes the transition from � = 4 to � = 3. For the
brief temperature interval when the N = 6 and N = 5 dots are in the same � phase, we
see a decrease in the chemical potential.
We observe similar changes in the inverse compressibility, �2(N; T ) = EN+1(T ) �

2EN(T ) +EN�1(T ). This quantity has been measured for quantum dots in low magnetic
�elds [22] and studied in Hartree{Fock theory for ground-state properties [23]. In our
case, the N = 7; 6, and 5 dots participate in the observable. We again notice strong
e�ects as one passes through transition points in either of the three systems contributing
to the observable. Figure 5b shows �2(N = 6) as a function of temperature. Before
transitions occur, �2 remains fairly constant. A large decrease begins at 12 K, where the
N = 5 system undergoes its �rst transition. Interestingly, �2 increases signi�cantly when
the N = 6 and N = 5 dots are in the � = 4 phase.
In addition to measurements of energy di�erences, one should be able to experimentally

probe the thermal phase transitions using far-infrared spectroscopy and X-ray scattering.
Far-infrared spectroscopy was used to investigate the excitations of InAs quantum dots
as a function of the electron number per dot [24]. Grazing incidence X-ray scattering was
recently used to generate a full structural characterization of quantum dots [25], including
information on the elastic form factor. While these experiments were carried out at very
low temperatures, it is conceivable that one could study the thermal response of quantum
dots using X-ray or far-infrared scattering. A Fourier transform of the charge density
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Figure 6. The form factor of the N=6 quantum dot is shown at di�erent temperatures.

produced in our calculations gives the elastic form factor that can be used to characterize
the dot.
We show in Fig. 6 the form factor, j �(q) j, as a function of the momentum transfer vector

j q j=
q
q2x + q2y . A well-de�ned minimum is apparent at approximately j q j= 0:7ev�1

in all three phases. This �rst minimum is related to the size of the dot and clearly does
not change in the three phases. This is apparent also from a close inspection of Fig. 3:
while the internal structure changes signi�cantly as a function of increasing temperature,
the dot size does not change. The height of the second maximum slightly increases as in
phase � = 5 before decreasing in the � = 4 phase. The position of the second minimum
increases as a function of q signi�cantly and would be a distinguishing feature in X-ray or
far-infrared scattering experiments used to probe the thermal phases of a quantum dot.

3.2. A �rst application of AFMC techniques to the quantum dot

As the examples indicated above, the SMMC method, the nuclear implementation of the
more general auxiliary �eld Monte Carlo (AFMC) technique, has been rather successful in
describing various nuclear features. In this subsection, I will describe the AFMC technique
as applied to calculations for quantum dots.
To calculate expectation values in AFMC, one makes use of the Euclidian-time many-

body propagator Û = exp(��Ĥ, where � � T�1 is interpreted as the inverse of the
temperature. For example, the expectation value of some observable 
̂ in a canonical
ensemble, i.e., an ensemble with particle number N , can be obtained by calculating

h
̂i =
Tr[P̂N Û 
̂]

Tr[P̂N Û ]
=

TrN [Û
̂]

TrN [Û ]
; (2)

where the many-body trace is de�ned as TrX̂ �
P

ihijX̂jii and the sum is over all many-
body states of the system. If N̂ is the number operator, and P̂N = Æ(N � N̂) is the
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projector onto states with N electrons, the canonical ensemble is de�ned by TrNX̂ �P
ihijP̂NX̂jii. It is important to note that we cannot usually obtain detailed spectroscopic

information (i.e., energies and wave functions) from AFMC. Rather, we can calculate
expectation values of operators in the thermodynamic ensembles or the ground states
[26].
In the AFMC method, two-body interactions in Ĥ are linearized through the Hubbard-

Stratonovich (HS) transformation [27]. The diÆcult many-body evolution U is replaced
by a superposition of an in�nity of tractable one-body evolutions, each in a di�erent

uctuating external �eld, �. Integration over the external �elds thus reduces the many-
body problem to quadrature, which is evaluated stochastically.
With some rearrangement, the many-body Hamiltonian, Ĥ, may be written schemati-

cally as

Ĥ = "Ô +
1

2
V ÔÔ ; (3)

where Ô is a density operator of the form aya, V is the strength of the two-body interac-
tion, and " a single-particle energy. In the full problem, there are many such quantities
with various orbital indices that are summed over, but we omit them here for the sake of
clarity.
All of the diÆculty arises from the two-body interaction, that term in Ĥ quadratic in

Ô. If Ĥ were solely linear in Ô, we would have a one-body quantum system, which is
readily dealt with. To linearize the evolution, we employ the Gaussian identity

e��Ĥ =

s
� j V j

2�

Z 1

�1
d�e�

1

2
�jV j�2e��ĥ ;

ĥ = "Ô + sV �Ô : (4)

Here, ĥ is a one-body operator associated with a c-number �eld �, and the many-body
evolution is obtained by integrating the one-body evolution Û� � e��ĥ over all � with a
Gaussian weight. The phase, s, is 1 if V < 0 or i if V > 0. Equation (4) is easily veri�ed
by completing the square in the exponent of the integrand and then doing the integral.
With an expression of the form (4), it is straightforward to write observables as the

ratio of two integrals. For example, the canonical expectation value (2) becomes

h
̂iN =

R
d�e�

�

2
jV j�2TrN Û�
̂R

d�e�
�

2
jV j�2TrN Û�

; (5)

which can be more conveniently written as

h
̂iN =

R
d�W�
�R
d�W�

; (6)

where W� = G�TrN Û�, G� = e�
�

2
jV j�2 and 
� = (TrN Û�
̂)=(TrN Û�). Thus, the many-

body observable is the weighted average (weight W�) of the observable 
� calculated
in a canonical ensemble involving only the one-body evolution Û�. Similar expressions
involving two � �elds (one each for e��Ĥ and e�(���)Ĥ) can be written down for the
response function.



10

An expression of the form (6) has a number of attractive features. First, the problem has
been reduced to quadrature|we need only calculate the ratio of two integrals. Second, all
of the quantum mechanics (which appears in 
�) is of the one-body variety, which scales
simply with the square of the number of single-particle states included in the calculation.
The price to pay is treating the one-body problem for all possible � �elds.
Since Ĥ contains many two-body terms that do not commute, the evolution must

be discretized via the Trotter approximation, i.e., � = Nt��, before applying the HS
transformation, i.e.,

ZN = TrNe
��Ĥee ! TrN

h
e���Ĥee

iNt

!
Z
D[�]G(�)TrN

NtY
n=1

e��ĥ(�n) ; (7)

where �n are the auxiliary �elds at a given imaginary time-step �� (there is one �-
�eld for each two-body matrix-element in Ĥee when the two-body terms are recast in
quadratic form), D[�] is the measure of the integrand, G(�) is a Gaussian in �, and
ĥ is a one-body Hamiltonian. Thus, the many-body problem is transformed from the
diagonalization of a large matrix to one of large dimensional quadrature. Dimensions
of the integral can reach up to 105 for systems of interest, and it is thus natural to use
Metropolis random walk methods to sample the space. The accuracy of its results are
limited only by sampling and discretization errors which may be controlled. Because the
numerical e�ort for AFMC scales only as a low power of the problem size, very large
(and hence more realistic) calculations are possible. Further, because the calculations are
compute-intensive, with relatively modest memory or I/O, they are ideally suited to take
advantage of developments in parallel high-performance computing.
The most signi�cant challenge to applying the AFMC method resides in overcoming the

fermion-sign problem. The fermion-sign problem manifests itself in more than a single way
(e.g., Monte Carlo integration errors, numerical instabilities, etc.). Algorithmic solutions
to these problems are typically not robust and are highly dependent on the fermion system
to which they are applied. For example, systems whose interactions are purely attractive
are free of the sign problem [26]. In application to the nuclear shell model, where dominant
components of the force are attractive, practical solutions to the sign problem are based
on an extrapolation of observables calculated from nearby families of Hamiltonians which
do not exhibit the sign problem. Success, in this case, depends crucially on the degree of
extrapolation required.
For our system of many-electrons con�ned in a quantum dot, the Coulomb forces are

purely repulsive. (If the system is represented in a basis in which the two-body interactions
are diagonal, then the e�ective forces have both attractive and repulsive character.) In
computing expectation values of observables as in Eq. (2), we will employ the �nite-
temperature methods discussed above. At high temperatures, these methods will not
su�er from a Monte Carlo sign problem, but at lower temperatures, we will encounter the
infamous sign problem. Its most frequent manifestation occurs when the weight functions
used for a Metropolis Monte Carlo evaluation of the integrals introduced by the Hubbard-
Stratonovich transformation lose their positive-de�nite character [26].
As a �rst example of an AFMC application to quantum dots, I show in Fig. 7 results

for the N = 6 system as a function of inverse temperature. The energy of the system
decreases as a function of inverse temperature, as it should, and the Monte Carlo sign
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shows the typical behavior of becoming small very quickly. We are exploring methods
to stabilize the AFMC against the sign problem when the e�ective interactions include
terms that are both attractive and repulsive [28,29].

4. Conclusion

Con�ned quantum-mechanical systems exhibit a variety of interesting phenomena. Nu-
clear shapes range from spherical (near closed shells) to well deformed (in mid-shell sys-
tems), to those shapes with special symmetries such as the 
-soft nuclei in the 124Xe
region. Quantum dots also show interesting shape changes as one adds electrons at a
given magnetic-�eld strength and temperature. The shells that are built up in quantum
dots at high magnetic �elds are somewhat di�erent in character from those found in nuclei.
For example, in the oscillator basis the doubly magic nucleus, 40Ca, can be considered as
a core, and hence inert, system in calculations of low-lying states in the mid-fp shell. In
contrast to this behavior, the oscillator levels are all active at high magnetic �elds.
Nuclei can change their character as a function of cranking frequency. The signature

for such a change is a level crossing in Jz as a function of the cranking frequency. Further-
more, the same nucleus can have di�erent bands built upon di�erent intrinsic structures
within the same nucleus. This is also true in quantum dots. I indicated how a dot
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goes through phase transitions as a function of temperature and how di�erent intrinsic
structures are evident during the transitions. The thermal phase transitions should be ex-
perimentally veri�able by investigating 
uctuations of the chemical potential as a function
of temperature and with far-infrared scattering.
Finally, I brie
y discussed the ingredients needed to pursue AFMC calculations for

quantum dots. Development of the AFMC method for applications in quantum dots
continues and should prove to be an excellent area in which to apply techniques developed
in nuclear physics to other areas of science.
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