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ABSTRACT

A physical system can be described by a set of parameters which are related
to each other by certain physical laws. We consider that each parameter is
either measured by sensors and/or estimated computationally. As a result, the
estimated or measured values for a single parameter could be widely varying.
We address the problem of fusing various measurements and/or estimates to
improve the accuracy in estimating the parameter, when the error distributions
of sensors and estimators are unknown. We propose a fusion method based
on the least violation of physical laws that relate the parameters. Under the
bounded variation condition of the physical law, we derive distribution-free
performance bounds for a fusion rule computed using a �nite sample. This
result also implies the asymptotic convergence of the estimated fusion rule to
the best possible rule which can be obtained under a complete knowledge of
the error distributions.

INTRODUCTION

We consider a multiple sensor system that measures physical parameters of a system.
Each parameter is either measured using an instrument or estimated using a computational
method based on the measurements. There could be both systematic and random errors in
the measurements as well as in the estimators. Furthermore, it may not be possible to know
the actual parameter values, since all measurements and estimators (based on measurements)
can introduce errors of di�erent types. Consequently, there are a number of estimated and/or



measured values for each parameter. In general, very accurate sensor noise models could be
derived from device properties. But such models are di�cult to derive for estimators based on
complicated computer codes. On the other hand, it is relatively easy to collect measurements
using the sensors, and then compute the estimators based on measurements. Fusion rules
based on measurements have been developed [6], and are shown to be very e�ective in
practical engineering and robot systems. We consider the fusion of various measurements
and estimators such that for each parameter the fused estimate is superior to the individual
estimator or measurement. Since the actual parameter values are not known, the traditional
pattern recognition or fusion solutions are not applicable here. The actual values, if available,
could be used as the training data to design powerful fusers [6, 7, 5]. The lack of \traditional"
training data motivated a new paradigm [8] that utilizes physical laws. In this paper, we
extend the results of [8], which are valid for only Lipschitz physical laws, to include non-
smooth physical laws.

The parameters of physical systems are related by physical laws, which are typically
derived from �rst principles, and are veri�ed by independent mechanisms. For example, for
a simple mass sliding on a friction-less surface, we have f = ma, where f is force, m is mass
and a is acceleration. If we choose a measurement or an estimator for each parameter, the
accuracy of this set depends on how well the physical law is satis�ed, and the \violation"
of physical law is an indication of error. Thus, the set of estimators that achieves the
least violation of the physical law is the most preferred. By fusing the measurements and
estimators, on can achieve, in principle, performances superior to any set of estimators. The
performance of the fuser, however, depends on the knowledge about the error distributions.
If the sensor error distributions are known, the isolation fusers [5] can be designed to ensure
fuser performance at least as good as best set of estimators. In the practical case, where we
only have sensor measurements, we showed in [8] that (smooth) Lipschitz physical laws can
be used to design the fuser. In particular, this result holds asymptotically (i. e. as sample
size approaches in�nity) and for �nite samples, under Lipschitz properties of the physical
law and fusion functions. These results are not valid if the physical law is discontinuous or
the individual fusion functions are not smooth.

In this paper, we show that the bounded variation of the physical law is su�cient to
obtain the �nite sample as well as the asymptotic guarantees of the fusion procedure. This
is achieved by employing fusers classes with the isolation property [5] and the bounded
pseudo-dimension [1]; these conditions are satis�ed by a number of fusers such as certain
feedforward networks and linear combinations. The results of this paper enable us to utilize
discontinuous physical laws and fusion rules to achieve performance superior to the best set
of measurements. For �nite sample sizes, we show distribution-free result that given large
enough sample the fuser performs better than the best set of estimators within a speci�ed
precision and with a speci�ed probability. This result also implies that the computed fuser
asymptotically approaches the best fusion rule (computable under complete knowledge of
the distributions) as the sample size increases.

In section 2, we describe the fusion problem originally formulated in [8], We show how
physical laws can be used to design a fuser in Section 3 under the above conditions. We
brie
y discuss fusion of data collected in the exploration of methane hydrates in Section 4.



PHYSICAL SYSTEMS AND LAWS

A physical system is speci�ed by the parameters P (z) = (p1(z); p2(z); : : : ; pn(z)) with
pi(z) 2 <, where z is one-dimensional variable such as time or position. Each parameter pi
is measured by ai instruments and estimated by bi estimators (ai � 0, bi � 0, and ai+bi � 1).
The measurements corresponding to pi(z) are denoted by

mi(z) = fmi;1(z); mi;2(z); : : : ; mi;ai(z)g

and the corresponding estimators are denoted by

ei(z) = fei;1(z); ei;2(z); : : : ; ei;bi(z)g:

Thus, there are ai + bi competing values for each parameter, and in general we do not know
which one is more accurate. The measurements are assumed to be noisy in that repeated
measurements by a sensor of pi(z) = x for a �xed value are distributed independently accord-
ing to the distribution Pmi;j jx, which is denoted by Pmi;j jpi(z). Thus, mi;j is a random variable.
The estimator ei;j is a (deterministic) function of the measurements, and hence is also a ran-
dom variable. The joint distribution of the measurements is denoted by Pm1;m2;:::;mnjp1;p2;:::;pn.

There is a physical law
L[p1(z); p2(z); : : : pn(z)] = 0

which relates the actual parameters corresponding to z. For the example of mass in the
previous section, we have L[f;m; a] = (f � ma)2 = 0. We assume that L[:] satis�es the
reasonable monotonicity condition: for any y1; y2, jy1j � jy2j, we have

jL[p1(z); : : : ; pi(z) + y1; : : : ; pn(z)]j � jL[p1(z); : : : ; pi(z) + y2; : : : ; pn(z)]j:

Monotonicity means that accurate parameter estimators yield no lesser \magnitude" of vi-
olation of the law compared to less accurate estimators.

Consider a single estimator or measurement p̂i for the parameter. The closeness of
L[p̂1(z); p̂2(z); : : : ; p̂n(z)] to 0 determines how closely the law is satis�ed. Let a basic set,
denoted by S, be a set of measurements and estimators such that for each parameter we
choose precisely one measurement or estimator (but not both). The total error due to S is
given by

Ê(S) =
X
z

L[p̂1(z); p̂2(z); : : : ; p̂n(z)]:

In all there are
nQ
i=1

(ai + bi) possible basic sets, and Ŝ be the one with least error such that

Ê(Ŝ) = min
S
Ê(S): The expected error of S is denoted by

E(S) =
X
z

Z
L [p̂1(z); p̂2(z); : : : ; p̂n(z)]Pm1;:::;mnjp1;:::;pn;

and let S� be the one with the least expected error such that E(S�) = min
S
E(S�): Note that

S� minimizes the expected error but Ŝ in general does not. More detailed discussion of the
physical laws can be found in [8].



DATA FUSION BASED ON PHYSICAl LAWS

A fusion function fi 2 Fi for parameter pi combines the measurements and estimators
such that fi(mi(z); ei(z)) is an estimate of pi(z). Let f = (f1; : : : ; fn) denote the fuser for
all parameters. The expected error due to the fused estimate is

E(f) =
X
z

Z
L [f1(m1(z); e1(z)); : : : ; fn(mn(z); en(z))] dPm1;:::;mnjp1;:::;pn;

and let f � 2 F1� : : :�Fn be the one with the least expected error. In general E(f) cannot
be computed if the error distributions are not known, and hence f � is not computable. In
stead, we compute f̂ that minimizes the empirical cost given by

Ê(f) =
X
z

L [f1(m1(z); e1(z)); : : : ; fn(mn(z); en(z))] ;

based on a set of iid measurements (also called the sample)

f<(m1(z); e1(z)); : : : ; (mn(z); en(z))>: z = 1; : : : ; sg:

Now we discuss methods that ensure E(f �) � E(S�), and more importantly based on a
computable f̂ that

E(f̂) < E(S�);

with a speci�ed probability based entirely on the measurements and without any knowledge
of the underlying distributions.

A fuser class Fi = ffi(y) : <ai+bi 7! <g; for y = (y1; : : : ; y(ai+bi)), has the isolation
property [5] if it contains the function �j(y) = yj for all j = 1; 2; : : : ; (ai + bi). If each Fi

satis�es the isolation property, then the following conditions are directly satis�ed.

E(f �) � E(S�) and Ê(f̂) � Ê(Ŝ):

The �rst condition is useful only if f � can be computed, which in turn requires the knowl-
edge of the distributions. If the distributions are not known, then f̂ can be used as an
approximation. In [8] we showed that with probability 1� �, we have

E(f̂)� E(f �) � �

given a su�ciently large sample, when the physical law and the fusers classes are Lipschitz.
In general, however, physical laws may not be Lipschitz, especially if they involve discrete
components or discontinuities. For example, consider the simple case of H2O heated in a
container, where p1 denotes the temperature and p2 2 f0; 1g is the state, i. e. p2 = 0 denotes
liquid and p2 = 1 denotes steam. Let T0 denote the boiling temperature under this condition.
Then, one of the physical laws is: p2 = 0 if p1 < T0 and p2 = 1 otherwise. This law can be
represented as

L[p1; p2] = p21fp1<T0g + (p2 � 1)1fp1�T0g = 0;

where the indicator function 1C is 1 if condition C is true and is 0 otherwise. Here, L[:] is
not Lipschitz. To address the cases typi�ed by such L[:], we consider the class of functions



with bounded variation [2], which allow for discontinuities and discrete values, and include
Lipschitz functions as a subclass.

Consider a function one-dimensional function h : [�A;A] 7! <. For A < 1, a set of
points P = fx0; x1; : : : ; xng such that �A = x0 < x1 < : : : < xn = A is called a partition
of [�A;A]. The collection of all possible partitions of [�A;A] is denoted by P[�A;A]. A
function g : [�A;A] 7! < is of bounded variation, if there existsM such that for any partition

P = fx0; x1; : : : ; xng, we have
P
(P ) =

nP
k=1

jf(xk) � f(xk�1)j � M: A multivariate function

g : [�A;A]d 7! < is of bounded variation if it is so in each of its input variable for every value
of the other input variables. The following are useful facts about the functions of bounded
variation: (i) not all continuous functions are of bounded variation, e.g. g(x) = x cos(�=(2x))
for x 6= 0 and g(0) = 0; (ii) di�erentiable functions on compact domains are of bounded
variation; and (iii) absolutely continuous functions, which include Lipschitz functions, are of
bounded variation.

We utilize the fuser classes with �nite pseudo-dimension [1], which is described as fol-
lows. Let G be a set of functions mapping from a domain X to < and suppose that
S = fx1; x2; : : : ; xmg � X. Then S is pseudo-shattered by F if there are real numbers r1, r2,
: : :, rm such that for each b 2 f0; 1gm there is a function g0 in G with sgn(fb(xi) � ri) = bi
for 1 � i � m. Then G has the pseudo-dimension d if d is the maximum cardinality of a
subset S of X that is pseudo-shattered by G. If no such maximum exists, we say that G
has in�nite pseudo-dimension. The pseudo-dimension of G is denoted Pdim(G). Pseudo-
dimensions are known for several classes such as sigmoid neural networks, vector spaces, and
linear combinations (see [1]).

Let G be the class of functions from Z to into [0;M ], where M > 0, and let P be a
probability measure on Z. Then dL1(P ) is the pseudo metric on G de�ned by

dL1(P )(g1; g2) = E(jg1 � g2j) =
Z
Z
jg1(z)� g2(z)jdP (z)

for all g1; g2 2 G. The covering number N (�;G; dL1(P )) of a function class G is the smallest
cardinality for a subclass G� = fg�g of G such that dL1(P )(g; g

�) � �, for each g 2 G.

Theorem 1 Consider that the physical law is of bounded variation such that jL(p)j � ML

for all p. Let parameters, estimators and measurements are bounded. Let each fuser class Fi

have �nite pseudo-dimension di, and each fuser function g be bounded such that jg(:)j � M

for all parameters. Let d =
nP
i=1

di. Then given a sample of size

s =
256M2

L

�2

�
4d ln

�
128eM

�

�
+ (n+ 1) ln(4=�)

�
;

we have
P
h
E(f̂)� E(f �) > �

i
� �;

irrespective of the sensor distributions. Furthermore, E(f̂)! E(f �), as s!1.



Proof: Consider the function class L = fL(f1; f2; : : : ; fn) : f1 2 F1; : : : fn 2 Fng; where
L(f1; f2; : : : ; fn) is de�ned on a bounded domain. By combining Vapnik's argument (see [8]
for details) with Theorem 3 of Haussler [4], we obtain

P
h
E(f̂)� E(f �) > �

i
� 2E [min (2N (�=32;L; dL1))] e

� �2s

256M2

L : (1)

We subsequently show that N (�;L; dL1(P )) � 22n
�
4eM
�

ln 4eM
�

�2d
; for any P . The sample size

follows by using this cover bound in right hand side of Eq (1), and equating to � and then
solving for s.

In the rest of the proof we establish the bound on N (:). Since L(:) is of bounded variance,
it can be represented as a sum of two monotone functions L = L1 + L2. For i = 1; 2, let

Li = fLi(f1; f2; : : : ; fn) : f1 2 F1; : : : fn 2 Fng:

Then let Lijj = fLi(p1; : : : ; pj�1; fj; pj+1; : : : ; pn) : fj 2 Fj; which is a class of function
obtained by composing a monotone function with functions from Fi with bounded pseudo
dimension. By Theorem 11.3 of [1], we have Pdim(Lijj) � Pdim(Fi). Then by using Theorem
6 of [4] we have

N
�
�;Lijj; dL1(P )

�
� 2

�
2eM

�
ln

2eM

�

�dj

for any measure P . By applying this cover bound for every component of Li, we obtain

N
�
�;Li; dL1(P )

�
� 2

nY
j=1

�
2eM

�
ln

2eM

�

�dj
= 2n

�
2eM

�
ln

2eM

�

�d

by the product rule. Since L = L1 + L2 we obtain

N
�
�;L; dL1(P )

�
� N (�=2;L1; dL1(P ))N (�=2;L2; dL1(P )) � 22n

�
4eM

�
ln

4eM

�

�2d
:

By noting that this bound is independent of P , we obtain

2E [min (2N (�=32;L; dL1))] � 4N
�
�=32;L; dL1(P )

�
� 22n

�
128eM

�
ln

128eM

�

�2d
;

which yields the sample size as shown above. The asymptotic convergence follows from the
Borel-Cantelli Lemma by showing

1X
l=1

N (�;L; dL1) �
1X
l=1

22n
�
128eM

�
ln

128eM

�

�2d
e
� �2s

256M2

L <1

for every � > 0 in a manner identical to that in [8].

The following corollary is a weaker version of Theorem 1 since E(f �) � E(S�) � E(Ŝ).

Corollary 1 Let Fi satisfy the isolation property for all i = 1; 2; : : : ; n. Under the same
conditions as Theorem 1, we have following conditions satis�ed.

P
h
E(f̂)� E(S�) > �

i
� � and P

h
E(f̂)� E(Ŝ) > �

i
� �:



Informally speaking, this corrollary shows that the error of the computed fuser f̂ is not likely
to be much higher than that of the best basic set, and could be much smaller. Theorem 1
states that f̂ will be closer to f � which can have much smaller error than S�.

METHANE HYDRATES WELL LOGS

Gas hydrates are crystalline substances composed of water and gas, in which gas molecules
are contained in cage-like lattices formed by solid water. One of the challenging problems
is to predict the prescence of hydrates using measurements collected at wells located in
certain locations such as o� the US coast in mid-Atlantic and Mackenzie Delta in Northwest
Canada. At each well, a number of measurements are collected using a suite of sensors.
These measurements include density, neutron porosity, acoustic transit-time, and electric
resistivity, collected at various depths in the well [3]. Our focus is on the estimation of the
porosity at various depths. Our data consists of 3045 sets of measurements each collected at
di�erent depths in a single well. There are a variety of methods to estimate porosity based on
di�erent principles and utilizing di�erent measurements. We employed six known methods
for estimating the porosity based on neutron measurements (�̂1), density measurements (�̂2),

uid velocity equation (�̂3), acoustic travel time based on S-wave (�̂4), time-average equation
based on P-wave (�̂5), and Wood's equation (�̂6).

One of the well-established physical laws relates the parameters of porosity (�), density
(�), and hydrate concentration ( ), as follows

L[�;  ; �] = (�[�m � (1�  )�w +  �h]� �+ �m)
2 = 0;

where �m, �w, and �h are known constants. In this equation, we use the only one measurement
for density �̂ and and a single estimator  ̂ for the hydrate concentration using the Archie's
equation. We consider a fuser based on the linear combination of the estimators

�̂F = w7 +
6X
i=1

wi�̂i;

where (w1; : : : ; w7) 2 <7 is the weight vector that minimizes the error based on measure-
ments. The error achieved by �̂F is about 20 times better than that of the best estimator
�̂4 (details can be found in [8]). Note that L[:] and the fusers employed here satisfy the
conditions of Corollary 1. Incidentally, they also satisfy the smoothness conditions of [8].

CONCLUSIONS

We presented an information fusion method that applies to physical systems wherein
accurate measurements of physical parameters are not possible. We presented a method
that combines various measurements and estimators to achieve performance at least as good



as the best set of measurements. We showed that a close approximation to the this optimal
fuser can be computed such that with a high probability the solution performs at least as
good as the best set of measurements, given large enough sample size. This work is an
advance our earlier work [8] which is applicable to only Lipschitz laws and fusers. The study
of projective fusers and metafusers [7] for the proposed formulation will be of future interest.
It is also of interest to see if the boundedness of pseudo-dimension in Theorem 1 can be
replaced by that of fat-shattering index [1], which would result in a weaker condition.
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