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Abstract:
Nonlinear pulse compression and pulse broadening have been demonstrated with a coherent array of
sub-micron silica spheres embedded with silicon nanoparticles ('nano with nano').
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Summary
The most common pulse compression scheme is a combination of a frequency chirp with a dispersion

compensator. The frequency chirp is achieved by nonlinear medium, most notably a Kerr medium. Periodic
structures, such as, phase grating, have been used as a dispersion media needed for the compensation process [1].
Photonic crystals embedded with nonlinear material such as, silicon nanoclusters, bear the potential of incorporating
the two requirements in one structure. The fcc structure of silica based opaline sample was ion implanted with Si
ions. Following annealing, 5-6-nm clusters of silicon were formed within a 0.3-µm thick region, as determined by
SEM and Raman spectroscopy [2]. The structures have been shown to be highly nonlinear [3], reaching index
changes on the order of δnNL>0.1 at λ=0.8-µm, and strongly dispersive [4]. Unlike Bragg fibers [5], we employ
here a transverse scheme, namely, the dispersion is achieved via transverse Bragg reflections [6] while maintaining
non-resonance conditions along the propagation direction.

The optical wave propagation in photonic crystal is rather complicated. An insight into the wave
propagation within a transverse structure may be obtained as follows. The wave propagation consists of many spatial
modes. The transverse propagation constant of the qth mode may be in resonance with the periodic structure,
namely, x

(q)~k0n0sin( q( / ), where  is the transverse pitch. From this equation we may calculate that the incident
angles for transverse Bragg condition are 190 and 430 for a non-implanted opaline structure and an opal containing
5-6-nm Si clusters, respectively. The coupling strength, with coupling,  = n/ 0cos , n=0.5, =0.8-µm and
interaction length L=10-µm, is L~30 for a 10-µm thick opal.

The propagation constant in the direction of propagation is z
(q)={k0

2n2(0)-[ x
(q)]2}1/2. The time of arrival

per unit length of a spectral line, ω, of mode number, q, is,
( ,q)= z

(q)/ ~(1/c)[n+(1/8)(q 0/ )2/n]. (1)



Here we used, n, the effective linear refractive index and, kn= n0/c=2 / n. Consider a 100-fs pulse. The delay-time
introduced by the modal dispersion is = ( ,q+1)- ( ,q)=(2q+1)0.2-fs/µm. Shown in Fig. 1 is the broadening of
the pulse by a non-implanted and implanted opaline samples as a function of angle. As predicted, a large broadening
occurs at the transverse Bragg angle. Based on the previous arguments, the pulse propagation is made via multi-
spatial modes.

The opal structure may compensate for frequency chirp introduced by an external means. Such pulse
'compression' for a 10-µm thick non-implanted opaline samples are shown in Fig. 2. The incoming pulse of 100-fs
from a Ti:sapphire laser was positively chirped, without a change in the spectral width, using a 15-cm long, water-
filled cuvette. The pulse duration after the water cuvette was 265-fs and the corresponding re-compression was 60-
fs. The compression for the implanted sample was not as effective as the non-implanted sample. The reason is that
the implanted region distorts the incident phase for the non-implanted segment thereby, resulting in a non-optimized
effect. At low power levels (see also Fig. 1) the broadening from the combined effects is actually maximized. Also,
owing to the negative signs of both linear and nonlinear dispersions one may expect a substantial broadening.

Nonlinear properties may be incorporated upon replacing n(I) by, n=n0+γI; here I is the intensity
distribution of the propagating pulse, commonly taken to be of gaussian shape, I=I0exp(-2t2/ p

2). Self-phase
modulations will increase the pulse spectrum and include a spectral chirp owing to the large index changes. The
linear dispersion will determine the relative time-of-arrival of the tail and peak of the pulse, which corresponds to
the relative time of arrival of the high and low frequencies, respectively. The nonlinear effect was indirectly
demonstrated by measuring the pulse broadening of a 100-fs input pulse as a function of intensity. In Fig. 3 we show
changes in pulse broadening as a function of pulse energy at two angles: (a) at the angle of maximum pulse
compression and (b) at an angle of minimum compression. Note that L~0.2 for the nonlinear region. One may
observe a saturation of index change for large energy densities. We also added the flat response of a non-implanted,
10-µm thick opaline structure. The latter demonstrates that, in general, the silica-based opaline structure does not
contribute to the self-phase modulations. The small dip near 250 µJ/cm2 may indicate a true compression owing to
the positive nonlinearity of the silica spheres; this is still under investigation. One should expect that as the nonlinear
chirp increases, its effect on the pulse broadening decreases. This is because the nonlinear chirp contributes a term
like A/(1+Α2), where A is proportional to the instantaneous frequency [7].

In summary, we have shown that by incorporating nano silicon clusters (a nonlinear medium) within an
opaline structure and employing a transverse diffraction scheme we were able to manipulate ultra-short pulses.
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Fig. 1. Pulse broadening as a function of incident
angle, . The theoretical estimation of the Bragg peaks
are 190 and 430 for non-implanted and Si implanted
samples, respectively.

Fig. 2. Pulse compression for a pre-chirped pulse at
265-fs as a function of the incident angle, , for
implanted and non-implanted 10- m thick opaline
samples. The implanted region was 0.3- m.
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Fig. 3. Change in pulse broadening as a function of pulse energy density
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