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Fusion Technology Update

• Fusion is a scientific and technological grand challenge
– Developing entire field of high-temperature plasma physics

– Cross-cutting insights in nonlinear mechanics, atomic physics, and
fluid turbulence

– Needing advanced technologies and materials for magnetic and
inertial fusion

• Fusion is an international activity at over $1 b/year
– Collaboration in science, technology, experiments, and materials

– A variety of approaches to magnetic and inertial fusion energy

– ITER (EEC, Japan, Russia, Canada, …)

– NIF (U.S.) and Laser MegaJoule (France)

– Advanced computational simulation is a major component

– Opportunities in the Fusion Energy Science Program FESAC http://wwwofe.er.doe.gov



Roadmap for Fusion Energy
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Characteristics of Fusion Reactions



Summary of Progress in Fusion Energy Gain
Achieved in Experiments
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Comparison of Fission and Fusion Radioactivity
After Shutdown



Schematic Diagram of an MFE Power Plant



Schematic of the Fusion Power Core of the ARIES-RS
Advanced Tokamak Power Plant Design



Database for Confinement Scaling in Tokamaks
Points for ITER and reduced-cost variants



Levels of Development and World Distribution of
Major Facilities in MFE



Schematic of Fusion Power Core of an ARIES
Spherical Torus power Plant



Schematic of a Self-ordered Spheromak
Configuration Using a Liquid Metal Wall



Prototype 1-MW Gyrotron

• 1-MW  CW gyrotron

• 170-GHz

• Heating plasmas

• Driving plasma currents



Central Solenoid Test for ITER
13 Tesla Pulsed Coil



Schematic of an Inertial Fusion Power Plant
1. Target factory

To produce many low-cost targets

2. Driver
To heat and compress the

target to fusion ignition

3. Fusion chamber
To recover the fusion energy
pulses from the targets

4. Steam plant
To convert fusion heat into electricity

Focusing
element

Many
beams



The Principal Approaches to Inertial Confinement
Fusion are Direct Drive and Indirect Drive



The NIF will map ignition thresholds and
regions of the gain curve for various targets



A Phased Criteria-driven IFE Development Pathway



Indirect-drive target for ion beam fusion energy
using a distributed radiator foam radiation case

• Heavy ion beams are
considered for IFE

• Greater efficiency than
lasers

• Similar indirect targets



HYLIFE-II Liquid-jet Protected chamber



Projected Range of COEs for ≤ 1 GWe Power Plants
without Carbon sequestration





Potential Fusion Products
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Fusion Power Plant with Electrolyzer

Condenser

Fusion
Power Core

• All Turbine
• Fixed Split
• Variable Split
• All Electrolyzer
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Cost of Electricity w/wo Heat to Electrolyzer

Cost of Fusion Electricity Including Utility Costs ($/kWh)
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Comparison of Hydrogen Costs from Various Sources

Cost of Hydrogen Production ($/GJ)
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CONCLUSIONS

•  Fusion energy could be available in the middle of the 21st

century if ITER and NIF work and other technologies and
radiation resistant materials are developed.

•  Today’s fusion power plant designs and the expected
economies of scale for fusion plants indicate one route for
fusion power to be competitive – going to large power
plants e.g., 3 to 4 Gwe.

•  Studies show that even with the additional utility costs for
such plants, about 5 mills/kWh, they should remain
competitive. Co-produced hydrogen could be priced
competitively, reduce the power going to the grid, and
could allow load following while running at full power.


