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Fusion Technology Update

* Fusionisascientific and technological grand challenge
— Developing entire field of high-temperature plasma physics

— Cross-cutting insights in nonlinear mechanics, atomic physics, and
fluid turbulence

— Needing advanced technologies and materials for magnetic and
Inertial fusion
e Fusionisan international activity at over $1 b/year
— Collaboration in science, technology, experiments, and materids
— A variety of approaches to magnetic and inertial fusion energy
— ITER (EEC, Japan, Russia, Canada, ...)
— NIF (U.S.) and Laser Megaloule (France)
— Advanced computational simulation is amajor component

—  Opportunities in the Fusion Energy Science Program FESAC http://wwwofe.er.doe.gov



Roadmap for Fusion Energy




Reaction rates Neutron power production Ignition temperatures and
(Maxwellian plasmas) (Maxwellian plasmas) confinement requirements

Characteristics of Fusion Reactions



Summary of Progress in Fusion Energy Gain

Lawson Fusion Parameter, n;T;Tg (1029 m-3kev s)
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Comparison of Fission and Fuson Radioactivity
After Shutdown




Schematic Diagram of an MFE Power Plant




Schematic of the Fusion Power Core of the ARIES-RS
Advanced Tokamak Power Plant Design




Database for Confinement Scaling in Tokamaks
Points for ITER and reduced-cost variants




Levels of Development and World Distribution of
Major Facilitiesin MFE




Schematic of Fuson Power Core of an ARIES
Spherical Torus power Plant

Elevation View of ARIES-ST Power Core
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Schematic of a Self-ordered Spheromak
Configuration Using a Liquid Metal Wall
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Prototype 1-MW Gyrotron

1-MW CW gyrotron
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Central Solenoid Test for ITER
13 Tedla Pulsed Caill




Schematic of an Inertia Fusion Power Plant

1. Target factory
To produce many low-cost targets

=

2. Driver
To heat and compress the
target to fusion ignition

3. Fusion chamber

-\
e — To recover the fusion energy
— pulses from the targets
Many Focusing
beams element
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4. Steam plant
To convert fusion heat into electricity



The Principal Approachesto Inertial Confinement
Fusion are Direct Drive and Indirect Drive




The NIF will map ignition thresholds and
regions of the gain curve for various targets




A Phased Criteria-driven |FE Development Pathway




Indirect-drivetarget for ion beam fusion energy
using a didributed radiator foam radiation case

Heavy ion beams are

considered for IFE

Greater efficiency than
lasers

Similar indirect targets



HYLIFE-II Liquid-jet Protected chamber




Projected Range of COEsfor < 1 GWe Power Plants
without Carbon sequestration







Potential Fusion Products
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Fusion Power Plant with Electrolyzer
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TVA LOAD AND SUPPLY

JUNE 24, 1998
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Cost of Electricity w/wo Heat to Electrolyzer

Cost of Electricity ($/k'wh)

Cost of Fusion Electricity Including Utility Costs ($/kWh)
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Comparison of Hydrogen Costsfrom Various Sources
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CONCLUSIONS

Fusion energy could be available in the middle of the 21%
century if ITER and NIF work and other technologies and
radiation resistant materials are devel oped.

Today’ s fusion power plant designs and the expected
economies of scale for fusion plants indicate one route for
fusion power to be competitive — going to large power
plantse.g., 3to 4 Gwe.

Studies show that even with the additional utility costs for
such plants, about 5 mills’lkWh, they should remain
competitive. Co-produced hydrogen could be priced
competitively, reduce the power going to the grid, and
could allow load following while running at full power.



