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ABSTRACT

An alternative approach is presented for the regression of
response data on predictor variables that are not logically
or physically separable.  The methodology is demonstrated
by its application to a data set of heavy-duty diesel
emissions.  Because of the covariance of fuel properties,
it is found advantageous to redefine the predictor variables
as vectors, in which the original fuel properties are
components, rather than as scalars each involving only a
single fuel property.  The fuel property vectors are defined
in such a way that they are mathematically independent
and statistically uncorrelated.  The available data set is not
considered adequate for the development of a full-fledged
emission model.  Nevertheless, the data clearly show that
only a few basic patterns of fuel-property variation affect
emissions and that the number of these patterns is
considerably less than the number of variables initially
thought to be involved.  

INTRODUCTION

Multiple regression analysis is one of the most widely used
methodologies for expressing the dependence of a
response variable on several predictor variables.  In spite
of its evident success in many applications, however, the
regression approach can face serious difficulties when the
predictor variables are to any appreciable extent covariant.
This point is made quite evident in a recent review by Lee,
Pedley, and Hobbs [1], in which efforts to evaluate the
separate effects of fuel variables on diesel emissions were
often frustrated by the close association of fuel properties.

This paper is an attempt to address these concerns by
offering what may be an ameliorative approach to modeling
the effects of fuel characteristics on emissions from heavy-
duty diesel (HDD) engines.  The approach uses an
adaptation of Principal Component Regression (PCR) that

is indicated to have certain advantages over stepwise
regression, which was widely used in the development of
the Complex Model for Reformulated Gasoline [2].

Our approach is only one of many that have been devised
to counter regression difficulties, such as ridge regression,
all possible regressions, and PCR, as attested to by the
extensive literature on these subjects [3-5].  Each has its
advantages and disadvantages, and in each a certain
degree of art and arbitrariness must be recognized.  It is
the contention of this paper, however, that PCR, because
of its seeming difficulty of interpretation, is used less widely
than it might be if better understood.  Therefore, we provide
in this paper a tutorial demonstration applied to the
problem of emissions from HDD engines in an effort to
increase awareness of the method.

STATISTICAL PERSPECTIVE

It is easily demonstrated that predictor variables can be
naturally associated in a way that defies their separation.
For example, it is evident and unarguable that increasing
a fuel component such as olefin implies decreasing one or
more other components such as aromatics or paraffins.
Other examples abound in the refining world, such as the
association of distillation characteristics with chemical
composition.

These natural associations are not to be confused with
apparent associations that arise from inappropriate
experiment designs that violate principles enunciated by
R.A. Fisher in his pioneering book Design of Experiments
[6].  Neither are they to be confused with applications
involving Principal Component Analysis (PCA) and other
factor-analytic methods that are used to understand the
interrelation among descriptive variables, as was pioneered
by L. L. Thurstone in his book The Vectors of Mind [7].
Rather, for variables naturally associated in a physical
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system, our approach defines predictor variables in such a
way that the new variables are orthogonal.  It then uses
them as the predictor variables in an ordinary least squares
(OLS) regression.

No attempt is made to select a subset of those variables
before performing the regression, as is commonly done in
many applications of PCR in the literature [8-13].  This
usage has been soundly criticized, and rightly so, by Hadi
and Ling in their paper “Some Cautionary Notes on the Use
of Principal Components Regression” [14], where they
point out instances in which the a priori choice of variables
“fails miserably” in prediction.  It should be evident that
choosing explanatory variables without regard to the
response variable is no more possible by means of PCA
than by any other means.

Therefore, it is important to recognize that our approach
uses PCA and PCR for two distinct purposes.  The first is
to resolve the design matrix into eigenvectors that explain,
in the most compact way, the variation among the original
variables (here, fuel properties).  Second, we use those
eigenvectors, all of them, as predictors of the response
variable (here, emissions).  Because of orthogonality, one
can partition the model sum of squares (SS) explicitly
among eigenvectors and drop from the model those that
are deemed unimportant, either because they fail to reach
a specified level of significance or because they contribute
little to the prediction in terms of magnitude. This approach
is similar in many respects to the case studies described by
Jeffers [15].

The final step consists of “pruning” the retained
eigenvectors of those components (original variables) that
contribute little to prediction.  This step is possible because
the ability to partition the model SS among eigenvectors
implies the ability to partition that SS among their
components – namely, the original variables.  The method
by which the partitioning is realized avoids such commonly
used procedures as removing variables one at a time to
determine how their removal affects the model SS.

It should be evident that partitioning the variance among
independent variables (fuels) and partitioning the model SS
for the response (emissions) will differ, sometimes
radically.  It is quite possible that an eigenvector that plays
a minor role in explaining the variability among fuels may
play a major role in prediction, and vice versa.  Where
found to exist, such “discrepancies” indicate that variable
associations having the greatest effect on response are
ones that were varied little in the design matrix.  This fact
can provide valuable insight for improving the experiment
design in follow-on work.

The transition from scalar to vector predictors brings with
it a spate of interpretational and inferential issues.  Tests of
significance, for example, may need to be viewed in a
different light, and it may be appropriate to put more
emphasis on the magnitude of an effect rather than on its
probability of occurring by chance.  So firmly embedded in
our research culture is the statistical paradigm that most

investigators are disinclined to acknowledge the existence
of other criteria for judging the worth of a scientific finding.
Moreover, the 0.05 level of significance is a fixed icon and
tends to be routinely applied, even though the power of the
test is strongly dependent on sample size.  Further, one
tends to accept, without question, that a variable either is
or is not “significant,” in toto.

In the present circumstance, however, one may have to
accept the fact that a variable’s significance may depend
on its associations.  This is because rejecting an
eigenvector implies only partial rejection of the original
variables comprising it, because the same variables occur
in those eigenvectors that are retained.  In this paper we
accept the notion of partial significance, believing that a
variable can be significant when found in respectable
company and not significant in less respectable company.

We also prefer to evaluate effects on the basis of their
magnitude in addition to their probability of occurring by
chance.  Sample size still plays a role, of course, but in a
way that is the dual of its role in a conventional test of
significance.  For a fixed significance level, such as the
classic 0.05, the magnitude of the “least detectable” effect
is variable and depends on sample size.  When a fixed
magnitude is used as the threshold for acceptance or
rejection of an effect, it is the statistical significance level
that varies, again depending on sample size.  We believe
it is essential to balance the two considerations.  Even
though an effect may be statistically significant, because of
large sample size, there is no reason for it to be retained if
it makes only a minuscule difference in predictions.

Many other sensitive philosophical considerations are
posed by the methodology demonstrated in this paper, and
it is beyond our scope to attempt to resolve them all.  Our
work is continuing, however, and will be reported in a
forthcoming publication by Oak Ridge National Laboratory
[16] and in other suitable forums.

The vector approach developed below provides a generally
applicable method for identifying an efficient set of vector
variables to describe a collection of data.  When applied as
predictor variables in regression analysis, the vector
variables are found to have many advantages, including:

• Economy of representation, because a small
number of vector variables may effectively replace
a larger number of the original variables.

• Simplification of regression analysis, because
properly constructed vector variables (e.g.
eigenvectors of the problem) will be
mathematically independent and eliminate the
complications introduced by multi-collinearity.

• Potentially greater understanding of the patterns of
variation present in the data and how these are
related to the dependent variable under
consideration.
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DIESEL EMISSION CONTROL

The background and status of diesel emission research are
well documented by the previously cited literature review by
Lee, Pedley and Hobbs.  Up to this point in time it appears
that engine design factors tend to eclipse fuel effects so far
as efforts to reduce diesel emissions are concerned.
Moreover, as pointed out by the authors, a number of
prototype engine technologies are under consideration in
order to meet future proposed emission limits (US 2004
and EU 2000/2005).

How fuel properties may influence diesel emissions in the
future is particularly problematical, especially in those
instances where engine or fuel properties play an enabling
role for the other.  Inseparable effects are not necessarily
limited to fuels; they may pertain to engine design features
as well, and may even pervade the engine/fuel interface.
Evaluation of such coupled effects may resist conventional
statistical means and present yet another opportunity for
exploitation of the vector-variable approach.

THE VECTOR METHODOLOGY

DESCRIPTION OF DATA BASE

A database representing 280 individual emission tests of
HDD engines was compiled from nine publications [18-26]
where the following criteria were met:

• The EPA transient test cycle was used and either
the composite or hot start result was reported.
The hot start portion has a 6/7ths weight in the
composite result.

• At least NOx and PM emissions were measured,
which are the pollutants examined in this study.
Eight of the sources measured all four pollutants
(HC, CO, NOx, and PM), and one source
measured all except CO.

• Emissions testing could be matched to fuels for
which the following 12 properties were known:
natural cetane, cetane number improvement
(resulting from additives), density, viscosity, sulfur
content, mono-aromatic content, poly-aromatic
content, and five points on the distillation curve. 

Table 1 lists the variables contained in the database; the
field names are used to refer to these variables in exhibits
to this paper.  Overall, the data represent 11 different
engines tested a total of 280 times on 85 different diesel
fuels.

Twenty-seven publications were examined in the process
of compiling this database [17-43].  Eight publications using
the EPA transient test cycle were excluded because one or
more of the fuel properties was not reported, most
commonly the poly-aromatic content.  Ten publications
were excluded for reasons related to the emissions data.
In one instance, only PM was measured, while European
or Japanese test cycles were used in nine other instances.

Table 1: The HDD Emissions Database
Field Name Units Description
Engine ID text text description of engine
Fuel ID text text identifier of fuel
Test number sequential number
Source text SAE paper number
Cycle number 0=EPA Composite; 1=EPA

Hot Start
Engine number unique engine identifier
NRepl number number of test replications
HC gm/bhp-hr hydrocarbon emissions
CO gm/bhp-hr carbon monoxide emissions
NOx gm/bhp-hr nitrogen oxide emissions
PM gm/bhp-hr particulate emissions
NatCetane number natural cetane
CetImprv number cetane improvement
Density gm/cm3

Viscosity mm2/sec at/near 40 degrees C
Sulfur ppm sulfur content
MonoArom percent mono-aromatics content
PolyArom percent poly-aromatics content
IBP Celsius Initial boiling point
T10 Celsius 10% evaporation point
T50 Celsius 50% evaporation point

T90 Celsius 90% evaporation point
FBP Celsius Final boiling point

The 12 fuel properties examined here are a super-set of
the fuel properties that have been considered with respect
to HDD emissions.  They include ones such as aromatics
content, cetane rating, and sulfur content that a consensus
of investigators believes relevant to emissions
performance.  Additional properties (IBP, T10 and others)
are included that could be independent predictors, could be
correlated with the consensus variables, or could prove
unrelated to emissions.  This purposefully casts the net as
wide as possible, leaving the identification of the proper
subset of predictor variables to the later analysis.  However,
there is no intent to imply that only these properties could
affect engine emissions.  For example, fuel oxygen content
is likely to affect CO emissions, and perhaps other
pollutants, but is not among the selected properties.  While
some sources tested oxygenated diesel fuels, these were
judged to be too few in number to permit including oxygen
content in the list.

The eleven HDD engines represented in the database
constitute a very small sample of the engine types present
in the on-road vehicle fleet.  Nevertheless, they include
engines made by the three major manufacturers
(Cummins, DDC, and Navistar) and cover a range in model
years and horsepower ratings.  The engines are generally
similar in design, although they are built to varying
emissions standards.  None are equipped with EGR
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systems or with catalysts as tested.  They can be taken as
reflective of the HDD engines currently on the road, even
if the sample is too limited to be considered truly
representative.

The large majority of the database represents individual
engine tests, but 41 entries from three sources record the
mean values of replicated tests.  For this paper, we have
duplicated the mean values so that each is represented as
many times as the test replications.  This approach, which
gives a total of 280 emission tests, maintains an equal
weighting among individual tests and improves the
estimation of the total variance.  However, the total
variance is understated by an unknown extent because the
data omit the variation of the (unknown) individual test
results around the (reported) mean values.

COMPUTER SOFTWARE

The analysis was conducted using MatLab, a commercially
available software package designed for matrix processing
[44].  MatLab offers a built-in function svd, which extracts
the eigenvalues and eigenvectors of a matrix using the
singular value decomposition procedure.  Other statistical
procedures such as computation of correlation matrices
and multivariate regression analysis are available as built-
in functions or can be easily written using matrix notation.
The methodology demonstrated here can be implemented
in any computational environment that provides for the
calculation of matrix eigenvalues and eigenvectors.

ANALYTICAL RESULTS 

We first demonstrate how PCA can be used to resolve the
matrix of fuels into a representation based on eigenvectors.

Then, we will demonstrate the use of eigenvectors in
regression analysis.

Vector Approach to Representing Fuels

Consider  the subset of data describing the fuels used in
emissions testing.  This test fuels data set consists of the
12 properties selected for study as measured for the 85

different fuels and replicated a varying number of times
corresponding to the number of emissions tests in which
each was used.  This data set can be viewed as a design
matrix X of dimension 280 rows (test entries) by 12
columns (fuel properties) that contains all of the fuels-
related information available as predictors for emissions.

The total fuels-related variance is defined as the total
variance within the columns of this matrix (each
representing one fuel property).  Each fuel property is
standardized to a mean of zero and a variance of one to
place the contributions on a common, unit-less basis, so
that the total variance of the standardized X matrix is 12.
All subsequent analysis will be based on the standardized
variables, which measure fuel properties in terms of
standard deviations from the mean properties of the fuels.
The standardized variables can be translated back into the
original form whenever required.

Table 2 presents the correlation matrix for the test fuels
data set.  Correlations greater than 0.50 in absolute
magnitude (an arbitrary threshold) have been highlighted
to emphasize the inter-relatedness of the physical
properties of real diesel fuels.  For example, and not
surprisingly, the five points on the distillation curve are
highly correlated with each other and with viscosity.  Other
correlations reflect known relationships encountered in fuel
blending.  Increased natural cetane is correlated with
reduced density and aromatic content as would be
expected in a fuel blend where the proportion of high-
aromatic cracked stocks, which have high density and low
cetane, has been reduced.  That fuel properties are
covariant, sometimes to a large degree, is an unavoidable
reality and implies that there are fewer independent
variables than the number of physical properties measured.

To demonstrate this, a singular value decomposition
analysis was performed to extract the 12 eigenvalues and
eigenvectors from the correlation matrix.  The eigenvectors
are defined in the computational procedure in a manner
that partitions the total variance into orthogonal
components, each eigenvalue being a measure of the
variance associated with the corresponding eigenvector.

              1      2      3      4      5      6      7      8      9     10     11     12   
                                                                                               
NatCetane 1  1.000 
CetImprv  2 -0.233  1.000 
Density   3 -0.613  0.105  1.000 
Viscosity 4  0.219  0.051  0.460  1.000 
Sulfur    5 -0.022 -0.220  0.202 -0.054  1.000 
MonoArom  6 -0.633  0.247  0.667  0.121 -0.030  1.000 
PolyArom  7 -0.393 -0.040  0.523 -0.084  0.511  0.298  1.000 
IBP       8  0.097 -0.058  0.292  0.514 -0.063  0.074 -0.029  1.000 
T10       9  0.225 -0.098  0.444  0.900  0.016  0.071  0.006  0.622  1.000 
T50      10  0.275 -0.002  0.497  0.889  0.014  0.144  0.097  0.382  0.792  1.000 
T90      11  0.295  0.114  0.307  0.692 -0.038  0.226  0.144  0.237  0.523  0.775  1.000 
FBP      12  0.211  0.168  0.318  0.607 -0.096  0.224  0.118  0.278  0.445  0.633  0.897 1.000

Table 2: Correlation Matrix for the Test Fuel Properties
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In this context, orthogonality means that the eigenvectors
are linearly independent of each other and, as a result of
their definition, the correlation between any two
eigenvectors over the data set is exactly zero.

Table 3 presents the twelve eigenvalues and eigenvectors
of the test fuels data set.  Each eigenvector is a linear
combination of the original 12 fuel properties.  For
example, the first eigenvector is described by the
coefficients or weights (0.061, 0.034, 0.285, ..., 0.365)
applied to the fuel properties (natural cetane, cetane
improvement, density, ..., FBP).  The largest coefficients
have been highlighted to emphasize the most important
fuel property components.

The variance among fuels, indicated by the eigenvalues, is
highly concentrated in the first few eigenvectors.  The first

eigenvector accounts for nearly 40 percent of the total
variation among the fuels, the first six together account for
more than 90 percent, and the first nine for essentially all
(nearly 99 percent).  Thus, while the data set contains 12
distinct variables, its total variance is concentrated in a
much smaller number of orthogonal patterns as described
by the eigenvectors with the largest eigenvalues.

It is often desirable to develop a conceptual interpretation
of the eigenvectors to aid the analyst’s understanding,
although this may not be completely possible in complex
systems.  Physical systems (of any kind) are normally
created from more basic building blocks according to a set
of rules that reflect a natural structure.  If these building
blocks are fully described by the chosen set of variables,
one hopes to find an expression of this structure in the
eigenvectors.  In the context of diesel fuels, the underlying
structure (and therefore the eigenvectors) should reflect
the properties of the refinery processes and blending
stocks used to create these fuels.

The following discussion interprets the first four
eigenvectors in terms of the associations among fuel
properties.  Where possible, we have suggested
identifications of the eigenvectors with known refinery or
blending processes.  These largest eigenvectors, as
identified by the proportion of the total variance shown in
parentheses, are likely to represent generalized
characteristics of fuels and therefore to be most amenable
to variation in reformulating diesel fuels.

Primary viscosity/density characteristic (38%).  A direct
relationship among viscosity, distillation temperatures, and
to a lesser extent density.  This is associated with the
largest eigenvalue, meaning that the test fuels vary most
among themselves with respect to this characteristic.  More
viscous compounds found in diesel fuels have higher
boiling points, and predictive equations show that viscosity

is directly related to the square root of density [45].  Diesel
blend stocks exhibit a similar relationship among viscosity,
distillation temperatures, and density as demonstrated
independently by correlation analysis using the database of
blend stocks in the Refinery Yield Model (RYM) maintained
by Oak Ridge National Laboratory.

Primary aromatics characteristic (22%).  An increase in
aromatics content (both mono- and poly-aromatic) is
associated with higher density and a decrease in natural
cetane.  This reflects a known property of the high-
aromatic cracked stocks that are used in blending diesel
fuels; these stocks have higher densities and their
aromatics content is known to delay ignition and therefore
decrease cetane rating.

Primary sulfur/quality characteristic (13%).  This appears
to represent sulfur content and its related impact on the
boost from cetane improvers, which declines as the quality
of diesel fuel declines.  Information from the Ethyl
Corporation [46] shows that cetane boost is reduced with

                 1      2      3      4      5      6      7      8      9     10     11     12   
                                                                                                  
NatCetane       0.061 -0.556  0.163 -0.220  0.071 -0.068  0.138 -0.458  0.104 -0.456  0.045  0.391
CetImprv        0.034  0.143 -0.549 -0.212  0.782  0.061 -0.024 -0.106  0.001 -0.054 -0.048  0.004
Density         0.285  0.449  0.049  0.168 -0.047  0.163 -0.109  0.237  0.343 -0.418 -0.272  0.473
Viscosity       0.432 -0.120 -0.017  0.142  0.084  0.308  0.004  0.150 -0.156  0.292  0.638  0.371
Sulfur          0.002  0.180  0.636 -0.202  0.393  0.118  0.556  0.175  0.013  0.058 -0.024 -0.100
MonoArom        0.146  0.464 -0.256  0.040 -0.305 -0.028  0.548 -0.500 -0.134 -0.078  0.164 -0.037
PolyArom        0.076  0.418  0.385 -0.272  0.092 -0.289 -0.552 -0.343 -0.171  0.030  0.225  0.049
IBP             0.262 -0.072  0.052  0.537  0.248 -0.697  0.118 -0.033  0.234  0.128  0.015 -0.024
T10             0.399 -0.113  0.128  0.316  0.109  0.192 -0.093 -0.123 -0.642 -0.186 -0.392 -0.198
T50             0.431 -0.083  0.064 -0.053 -0.028  0.319 -0.149 -0.240  0.555  0.010  0.065 -0.552
T90             0.392 -0.074 -0.075 -0.428 -0.158 -0.134  0.071 -0.037  0.021  0.551 -0.486  0.252
FBP             0.365 -0.048 -0.147 -0.409 -0.141 -0.359  0.069  0.476 -0.157 -0.406  0.205 -0.254
                                                                                                  
Eigenvalues     4.531  2.591  1.549  1.181  0.681  0.564  0.390  0.230  0.140  0.083  0.036  0.026
                                                                                                  
Pct Variance    37.75  21.59  12.90   9.83   5.67   4.69   3.24   1.92   1.17   0.68   0.29   0.21
Cumulative Pct  37.75  59.34  72.25  82.09  87.76  92.46  95.70  97.62  98.79  99.48  99.78  100.0

Table 3: Eigenvectors of the Test Fuels Data Set
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lower clear cetane, as for fuels with higher sulfur and poly-
aromatics.

Primary blend balancing characteristic (10%).  Fuels with
increased temperatures at the low end of the curve (IBP
and T10) tend to be associated with decreased
temperatures at the upper end (T90 and FBP).  This slope
characteristic for the distillation curve may be related to
meeting blending specifications.  For example, flash point
might be satisfied by using heavier blend stocks at the low
end of the distillation temperatures, while lighter blend
stocks are used on the high end to meet the pour point
requirement.

When the variance associated with individual eigenvectors
falls to relatively small percentages,  the eigenvectors may
begin to reflect factors specific to the blending of test fuels
in individual sources, rather than characteristics found in a
range of fuels.  For example, the smallest eigenvectors
could reflect specific blend stocks used in one or more
sources to vary fuel properties for test purposes or to
control one or more fuel properties to fixed values, once
another property had been varied for experimental
purposes.  For this reason, we do not attempt to offer
physical interpretations for the smaller eigenvectors.
Overall, more work is needed to understand the
eigenvector characteristics of diesel fuels, particularly as
those characteristics may differ between commercially
available fuels and test fuels created for use in the
laboratory.

Because the eigenvectors form an orthogonal basis, they
can be used to re-express the original matrix in orthogonal
terms.  This process is closely analogous to Fourier
transform analysis, in which a time-varying signal is
decomposed into individual frequencies and then re-

expressed as a weighted sum over frequencies.  In Fourier
analysis, the continuum of harmonic frequencies from ! =
0 to ! !"# forms an orthogonal basis from which any
time-varying signal can be constructed.  In the vector
approach defined here, the basis vectors are developed
from the experimental data at hand in a manner expressly
defined to be orthogonal.  Perhaps more familiar to data
analysts, the eigenvector approach is also similar to
orthogonal polynomials, of which it is a direct
generalization.

An experimental design matrix X(m x n) of m rows and n
variables can be represented in eigenvector terms as the
linear combination A(m x k) * V'(k x n), where A(m x k) is a matrix
of coefficients for the k eigenvectors and V(n x k) is a matrix
in which the eigenvectors, composed of n components
each, form the columns.  The coefficients A(m x k) are
calculated from the relationship  A(m x k) = X(m x n) * V(n x k).  In
algebraic form, any row m of the X matrix can be
expressed as a linear combination of coefficients am(k) and
eigenvectors vj(k):

Xm(j) = am(1)*vj(1)  + ... +  am(12)*vj(12)        (1)

where Xm(j) = value of the jth variable (fuel property) for
the mth fuel; am(k) = coefficient of eigenvector k in the mth

fuel ; and vj(k) = component weight for the jth variable in
eigenvector k.  

The example in Table 4 may help to make these
relationships more understandable.  Here, the observed

Fuel Property 1 2 3 4 5 6 7 8 9 10 11 12

Observed Values -0.305 -0.535 0.375 0.025 -0.341 0.042 0.005 -0.083 -0.123 0.331 0.154 -0.268

Calculated Values -0.305 -0.535 0.375 0.025 -0.341 0.042 0.005 -0.083 -0.123 0.331 0.154 -0.268

k Coefficient Eigenvector Components

1 0.121 0.061 0.034 0.285 0.432 0.002 0.146 0.076 0.262 0.399 0.431 0.392 0.365

2 0.213 -0.556 0.143 0.449 -0.120 0.180 0.464 0.418 -0.072 -0.113 -0.083 -0.074 -0.048

3 0.066 0.163 -0.549 0.049 -0.017 0.636 -0.256 0.385 0.052 0.128 0.064 -0.075 -0.147

4 0.259 -0.220 -0.212 0.168 0.142 -0.202 0.040 -0.272 0.537 0.316 -0.053 -0.428 -0.409

5 -0.632 0.071 0.782 -0.047 0.084 0.393 -0.305 0.092 0.248 0.109 -0.028 -0.158 -0.141

6 0.229 -0.068 0.061 0.163 0.308 0.118 -0.028 -0.289 -0.697 0.192 0.319 -0.134 -0.359

7 -0.294 0.138 -0.024 -0.109 0.004 0.556 0.548 -0.552 0.118 -0.093 -0.149 0.071 0.069

8 0.011 -0.458 -0.106 0.237 0.150 0.175 -0.500 -0.343 -0.033 -0.123 -0.240 -0.037 0.476

9 0.371 0.104 0.001 0.343 -0.156 0.013 -0.134 -0.171 0.234 -0.642 0.555 0.021 -0.157

10 0.205 -0.456 -0.054 -0.418 0.292 0.058 -0.078 0.030 0.128 -0.186 0.010 0.551 -0.406

11 -0.119 0.045 -0.048 -0.272 0.638 -0.024 0.164 0.225 0.015 -0.392 0.065 -0.486 0.205

12 0.048 0.391 0.004 0.473 0.371 -0.100 -0.037 0.049 -0.024 -0.198 -0.552 0.252 -0.254

Table 4: Eigenfuel Representation for a Selected Fuel



7

Figure 1. Distribution of the Eigenfuel Coefficients

values1 have been taken from a selected observation in the
X matrix.  Below this, the calculation given by Equ. 1 is
shown to exactly reproduce the original observation.  The
values are calculated, for any fuel property (column) j, as
the product of the coefficient ak times the coefficient for the
jth component of eigenvector k, summed over all
eigenvectors k = 1, 2, . . . , 12.  The eigenvectors k are
placed in row form in this table, while the fuel properties j
form the columns.

Thus, we can express any fuel as the vector of coefficients
am(k) = (a1, a2, ..., a12) corresponding to the 12 eigenvectors
instead of describing the fuel by its physical properties.
Because this relationship looks much like a blending
equation, and the eigenvectors have been shown to have
physical interpretations, we adopt the terminology eigenfuel
in place of eigenvector.  We then treat fuels as
mathematical blends of eigenfuels, each of which
represents a distinct, mathematically independent
characteristic.  The coefficients am(k) become measures of
how fuel m is composed of the eigenfuels k.

Once a data set is translated into this representation, the
eigenfuel coefficients are distributed with mean zero and
variance equal to the corresponding eigenvalue.  Figure 1
shows histograms of the coefficients am(k) for the data set
used here.  The coefficient distributions are broad (have
large variance) for the first several eigenfuels, consistent
with their large eigenvalues.  The distributions narrow as
one moves through the series, until they approach a peak
clustered about zero by the end.  Thus, the fuels vary most
widely with respect to the characteristics expressed by the
first several eigenfuels and differ only to a very minor

extent with respect to those represented by the later
eigenfuels.

A second fundamental property is that the eigenfuels form
an orthogonal set and their coefficients are uncorrelated --
i.e., the off-diagonal elements of the correlation matrix for
the coefficients A(m x k) are zero.  That the eigenfuel
coefficients are mathematically independent and
uncorrelated will prove very important when they are used
as predictor variables.

Use of Eigenfuels in Regression Analysis

Having reviewed the properties of eigenfuels, we now turn
to their use as predictor variables in regression analysis.
The empirical relationship between engine emissions and
fuel properties is usually determined through regressing an
emissions variable Ye against one or more fuel property
variables Xi in a form similar to:

Ye = b0 + b1 X1 + b2 X2 + . . . + bn Xn        (2)

where the coefficients bi are determined by the regression,
and we consider the variables Xi to be scalar quantities.

In the vector approach developed here, the regression
model will be of comparable form:

Ye = b0 + b1 A1 + b2 A2 + . . . + bn An        (3)

where the new variables Ai are the coefficients of eigenfuel
i in the vector representation.  Consistent with other work,
the dependent variable Ye is taken to be the natural
logarithm of emissions.

When used as predictor variables in regression analysis,
eigenfuels have two important properties that result from
their mathematical independence, as demonstrated in
Table 5.  Here, NOx emissions have been regressed
against each eigenfuel k individually using equations of the
form:

ln(NOx) = a0 + a1 Ak  for k = 1, 2, ... 12        (4)

The regression sum of squares and coefficient values are
then tabulated against the results of a regression in which
all 12 eigenfuels are present simultaneously (see the
rightmost column of the table).  The regression sum of
squares summed across the twelve individual regressions
equals the sum of squares in the regression containing all
12 eigenfuels, and the intercept and eigenfuel coefficients
for the individual regressions are identical to those
estimated in the regression containing all eigenfuels.  Thus,
the regression sums of squares are additive and the
coefficient values are invariant with respect to the selection
of eigenfuels for inclusion in the regression.  There is, in
fact, a unique partitioning of the variance in the dependent
variable into the components identified with the eigenfuels.
It can be shown that the contribution of eigenfuel k to the
regression sum of squares and R2 statistic is proportional1  These are the physical properties in standardized

form where mean = 0 and variance = 1.  
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to the product of the eigenvalue "k and the square of the
regression coefficient bk.

This outcome contrasts with the usual result in regression
analysis when the predictor variables are correlated with
each other.  The multi-collinearity existing in such
circumstances means that parameter estimates change
when predictors are added to or removed from the
regression.  In addition, combining individual variables to
create a pooled regression does not increase the
regression sum of squares and R2 statistic to the extent
that might be expected.  Working through the “fog” created
by multi-variables is part of the art of regression analysis
and is one of the reasons why independent analysts can
reach differing conclusions from the same data.  The use
of the linearly independent, vector variables eliminates this
fog.

The table also begins to indicate insights that will be
developed in the next section.  Not surprisingly, there is a
difference between the importance of an eigenfuel in
describing the variation among fuels and the strength of its
relationship to NOx emissions or another independent
variable.  Eigenfuels 1 through 12 are defined in
decreasing order of variance among the fuels, so that
eigenfuel 1 accounts for 38% of the fuel variance, followed
by eigenfuel 2 at 22%, and eigenfuel 10 at only 0.7%.
However, the regression results indicate that eigenfuel 10
has the strongest relationship to NOx emissions, as
measured by its coefficient, followed by eigenfuels 11 and
2.  We also see that some of the eigenfuels (numbers 1, 3,
6, 8, and 12) have very weak relationships to NOx and are
likely candidates to drop from the analysis.  However, we
must first consider and control for other factors that
contribute to the variance in emissions before attempting
to draw conclusions from such results.

Application to Diesel Emissions  

In this section we show the application of the vector
approach to diesel engine emissions and obtain a first look
at its implications.  There are many factors beyond fuel
composition that contribute to the variance in engine
emissions, including differences among engines, test
cycles, and the sources from which the data are drawn.
The intent is to extract these fixed effects and then
recompute the regression equation involving the

eigenfuels.  This will be done for both NOx and PM
emissions.

Figure 2 suggests the sources of variation likely to be
found in the database of diesel engine emissions data.
The tested engines are taken to be generally reflective of
the population of HDD engines currently on the road.  Nine
different publications reported tests for 11 individual
engines, representing 11 different engine designs, on 85
different fuels using one of two different EPA test cycles.
Most, but not all, engine tests were replicated at least once.

We can hypothesize a series of terms in the overall
emissions model that represent, for example, the average
emissions level E0 of the existing fleet, the variation of the
average emissions Ei for engine design i around E0, and
the variation of the average emissions Eij for individual
engine j around its engine design average Ei.  Other terms
in the model would include an effect Sk for differences
among the sources and an effect Tl for the different
average emissions levels of the two EPA test cycles.  This
series of terms would be in addition to the effect of fuels on
emissions, which is of primary interest. We are unable,
however, to estimate an overall emissions model at present
because of size and coverage limitations of the database
that make it impossible to separate the effects of engine
designs, individual engines, test cycles, and sources.  Each
engine design is represented by only a single specimen
and each individual engine has been tested using only one
of the two test cycles.

For purposes of this exploratory study, we have
incorporated a single fixed effect for individual engines in
the regression models.  This engine effect represents an
undifferentiated, composite effect due to engine designs,
individual engines, sources, and test cycles.  Thus, we use
regression equations of the form:

ln(Ei,j) = bo + # bi * $i + # bj,k * Aj,k        (5)

where the dependent variable is the natural logarithm of
emissions for engine i tested on fuel j, # bi *%$i  represents
a dummy variable formulation for the variation in mean
emission levels among individual engines i = 2, ..., 11 and
# bj,k * Aj,k  represents the emission effects of fuel j
expressed in terms of the 12 eigenfuel coefficients.

Sources – nine different publications

Engine Lines – 11 different engine lines

Individual Engines – 11 individual engines tested

Fuels – 85 unique fuels

Test Cycles – 2 different EPA cycles (composite and hot start)

Test Replications – test-to-test variation

Figure2:  Sources of Variance in Diesel Engine Emissions Data
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While the eigenfuels are defined to be mathematically
independent of each other, correlations exist between the
eigenfuels and the engine dummy variables.  As a result,
there is no unique partitioning of the variance between fuel
and engine effects.  Fuel effects should be computed
within engines and the separate estimates pooled.
Otherwise, differences between emission levels for the
various engines can affect the fuel estimates.  This
separation of fuel and engine effects is achieved by
computing the model sum of squares with both engine and
fuel variables included and then with only engine variables
included.  The total model sum of squares with fuel and
engine variables, less the model sum of squares when the
model is constrained to engine effects only, is the sum of
squares attributed to fuels.  This assigns to fuels only the
sum of squares reduction that can be uniquely associated
with fuels and is referred to as “fuels adjusted for engine
effects.”

As shown in Table 6, the combination of engine effects
(representing the composite of engine designs, individual
engines, sources, and test cycles) and the fuel effects
explain 91.1 and 98.6 percent of the sum of squares for
NOx and PM, respectively.  This suggests that the
variability of test-to-test replication (for a given engine and
fuel) is relatively small compared to the differences among
engines and fuels within this database.  The engine effects
explain 45.5 percent of the sum of squares for NOx and

95.4 percent for PM, while the fuel effects represented by
the eigenfuel terms explain 45.6 percent and 3.2 percent
respectively.  The importance of engine effects for PM
emissions, while real, is greatly increased by one, older
engine whose PM emissions are much above the others.

It is well known that engine design factors have important
effects on emissions and it is all the more to be expected
when, as in present circumstances, the vehicles were
designed to varying certifications standards.  Further,
engine and fuel effects are correlated in this data set – to
a substantial extent for PM – so that we are not able to
clearly separate their contributions at present.  We take
these preliminary results to suggest that fuels may have
substantial effects on engine emissions, but further work
with additional data is clearly needed to resolve the
competing importance of engines and fuels.  This paper
focuses primarily on the relative contributions made by the
eigenfuels to the portion of the total emissions variation
that can be attributed to fuels.

Table 7 summarizes the NOx and PM regressions.
Inspection of the table reveals that all of the engine effects
are statistically significant at the 0.05 level (t value
exceeding 1.96).  Among the fuel effects, all but those for
eigenfuels 6, 8, and 9 for NOx and for eigenfuels 4, 6, 7, 8,
11, and 12 are significant at the 0.05 level.  Thus, many
fuel effects might be retained in the model if the selection

NOX EMISSIONS

Source of Variation SS DF MS R2

Regression SS 1.6334 22 0.0742 0.911

Engine SS (Unadjusted) 0.8156 10 0.0816 0.455

Fuel SS (Adjusted for Engines) 0.8178 12 0.0818 0.456

Error SS 0.1602 257 0.0006 0.089

Total SS 1.7936 279 0.0064 1.000

PM EMISSIONS

Source of Variation SS DF MS R2

Regression SS 104.2 22 4.736 0.986

Engine SS (Unadjusted) 100.8 10 10.080 0.954

Fuel SS (Adjusted for Engines) 3.4 12 0.283 0.032

Error SS 1.5 257 0.006 0.014

Total SS 105.7 279 0.379 1.000

Table 6: Sum of Squares for Fuels Adjusted for Engine Effects
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Figure 3: Percentage Contributions to Variance Explanation for Fuels and Emissions

were based on statistical significance.  However, as we
argue, it is the predictive capability of an effect that should
guide its selection or rejection.

Table 7: Summary of Regression Results for 
NOx and PM

Ln(NOx)
 Emissions

Ln(PM)
Emissions

Parameter Estimate t ratio Estimate t ratio
Engines
   Intercept 1.5229 248.90 -0.7683 40.15
   Engine 2 0.0217 3.19 -0.6084 28.62
   Engine 3 -0.0308 4.63 -0.5929 28.53
   Engine 4 0.0293 3.57 -0.9771 38.03
   Engine 5 0.0643 5.84 -0.7530 21.87
   Engine 6 0.0339 3.98 -1.7223 64.68
   Engine 7 -0.1082 7.82 -0.9844 22.75
   Engine 8 0.0670 6.79 -1.4494 47.01
   Engine 9 0.0413 4.07 -1.6322 51.49
   Engine 10 -0.1323 11.59 -1.6107 45.11
   Engine 11 0.0351 3.18 -0.8002 23.17
Fuels
   Eigenfuel 1 0.0043 5.30 0.0233 9.23
   Eigenfuel 2 0.0344 30.78 0.0549 15.72
   Eigenfuel 3 0.0051 2.46 0.0595 9.24
   Eigenfuel 4 0.0120 7.09 -0.0014 0.26
   Eigenfuel 5 -0.0149 7.62 0.0150 2.45
   Eigenfuel 6 0.0027 0.98 0.0013 0.16
   Eigenfuel 7 0.0173 5.87 0.0134 1.45
   Eigenfuel 8 -0.0031 0.66 0.0050 0.35
   Eigenfuel 9 -0.0057 1.22 -0.0430 2.93
   Eigenfuel 10 -0.0156 2.59 -0.0575 3.05
   Eigenfuel 11 0.0294 2.85 0.0239 0.74
    Eigenfuel 12 0.0325 2.62 -0.0318 0.82

The “predictive capability” statistic, computed by
normalizing the quantity "k * bk to a value of one, identifies
the relative contribution of each eigenfuel to the predictive

power contributed by all fuels-related information.  Using
this statistic, Figure 3 shows that only one eigenfuel
(number 2) for NOx and three eigenfuels (numbers 1, 2,
and 3) for PM account for nearly all of the predictive power
that can be ascribed to fuels. This figure also
demonstrates, by comparison to the variance explanation
for fuels, why all eigenfuels should initially be retained and
considered for deletion only after their relationship to the
response variable has been determined.  Overall, these
results mean that, regardless of the statistical significance
of other coefficients, the regression models could be
reduced to include only 1 or 3 eigenfuel terms (in addition
to the engine effects) without a significant reduction in the
ability to capture the impact of fuels. 
 
Let us now briefly examine the substantive meaning of the
regression results.  For NOx, only eigenfuel number 2 has
substantial predictive power.  This eigenfuel was previously
described as representing a primary aromatics
characteristic, in which an increase in aromatics content
(both mono-aromatics and poly-aromatics) was associated
with increased density and decreased natural cetane.  

From a refinery perspective, this was identified as
representing high-aromatic cracked stocks.  Exponentiating
the individual terms of the regression equation, the results
indicate that NOx emissions are decreased by a factor of
exp(0.0344) - 1 = 3.5 percent for each unit reduction in this
fuel characteristic.  Because the variance associated with
the second eigenfuel is 2.591, a unit reduction corresponds
to 1.000/sqrt(2.591) = 0.62 standard deviations.  Therefore,
a one standard deviation reduction corresponds to
reducing NOx emissions by 5.6 percent.  A reduction by
one standard deviation corresponds to approximately one-
third of the total change that is possible and is used here
as a rule-of-thumb measure of what might be possible to
achieve in practice.

This eigenfuel expresses three individual fuel properties
that are widely believed to influence NOx emissions –
aromatics content, natural cetane, and density.  However,
it represents a single mode of variation involving
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simultaneous changes in the three variables.  Thus, it may
be more correct to speak of reducing NOx emissions by
decreasing the content of high-aromatic cracked stocks,
rather than by varying any of the three properties
independently. 

The results are somewhat more complicated for PM, since
three of the eigenfuels – numbers 2, 3, and 1 in order – are
found to contribute substantially to the fuels-related
predictive power.  The most important, eigenfuel number
2, was identified with the content of high-aromatic cracked
stocks.  Using the calculation shown above, a one standard
deviation reduction in this eigenfuel corresponds to a
(exp(0.0549)-1)*sqrt(2.591) = 9.1 percent reduction in PM.
Eigenvector 3, involving a primary association between
sulfur content and cetane boost, corresponds to a 7.6
percent PM reduction for each standard deviation change.
Eigenvector 1, involving a primary viscosity and distillation
curve characteristic, corresponds to a 5.0 percent
reduction per standard deviation.  The effects are additive,
since the eigenfuels are independent, and would reach a
total of 21.7 percent if a one standard deviation reduction
were made in all three.   All other eigenfuels make
negligible contributions, whether they are found to be
statistically significant or not. 

As indicated in the review by Lee, Pedley, and Hobbs,
there is only a weak consensus on how fuel properties
affect PM emissions, except that reducing sulfur content is
generally accepted to reduce PM emissions.  Eigenvector
3 appears to express this consensus relationship.  The
properties involved in the other eigenfuels (1 and 2) include
aromatics content, natural cetane, viscosity, the distillation
curve, and to a lesser extent density.  Density and poly-
aromatics content are thought to have a small effect on PM
emissions in some engine groups, while there is no
consensus on whether cetane, mono-aromatic content,
viscosity, or distillation curve parameters are important.
We cannot resolve these points of potential difference
based on the current database and analysis.  However, the
results presented here suggest there is more than one way
in which PM emissions can be reduced.

Note also that several of the smaller eigenfuels (numbers
11 and 12 for NOx and 9 and 10 for PM) have strong
relationships to emissions.  These smaller eigenfuels point
toward the possibility that unexploited modes of reducing
NOx and PM emissions could exist, although the current
state of the analysis and the size and scope of the engine
emissions database are inadequate to draw conclusions on
their meaning or potential emissions importance.  These
findings could result from correlations to factors that have
been inadequately controlled in these regressions.
Alternately, even if the relationship to emissions is real, it
could prove impossible or impractical to blend fuels that
vary significantly in these characteristics because of
considerations of cost, safety, driveability, or other reasons.

Model Interpretation and Simplification  

Investigators accustomed to scalar predictor variables may
perceive vector variables to be needlessly complex and
may find it difficult to interpret response in terms of
eigenvectors.  In the psychological and social sciences, this
objection may be particularly apropos because of the lack
of underlying theory as a logical assist.  In the physical
sciences, however, interdependent variables may often be
readily recognized.  Certainly, in the present instance,
blending experience was a valuable interpretational aid.

Nevertheless, a model for predicting emissions in terms of
fuel characteristics can not be considered complete until all
means of simplification have been explored.  Therefore,
simplification procedures have been an important concern
from the beginning and will be a major part of our
continuing effort.

Though well aware of rotation procedures (varimax,
quartimax and equimax), our experience with these
procedures failed to provide any significant insights in the
context of our problem.  Instead, with regard to emissions
response, which is our main concern, we elected to pursue
a direction aimed at better understanding the relation
between eigenvectors and their fuel-property components.

A very useful outcome is a scheme for re-expressing the
SS partitioning among eigenvectors as a partitioning
among the underlying fuel variables.  The conversion is
made possible, of course, by virtue of the fact that each
eigenvector can be expressed as a linear combination of
the original variables.  Since it corresponds directly to the
eigenvector partitioning, the derived partitioning among
variables is in a sense unique. Certainly it has a claim to
distinction from the multiple partitionings that can arise in
stepwise regression or when all possible subset models
are considered.

The SS partitionings are shown in Table 8 for NOx and PM,
both by eigenvectors and by the original fuel variables.  The
difference in partitioning for the two pollutants is evident
and again emphasizes the futility of attempting to select
variables independently of the role they play as predictors.
We now have at our command a means for simplifying the
emission models.  As noted earlier, we recommend a
combination of statistical tests of significance and
evaluation of the magnitude of effects.

Eigenfuels can be rejected, as is usually done in OLS, by
dropping those that fail to meet a specific level of
significance.  At the 0.05 level, those eigenfuels tagged * in
the table would be removed.  However, it is to be noted that
several other eigenfuels, tagged ** in the table, each
contribute less than 1 percent to the model SS.  On the
assumption that elimination of these eigenfuels would have
little influence on the predictive capability of the model, they
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can be considered for removal, because it is irrelevant
whether they are statistically significant or not.

The disposition of eigenfuels on the basis of statistical
significance is, of course, dependent on the significance
level adopted.  Similarly, the cutpoint for practical
significance is arbitrary.  It is here that art and judgement,
tempered by experience, enter just as it does in any other
scheme for selecting variables.

It is not the intent of this paper to resolve these issues but
rather to illustrate a methodology for their resolution.  We
suggest, therefore, a possible scenario for model
simplification:  Reject those eigenvectors that have a t-ratio
smaller than 1.96, corresponding to 0.05 significance for
large samples.  Renormalize the percent SS and transform
the eigenvector contributions to the contributions to SS by
individual variables.  Now, “prune” those components that
contribute less that 1 percent to the model SS.

In this way we have retained predictive components that
are both statistically and practically significant, given the
criteria used for choice.  It removes the objection frequently
raised in connection with PCR, namely that the model 

retains all variables and therefore effects no simplification.
The simplified model makes interpretation of the
eigenvectors easier while retaining the important parts of
the “eigenstructure” that actually drive the system.

In addition, the scenario has isolated those fuel variables
that play important roles in prediction.  The model can be
restated, if desired, in those terms, in which case the
relative contributions of the variables can be appraised with
the knowledge that the partitioned SS originate in
the”clean” eigenvector environment as opposed to the
multicollinear environment of stepwise or all-subset
regression.

Further refinement can be had by recomputing the
eigenvectors in the reduced-variable space, and other

log( NOx ) Emissions log( PM ) Emissions
Eigenvector t ratio Model SS t ratio Model SS (%)

1 5.30 2.24 9.23 14.8
2 30.78 82.49 15.72 47.1
3 2.46 1.07 9.24 33.1
4 7.09 4.56 0.26* 0.0**
5 7.62 4.08 2.45 0.9**
6 0.98* 0.11** 0.16* 0.0**
7 5.87 3.15 1.45 0.4**
8 0.66* 0.06** 0.35* 0.0**
9 1.22* 0.12** 2.93 1.6
10 2.59 0.54** 3.05 1.7
11 2.85 0.84** 0.74* 0.1**
12 2.62 0.73** 0.82 0.2**

NatCetane 19.28 4.98
CetImprv 1.55 1.55
Density 26.55 17.72
Viscosity 0.24** 0.59**
Sulfur 3.60 31.87
MonoArom 38.14 6.61
PolyArom 8.02 27.94
IBP 0.06** 0.32
T10 0.01** 6.13
T50 0.66** 0.74**
T90 1.72 0.25**
FBP 0.18** 1.30

Table 8: Statistical Significance and SS Partitioning for NOx and PM
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rejection strategies can be envisioned.  Our work is
continuing in these areas but is beyond the scope of this
paper.

PERSPECTIVE AND DISCUSSION

Though demonstrated in the context of emissions from
HDD engines, the vector approach to regression analysis
is believed to be applicable to a wide range of problems.
Indeed, it should be considered in any circumstance where
variables are inextricably covariant.  It may be the favored
approach whenever the covariance of predictor variables
cannot reasonably be “broken,” but it does not preclude the
use of other multivariate methodologies or of scalar
predictor variables when the predictor variables can be
varied independently of each other in circumstances such
as balanced experimental designs.

The development of a vector emissions model in this paper
is admittedly simplistic and does not cover many of the
difficulties that can be expected to arise in practice.  We
are well aware that the database used in this
demonstration has many shortcomings.  It is a pooling of
separate studies each of which was performed with a
specific objective in mind.  Vehicle sampling was
inadequate and did not allow estimation of effects
attributable to specific engine characteristics.  Further, the
vector approach presented here does not as yet address
a series of methodological refinements that may be needed
to meet the challenges of real-world data.

We urge caution in interpreting results, therefore, and
stress again that the major purpose of this paper is to
demonstrate methodology, rather than to draw firm
conclusions regarding the fuel/emissions relationship.  In
the following sections, we endeavor to identify needed
methodological refinements and to set forth some of the
steps in developing an emissions model capable of
expressing diesel emissions in terms of engine and fuel
characteristics.

METHODOLOGICAL REFINEMENTS

Ongoing work is extending this approach in the following
areas.

Statistical Inference  

The availability of personal computers and “canned”
software has provided us with routine methods to interpret
the outcome of experiments.  The 0.05 level of significance
for testing a null hypothesis goes essentially unchallenged
in a world where risk, and the consequences of risk, are
anything but constant.  Still, this icon is comforting because
it assures us that we will erroneously reject the null
hypothesis (a Type I error) only one time in twenty, and that
seems like very good odds.  On the other hand, if the effect
being rejected actually is real and not an artifact of
sampling, we will be wrong 19 times out of 20 (a Type II
error), and that seems like very poor odds.  There is a
whole continuum of tradeoffs that can be made in arriving

at an optimum policy for managing Type I versus Type II
risks for the problem under consideration.

But what impact do these various options have on our
ability to predict real-world changes in response?  Much
depends on sample size.  If the regression is based on
several hundred observations and if the error standard
deviation is sufficiently small, it may be possible to declare
an effect statistically significant even though its magnitude,
so far as accuracy of prediction is concerned, may be
negligibly small.  On the other hand, if sample size is small,
we may erroneously accept the null hypothesis unless the
effect being tested is, in fact, fairly large.  The bottom line
is that, as sample size varies from one investigation to
another, so will the magnitude of what we can declare to be
statistically significant under a fixed probability of Type I
error.

An alternative approach is to fix the magnitude of the effect
that we would be willing to ignore, rather than fixing the
probability of Type I error.  Then, as sample size varies
from problem to problem, it is the Type I error probability
that would vary; if the effect is considered negligible, the
associated level of uncertainty would be irrelevant.  In the
proposed form of the model for diesel emissions, it is a
simple matter to determine the total change achievable
over the range of an eigenfuel.  Thus, we would establish
at the outset of an investigation the smallest effect that is
meaningful to our purposes and drop any that are found to
be smaller than this threshold.

Representation of Non-linear Effects  

Work done to date has been based on the assumption that
all vector predictor variables exert a linear effect on the
response variable.  Experience tells us that the effect of a
predictor variable may be linear over much of its range but
may show curvature for extreme values (e.g., saturation
effects).  In other instances, theory may suggest that the
effect of the predictor may be non-linear over its entire
range.  The methodology for a vector approach to
regression cannot be considered complete unless it can
accommodate non-linear effects.

We consider it straightforward to add to the model
whatever non-linear effects may be required simply by
incorporating basis vectors exhibiting the desired non-
linear characteristics.  For example, the linear terms xi
constituting the original variables may be augmented by
squared terms xi

2, interactive terms xi xj, or more
generalized non-linear functional forms f(xi) in forming the
X matrix.  Moreover, there appears to be no difficulty in
retaining the orthogonality of all vectors in the model.  The
theory of orthogonal polynomials in a finite domain and
their application in regression models is well known and
well documented in statistical literature [47].

Generalization and Robustness  

Once an orthogonal basis of eigenfuels has been
developed, how “robust” is that basis when applied to a
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different set of data?  The question is not appreciably
different from that faced by a conventional regression
model when it is applied in a context different from that in
which it was developed.  Validation sampling, in which the
data set is divided into two or more parts and results
compared, is an acknowledged approach to this problem
[48].  We consider bootstrap sampling [49], in which
samples are drawn with replacement from the data set, to
be an extension of the validation idea, and one that does
not suffer from reduction in sample size.

To some, however, validation sampling may not seem like
a test at all, because all samples are drawn from the same
source.  More appropriate would be a procedure in which
samples are drawn from different but similar sources with
a view to finding the common aspects of response.  This
approach sometimes goes under the name “system
identification” and has been explored by one of the authors
in an earlier paper and in a different context [50].  We
expect to build on this experience to whatever extent
seems appropriate.

STEPS TO DEVELOP A DIESEL EMISSION MODEL

An improved database is a prime requirement for the future
development of a reliable diesel emission model.  These
are the most important limitations of the database used in
this study and our recommendations for future testing:

• The database omits at least one fuel property –
oxygen content –  that is likely to affect emissions.
Few test programs to date have evaluated
oxygenated fuels, and more testing of oxygenated
fuels will be required before a complete diesel
emissions model can be developed.

• The database lacks information on hydrocarbon
composition beyond mono- and poly-aromatic
content, as do most existing testing programs.  It
may be important for new testing to report a more
complete or detailed hydrocarbon speciation
because, when a fuel is changed by the
substitution of one constituent for another, it is not
possible to attribute an emissions change uniquely
to the one constituent (or the other). While such an
effort could open a Pandora’s box if carried too far,
it could very well be important to know whether it
was hydrocarbon species 1 or 2 that was
substituted when, for example, aromatics content
was reduced.

• The database represents too few engine types and
individual engines to be taken as representative of
the on-road HDD fleet or to permit the assessment
of engine-related effects.  Although the total of 280
emissions tests is relatively large, the data are
based on only 11 individual engines.  An improved
database should represent a substantially larger
number of engines sampled in a representative
manner from the cells created by the intersections
of model year, emission certification standard,
manufacturer, and engine design.  It would be
desirable that two or more specimens be included

for each major engine design to permit the
estimation of design-specific effects, and that all
testing use the one test cycle on which certification
decisions for fuels and engines will be based.

The properties of test fuels used in future testing should be
varied over the widest practical range and should include
any fuel property indicated to affect emissions in a
substantive way.  Also important is that the fuel properties
should be varied in accordance with their cooperative
effects, as indicated in the eigenfuels.  Just how the test
fuels should be blended is a topic for discussion.  

Conventionally, one method might be to vary a given fuel
property over its desired range without regard to other fuel
properties.  Provided the test fuels were blended from
commercially feasible blend stocks, the resulting test fuels
and eigenfuels derived from them might be taken as
representative of future commercial fuels blended to similar
specifications.  Other possibilities could include attempts to
blend fuels that meet multiple property specifications
simultaneously.  This latter approach has been the one
frequently followed in past testing where, for example,
mono- and poly-aromatics content might be varied subject
to controlling fuel density and viscosity to predetermined
values.

It is here, though, that blending in terms of eigenfuels
shows its major advantage.  It is necessary only to resolve
a desired eigenfuel into a corresponding set of available
blend stocks.  To match an eigenfuel exactly would require
up to 12 blend stocks.  Note that in eigenfuel 2, which
accounts for 82 percent of the NOx regression SS, only 4
of its components – natural cetane, density, mono-aromatic
and poly-aromatic content – make major contributions.  No
more than four blend stocks should be sufficient to
approximate eigenfuel 2.  Though the mechanics of the
solution mimic the conventional, it employs a vastly more
effective strategy for formulating optimum test fuels.

In varying engine characteristics, the primary requirement
is to have a sampling of vehicles that covers all of the
design factors that might influence emissions.  It may turn
out that some of these design factors have relatively little
effect on emissions.  Here, again, a fixed magnitude of the
engine effect should be used as the criterion for including
or excluding that factor, rather than an arbitrary test of
significance.  Since the engine effects are most likely not
orthogonal, it might be appropriate to induce orthogonality
by a method such as random balance assessment [51].

Engine effects and fuel effects may interact.  If so, the
computation of “fuel effects adjusted for engine effects” is
inadequate, because the adjustment corrects only for the
difference in the mean level of emissions among engines,
it being assumed that the incremental effect of a fuel
change is constant for all engine classes.  It is quite
possible, however, that the effect of an incremental change
in a fuel property is greater for one class of vehicle than
another, especially if the fuel change is designed to play an
“enabling” role for a vehicle design change.  Resolving
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such issues would require more extensive testing and a
model of greater complexity.

CONCLUSION

In summary, a vector methodology has been demonstrated
for regressing a response variable on orthogonal functions
developed from predictor variables in circumstances where
the predictor variables cannot be varied independently of
each other.  Though demonstrated on a model for heavy
duty diesel emissions, the approach is applicable to a wide
variety of problems.

When applied to the fuel/emissions relationship, the
preliminary findings illustrate the range of benefits that the
vector approach offers:

• Simplification of the regression analysis as a result
of the desirable mathematical properties of vector
variables – their independence and absence of
correlations, and their economy of representation.

• Greater understanding of the patterns of variation
that are important to emissions reduction, in this
instance, and how these patterns relate to fuel
blending and refinery processes.

• Potentially new insight into the optimal formulation
of fuels to reduce emissions.

• Improved experiment design for more efficient
estimation of fuel effects.

Perceived disadvantages of the methodology are:

• The ineffectiveness of selecting predictor variables
by means of PCA as noted in the cautionary notes
by Hadi and Ling [8].

• Potential difficulties in interpreting the effects of
the predictor vectors on the dependent variable.

We have shown that variable selection can not, and should
not, be attempted without regard to the response variable.
This fact is made clear by the difference between NOx and
PM response, even though the PCA analysis of the design
space is the same.

With regard to interpretation, it may appear that the
multicollinearity “fog” disposed of by orthogonalization is
merely replaced by a different kind of fog arising from the
difficulties of interpreting eigenvectors.  We believe that
viewing response in terms of eigenvectors is not so much
difficult as it is unconventional and that it affords an
improved basis for understanding the factors that actually
drive the response.  Finally, we offer a means for
alternatively viewing response in terms of the original
variables, but within the context of an orthogonal,
eigenvector solution.

It is, perhaps, most important that the vector approach to
analysis does not require or benefit from the attempt to
“break” naturally-occurring associations among fuel
properties in the blending of test fuels.  Without the need to
artificially separate these associations, a wider range of

real-world diesel fuels, representing current and future
refinery configurations and processes, could be used in
engine testing, thereby avoiding possibly unrealistic or
unrepresentative emission results.  These benefits imply an
increased accuracy in assessing emissions benefits and an
improved basis for measuring cost effectiveness.
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