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Abstract. Recent developments concerning the relatively cool and dense divertor
region of magnetically confined tokamak fusion plasma devices might play a key role
in the realization of useful energy production. Atomic and molecular processes, in
turn, critically influence the performance of the divertor. In particular, charge transfer
from vibrationally excited hydrogen molecules as well as elastic processes and charge
transfer between various ground state hydrogen species (ions, atoms and molecules,
in isotopic combinations) could be of critical importance for the momentum transport
mechanisms and charge balance in this region. We show here the benchmarking results
of our fully quantal calculations for a great number of the relevant processes.

INTRODUCTION

The transport of particles and, in particular, the exchange of momentum, in cool
hydrogen plasma/gas can be dominantly determined by elastic scattering and res-
onant charge capture among hydrogen ions, atoms, and molecules. For example,
recent emphasis on the engineering design of fusion reactors has focused attention
on these issues regarding the so-called divertor region in which high density, low
temperature hydrogen plasma is produced to bring about the neutralization and
heat exhaust from the burning plasma in the core region [1-7]. Furthermore, elastic
scattering as well as spin exchange between neutrals has been shown to be an im-
portant process in numerous astrophysical environments, for example, in planetary
ionospheres [8], the heliospheric shock at the interface of our solar system and the
local interstellar medium [9,10], comet bow shocks (see e.g. [11]), and non-radiative
shocks in supernovae ejecta (see e.g. [12]). Interest generated by the recent exper-
imental observations of Bose-Einstein condensates has also spurred the need for
accurate description of very low temperature elastic and spin exchange scattering
(e.g. for H+H scattering see [13,14]).

To address the need for comprehensive and accurate data for the relevant elastic,
charge transfer, and transport cross sections, we have recently undertaken a very
large set of fully quantal calculations. Moreover, we have included consideration of
the full range of possible scattering angles, since all angles contribute in the calcula-



tion of the higher (transport relevant) moments of the integral elastic cross section,
and since large angles contribute to the charge transfer and spin exchange. Four
types of systems, ion-atom (A*t+B), atom-atom (A+B), ion-molecule (A*4+BC)
and atom-molecule (A4+BC) have been studied, where A B, and C are any of the
hydrogen atom isotopes (H, D, or T). In addition, A*+He systems were studied,
where A is any of the isotopes of H. The hydrogen molecules are assumed to be
initially in their ground vibrational states. These constitute 51 distinct collision
systems. We base our discussion here on recent [15-17] fully quantal calculations of
more than 2800 differential and more than 200 integral cross sections spanning the
center of mass (CM) collision energy range of 0.1-100 eV. Besides utilizing the best
available potential energy surfaces and carefully checking numerical convergences
to achieve high accuracy in the calculations, the good quality of the data was also
verified by extensive comparison with the theoretical and experimental data avail-
able in the literature. The differential cross sections were calculated for 768 CM
scattering angles in interval (0,7), starting from angles as small as 6x107° rad to
facility Gauss-Legendre quadrature. The calculated differential and integral cross
sections can be viewed in both graphical and tabular forms through the WWW site
of the ORNL Controlled Fusion Atomic Data Center (www-cfadc.phy.ornl.gov).
As a further aid to plasma modeling, convenient analytical fitting coefficients to
describe the differential and integral cross sections were also tabulated [18]. We
note here that all collision energies and scattering angles used are given in the cen-
ter of mass system. Atomic units (a.u.) are used throughout the text unless stated
otherwise.

There has been considerable inconsistency in the definition of the elastic (el)
cross section as well as its higher moments, the momentum transfer (mt) and
viscosity (vi) cross sections, with respect to the quantum indistinguishability of
colliding particles (QIP) at low collision energies in symmetric systems such as
H*+H or H+H [19-25,13]. This indistinguishability is manifested by an overlap
of the wavefunctions at low collision energies and thus by significant interference
between the elastic and charge transfer channels in the case of ion-atom scattering
(Fig. la), or by the direct elastic and recoil channels for the atom-atom case.
With increasing collision energy the overlap decreases and pronounced peaks for
forward and backward scattering are displayed by the differential cross sections
(Fig. 1b). These peaks correspond in this limit to elastic scattering (forward) and
either charge transfer (backward) for the ion-atom case or target recoil (backward)
for the atom-atom case, thus enabling classical distinguishability of the particles
(CDP), i.e. labeling of the projectile and the target.

Since in practice, most experiments, as well as plasma modeling, assume unpo-
larized beams of projectiles and unpolarized targets, the relevant theory of elastic
scattering should take into account the spin statistics of the nuclei [22,19,25]. This
results in an elastic cross section which, for high collision energies, tends to the “to-
tal” cross section for scattering of projectiles, rather than to the elastic one, thus
representing an experiment in which direct and recoil channels are not separated
even for energies where CDP is in effect. Particularly sensitive to this definition



is the momentum transfer cross section, derived by integration of the elastic dif-
ferential cross section weighted by 1 — cos @, where 6 is the scattering angle. Since
the weighting factor emphasizes the backward scattering angles, the momentum
transfer cross section could be considerably larger if recoil scattering is present in
the elastic cross section.
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Fig. 1 Differential cross section for elastic scattering of H" on H.

Thus the usual quantum-mechanical definition of the elastic cross section as well
as of its higher moments for the symmetric (nuclei) systems do not have the classical
limit, defined by CDP, even when the latter can be reached in an experiment
(Ecm > 1eV). Alternately, inability to distinguish projectiles ions from ions coming
from the target by charge transfer (ct) leads one to define the “spin-exchange”
(se) cross section, assuming the scattering of a polarized beam of projectiles on
an unpolarized target [19,25]. If the scattered particle is detected with changed
nuclear spin, and spin-coupling is not present, this particle has certainly come from
the target. The spin exchange cross section does have the correct classical limit
which would smoothly become equivalent to the charge transfer cross section in
the CDP limit. One may analogously define the spin exchange cross section for
identical atom-atom scattering [22,13,26].

To maintain a quantum mechanically correct definition consistent with conven-
tions well established in the literature in the energy range considered here, we treat
the identical nuclei in ion-atom and atom-atom scattering as indistinguishable, even
for Ecm > 1 eV, when the “elastic” cross section transitions to the total scattering
cross section, containing the non-overlapping sum of direct and recoil channels.

Two significantly different sets of elastic and transport cross sections could be
produced for the symmetric collision systems even at higher energies, depending
on the assumption of QIP or CDP. Although each of the sets is internally consis-
tent, they could potentially introduce a confusion in plasma modeling applications,



resulting from double counting. Under the assumption of quantum indistinguisha-
bility, modeling of particle transport in plasmas should not additionally include
momentum transfer through resonant charge transfer, because this is already con-
tained in the total elastic cross section. However, to separate the recoil processes
in the integral cross sections for H* + H, one can subtract the charge transfer cross
section from the total elastic cross section, arriving at the elastic cross section in
the distinguishable particle sense, which is, of course, well defined only at “high”
energies. Similarly, the elastic differential cross sections may be approximated as
the absolute value of the difference of the total and charge transfer differential
cross sections. This can then be used to recalculate the integral quantities, such
as the momentum transfer and viscosity cross sections to obtain results that have
the correct classical limit. We have shown elsewhere [16] that the distinguishability
of the particles introduced in such a way does not lead to more than about 10%
uncertainty in the integral cross sections for the systems considered here at energies
above 0.1 eV. As a convenience to plasma modeling, we have calculated the integral
cross sections for symmetric systems with both QIP and CDP assumptions, and
these are separatelly available at www—-cfadc.phy.ornl.gov.

Calculation of these differential and integral cross sections has been described
in detail recently [15-17] and only the essential features of the numerical methods
are summarized briefly here. For example, common to the calculational techniques
for all systems considered is the solution of the relevant Schrodinger radial equa-
tion or system of equations (in cases that involve molecular targets). These have
been solved using the method described by Johnson [32] based on the use of the
logarithmic derivative. The step size used in the numerical mesh was between
0.001 and 0.0001 while the convergence of a solution for the elastic amplitude a, in
the number of partial waves, ¢, was established for each energy by requiring that
1 — Re{a,} <107° Im*{a,} < 107° for at least ten successive partial waves. The
number of partial waves needed for convergence of the elastic amplitudes was usu-
ally significantly larger than the amount needed for the corresponding convergence
of inelastic amplitudes, reflecting the importance of the region of large internu-
clear distance in elastic scattering. The converged amplitudes were matched to
the standard plane wave boundary conditions in order to define the K matrix and
subsequently the unitarized S matrix [32].

The integral elastic cross section, ¢, and its higher moments [33], the momentum
transfer o,,, and viscosity o,; cross sections were found by numerical and (where
possible) analytic integration over scattering angles
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In Section I we present a review of consistent, spin-averaged formulas for cal-
culation of differential and integral cross sections for the ion-atom and atom-atom
systems considered here. We also discuss the level of physical accuracy of the cal-
culations. Some detail on the results obtained for scattering of ions and atoms on
molecules are discussed in Section II.

The establishment of the detached plasma regimes in the divertor, which is es-
sential for minimization of plasma-divertor plate interaction and the associated
material erosion and material properties degradation effects, can be faciliated by
inclusion of certain fast volume plasma recombination mechanisms. One of the
reaction schemes proposed is “ion conversion” [34], which involves capture of an
electron by a proton from a vibrationally excited Hs, followed by dissociative re-
combination of Hf with a plasma electron. The present state of information for
many of the processes involving excited molecular states does not allow the con-
struction of a collisional-radiative model for the Hy/H gas. In Section III we present
our preliminary fully quantal results for the process H" +Hy(v)—H+H, , where v
is an arbitrary vibrational state.

I ION-ATOM AND ATOM-ATOM COLLISIONS

In symmetric neutral-neutral scattering (for example H+H), both nuclear and
electron spin statistics have to be taken into account for proper derivation of the
QIP elastic differential cross sections. It is interersting to note that while H' and
T+ are fermions (spin 1/2), Dt is a boson (with spin 1), which lead to different
expressions for the cross sections. Specifically,
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2
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The “4+” and “ —” signs denote even and odd values of £, respectively, 65’t is the

elastic partial phase shift for singlet (s) and triplet (¢) electronic states, and k is
the CM collisional momentum. The values of the coefficients a and 3 are shown in

Table I for all of these cases (i.e. for H+H, T4+T, and D+D).

System Qs Q' Bs B
H4+H, T+T || 1/4]|9/4|3/4|3/4
D-+D 2/31 1 |1/3] 2
Table I. Parameters in Eq. (4) defining the elastic differential cross section do;/dQ
for neutral-atom—neutral-atom scattering.




Among the most notable work considering elastic scattering in H+H collisions in
the literature, Jamieson et al. [13] introduced an additional factor of 1/2 in order
to adjust the cross section to become identical to that derivable in the high energy,
classical limit (Boltzmann statistics). We adopt this convention here as well. Upon
integration over the scattering angle, this yields for the total integral elastic cross
section [22,13] for H+H and T+T

O = ?{:—Z[ Z (20 + 1)(% sin? 6§ + %sin2 88 +
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t=odd

The momentum transfer cross section, defined in Eq. (2) yields the result

Omt = Ogl (7)

which is a consequence of full symmetry of the QIP elastic differential cross section
about 0 = /2.

An alternative definition of the momentum transfer cross section may be consid-
ered for H 4+ H scattering at higher energies if one assumes full distinguishability
of the projectile and target nuclei (i.e. Boltzmann statistics [22]), and therefore
applying only electronic spin statistics. This yields

Omt.B = 4—7; Z(ﬁ + 1)(l sin? AS + §sin2 AY). (8)
k? = 4 4

For D+D scattering, assuming distinguishability of nuclei, the Boltzmann statistics

momentum transfer cross section takes on the same form as in the H + H and T

+ T cases. Moreover, in this limit all differential and integral cross sections take

similar forms, irrespective of the type of nuclei.

We note that the viscosity cross section [16] obtained from Eq. (3) is in full
agreement with that obtained by Jamieson et al. [13] and that we have summarized
the formulas for the integral elastic, momentum transfer, and viscosity cross sections
elsewhere [16].Sumarizing the atom-atom cases, the integral cross sections can be
written in the form [13]
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where the coeflicients g(¥), wa and 7, 9 are given in Table IL
In the case of ion-atom scattering, the spin statistics is less involved, including
only nuclei. Expanding this definition using the expressions above for the ampli-
tudes we find that the elastic differential cross section can be written in the form
do_el 1
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where Pi was defined in Eq. (5), and the coefficients «, 3 and <y are given in Table
III. The subscrlpts g and u mean here gerade and ungerade electronic states,

Type g m 02
elastic 20+1 ] o}
momentum transfer | 2¢ + 1 o) By
viscosity ﬁ%%f;_?l 8510 — 65 | 09— O}
HY+H,T"+T Dt4+D
Type wi |wy |wy |wy |w) |wy |wy |wy
total 1/419/413/413/412/31 1 [1/3] 2
momentum transfer 1/4 9/4 3/4 3/4 2/3 1 1/3 2
viscosity 1/419/413/413/412/3] 1 |1/3] 2

Table II. Parameters in Eq. (9) for spin averaged integral elastic cross sections in
symmetric atom-atom systems.

respectively. Due to the presence of the interference term in this expression, the
momentum transfer integral cross section is not equal to the integral elastic cross
section [16].

System Qg Oly ﬂg Bu You | Yug
HY+H, TT+T 1/4 3/4 3/4 1/4 1/4 3/4
D*+D 2/3 1/3 1/3 2/3 2/3 1/3

Table II1. Parameters for the for the Eq. (10) defining the elastic differential cross
section do;/dS) for ion-neutral-atom scattering.

When the nuclei are of different masses we consider them as CDP, so that the
cross sections can be calculated by considering scattering without regard to the
nuclear spins.

For the symmetric (sym) ion-atom systems, performing integration over scatter-
ing angles analytically, the formulas obtained for the integral elastic cross section
and its higher moments take the same form,

Otot,sym — 1{72 Zg wl Sln T +w2 sin 7]2) (11>

where the coefficients are summarized in Table IV, while charge transfer is given

by

4
S kz Z (26 4 1) sin®(87 — 6%). (12)



Type g s 12
total 20+ 1 67 oy
momentum transfer | ¢4 1 & — 601 | 68 — 6}y
viscosity %é@;_?l 80— 67 | 8¢ — O
HY+H T +T D*+D
Type wi | wy | W [Wy |wy |Wa |wy | Wy
total 1/413/413/41/412/31/3|1/3]2/3
momentum transfer | 1/4 | 3/4 [ 3/4 | 1/42/3|1/3|1/3|2/3
viscosity 1/413/413/4|1/412/3|1/3|1/3]2/3

Table IV. Parameters in Eq. (11) for spin averaged integral elastic cross sections in
symmetric ion-atom systems.

The QIP cross sections, defined by Eq. (9) and (11) do not tend to the CDP (like,
for example, the DT+ H case, where projectile and target can be distinguished by
different masses), even when the energy is high enough for coherent superposition
of the amplitudes in Eq. (10). For example O_zgszlt,)sym for Ht+H is approximately a
factor of v/2 larger than o, calculated using Boltzman spin statistics like in Eq.
(8), over almost the entire range of energies considered, although both are referred
to as “elastic” cross sections in the literature. Still, it is possible to construct an
elastic cross section even for symmetric systems, which has the correct CDP limit
and, as we show in Section II, has a reasonable interpretation even at energies as
low as 0.1 eV. In the rest of the text we will call this the “elastic” cross section for
symmetric ion-atom scattering, i.e.

_ el
Oel,sym = Ogot sym — Oct,sym- (13>

To define the momentum transfer and viscosity cross sections with the correct
CDP limit, it is convenient to define the “elastic” differential cross section by sub-
tracting do .t sym /dQ from doit eym/dQ) and applying the weighted integration in
Egs.(2) and (3).

Obviously, the elastic differential cross section so defined for a symmetric system
differs from the CDP cross section by the interference term, which vanishes in the
CDP limit. Although do,/dQ) can be negative for some angles and energies, at
least in principle, it results in integral cross sections with the correct CDP limit,
as we illustrate in Section II.

In spite of the high numerical accuracy of the present calculations, the assump-
tion of a weak coupling of the ground gerade (1so,) and ungerade (2po,) states
with the excited molecular states of Hy could result in physical inaccuracies of
the elastic and charge transfer ion-atom differential cross sections for the higher
portion of the energy range considered. In particular, it is well known [35,36] that
strong Coriolis (rotational) coupling between the 2po, and 2pmr, states at small in-
ternuclear distances may influence the cross sections if the product of the collision



energy and scattering angle (E@) is greater than 1 keVdeg. We have investigated
the influence of this coupling for the ion-atom case, where the consequence of the
effect is expected to be more pronounced. At worst (Eg,=100 eV), we found about
a 3% correction for the viscosity cross section and less than 1.5% corrections for
the momentum transfer and integral elastic cross sections.

We sumarize our results for the integral elastic, momentum transfer and viscosity
cross sections in Fig. 2.

10°

Cross Section (a.u.)

—-— H'+H, QIP assumed
——- (H+H)/2, QIP assumed

10° +

Fig. 2 Integral a) elastic, b) momentum transfer, and ¢) viscosity cross sections for
typical cases considered.

II ION/ATOM-MOLECULE SYSTEMS

Elastic neutral-neutral (atom-atom) collisions have been the least studied among
the systems considered here, while data for scattering from molecular systems are
almost entirely unavailable. To our knowledge, only one comprehensive set of
data is available for the latter over an extended energy range (0.067-6670 eV).
This data are the momentum transfer cross sections for H+Hjy collisions found by
Phelps [37] who interpolated between experimentally derived data at low energies
and theoretical results (Smith et al. [38]) at high energies. However, a certain
amount of data is available at temperatures lower than those of the present interest
[39] regarding, in particular, rotational excitations needed for interpretation of
the infrared emission and cooling of interstellar clouds. In contrast, the H"+Ho,
being the most fundamental and simplest ion-molecule system collision system,
has been often studied [40-48] from sub-eV to keV energies, with regard to elastic
scattering, rotational and vibrational excitation, and charge transfer, but not in a
comprehensive manner

The H"+H, charge transfer reaction, although endoergic, has a low threshold
energy (1.83 eV), and is strongly coupled to the mechanism of vibrational excitation
to states that are high enough (v > 4) to overcome the barrier. Thus, this reaction



is a second order process, for energies < 200 eV [37], with an integral cross section
that is more than ten times lower than the cross section for excitation to the
first excited state of Hy . On the other hand, in order for the electron to make
a transition to the excited surface (H+H, ), the Hy bond must stretch while the
projectile is still close enough to the Hy molecule. Collisions that involve nuclear
rearrangements will almost always lead to scattering at larger angles which will not
significantly contribute to the presently considered elastic cross section results, but
could influence to some extent the transport cross sections below about 1 eV due
to their emphasis of large angle scattering. Thus, in the energy range considered
here, it is satisfactory to treat elastic scattering and vibrational excitations with
inclusion of only the ground electronic energy surface with the appropriate caution
(i.e. using the transformation to the diabatic surface in the H"4+H, case). This is
the first assumption made in the present calculations. Moreover, the energy gap
for any reaction that involves an electronic transition is much larger for neutral-
neutral collisions, which allows greater certainty in the results obtained with only
one electronic surface.

The second simplifying approximation is a variation of the so-called sud-
den approximation, known as the infinite order sudden approximation (IOSA)
[49,50,40,41]. When the rotational motion is adiabatic with respect to the rela-
tive translational motion of the molecule and a colliding particle, the projectile
effectively interacts with a molecule that has no rotational angular momentum.
Such a physical situation allows the complete decoupling of the diatomic rota-
tional and projectile orbital angular momenta in the scattering system and leads
to an enormous simplification in the equations of motion. Hence, the rotationally
summed cross sections only depend on the initial ground rotational state. The
Hamiltonian contains only a vibrational kinetic energy operator as a “signature” of
the molecular target, but also depends parametrically on the molecular orientation
which is fixed during the collision. The calculations need to be repeated for a range
of orientations and the resulting cross sections averaged. This approach has been
followed for both fully quantal and semi-classical formulations and has been shown
to be strictly valid only for systems with short range rotational coupling. Thus the
sudden approximation is most applicable to the neutral-neutral system (H+Ho,)
where the anisotropy of the interaction is short-ranged.

Specifically, we have used the IOSA over the whole energy range considered and
find that it suffices to expand the wavefunction in a truncated basis of 9 vibrational
states. For H" +H, this allows convergence of the results for at least 3 excited states
and 5 for H+H,y. However, for ion-molecule systems additional caution is needed,
since the sudden approximation is expected to be valid for the H* +H, system above
a collision energy of about 3 eV [45], while for lower energies its validity remains
undetermined due to the lack of more elaborate calculations or measurements.
Nevertheless, since typical rotational energies for Hy are of the order of 0.01 eV
or less, the classical argument of freezing molecular rotations for the duration of
the collision for Exjp; >0.1 eV indicates that acceptable results may be obtained as
long as rotationally averaged cross sections are calculated.



Some of the existing calculations for H'+H, collisions utilize the “time-
dependent” or “impact-parameter” formalism which assumes a classical or often
straight-line motion of the projectile [46]. While the straight-line trajectory method
could be an acceptable approximation for small scattering angles, it poorly describes
the scattering at larger angles. As demonstrated below, the scattering angles fol-
lowing vibrational excitation for both proton and neutral atom impact are shifted
significantly toward larger values in comparison to the behavior displayed by elas-
tic scattering. Thus we chose a fully quantal approach for both the projectile and
diatomic vibrational motion.

It turns out that the principal mechanism for vibrational excitation in the H* +H,
system is well understood [44] and is mainly an effect of “bond dilution” — the tem-
porary depletion of electron density from the molecular bond by the passing proton.
The vibrational excitation is caused by the stretching force which acts simultane-
ously on both of the Hy nuclei, which becomes significant at small distances, thus
causing the largest contribution to the cross section for large scattering angles. The
mechanism is apparently weaker in H4Hy scattering and the incident atom inter-
acts predominantly with the nearest atom of the molecule. This is elucidated [17]
through comparison with the elastic cross sections in the H+H system (Fig. 2a),
as well as with the dependence on the molecular orientation.

111 H* + Hy(v) — H+ H,

Because of its potential significance in the chain of reactions in “molecular as-
sisted recombination” leading to plasma detachment, we are studying charge trans-
fer involving vibrationally excited Hy. Our preliminary results, summed over all
final vibrational states of Hy , are presented in Fig. 3. The mechanism is expected
to be
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Fig. 3 Total cross sections for charge transfer in collisions of vibrationally excited
Hy(v) with H. The curves are indexed by initial state v.



operative for plasma temperatures in the range 1-2 eV (close to the divertor plates)
and thus, a fully quantum approach to the problem is required. When v > 4,
the electron capture is realized without a threshold energy, resulting in large cross
sections. The rate coefficients, estimated from the present results are 3-4x107°
em?® /s for v > 4.

The cross sections in Fig. 3 were obtained by solving the molecular orbital close
coupling equations within a set of all vibrational states of Hy and Hj, using the
IOSA [41] approximation. The averaging over the diatom orientations is done a
posteriori. The exclusion of the vibrational continuum from the calculation may
artifically enhance the results, since the dissociation from the excited vibrational
states of Hy is energetically accessible even for 1 eV energies. Treatment of the
process, with inclusion of the dissociative channels is underway.
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