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Crashworthiness

• “Crashworthiness” - The ability to absorb energy and be 
survivable for the vehicle occupants

• Energy is absorbed through controlled failure mechanisms 
and failure modes

• Accurate computer simulations are needed to design safe 
vehicles

• Specific energy absorption
– energy absorbed per unit mass of crushed material
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Automotive Materials

• Economy and weight

• Composite materials
– lighter than metals

– high strength-to-weight and stiffness-to-weight ratios

– fatigue and corrosion resistant

– brittle response

– fail through a sequence of fracture mechanisms

• Metals
– ductile response

– fail through buckling or folding like an accordian

– extensive plastic deformation
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Tube Crushing

• Extensive studies have been conducted to investigate the 
progressive crushing of composite tubes

• Identified failure mechanisms
– fragmentation

– splaying (frond formation)

– delamination

– axial splitting

– brittle fracturing

– progressive folding

• All of the different failure mechanisms contribute to the 
overall energy absorption of the structure
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Tube Crush Modes

Fragmentation Splaying
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Tube Crush Modes

Brittle Fracturing Progressive Folding
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Plate Compression

• Yuan and Viegelahn 
(1991)
– Very simple design

– Large frictional effects
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Plate Compression

• Wider specimens

• Fully side-supported

• Flat crush profile

Daniel, et al
(1999)

Lavoie and Morton
(1993)

Fleming and Vizzini
(1993)
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Test Fixture Design

• Isolate splaying mode observed in tubes by testing plates

• Investigate effects of:
– plate width

– plate thickness

– strain rate

– contact profile shape

– contact profile constraint

• Features
– observable crush zone

– long crush length

– interchangable contact profile

– profile constraint

– out-of-plane support
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Test Fixture Design
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Fixture Validation

• Conducted preliminary testing on candidate automotive 
composite material systems
– Graphite/Epoxy cross-ply laminates

• Panel designations:  CP1 and CP2

• Akzo Fortafil prepreg #602 (50K tow)

– Graphite/Epoxy triaxial braid
• Panel designation:  #10-13

• 0/+30/-30 fiber orientations

• Akzo #556 carbon fiber with Ashland Hetron 922 epoxy

– Glass-reinforced continuous strand mat
• Panel designation:  CSM

• Baydur polyurethane resin
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Fixture Validation

• Nominal specimen dimensions
– length: 178 mm (7 in.)

– width: 50 mm (2 in.)

– thickness: 3 mm (1/8 in.)

• Crush initiator used was a 45o chamfer

• Loading rate:  5.0 mm/min (0.2 in/min)

• Profile radius:  6.4 mm (0.25 in.)

• Maximum displacement was 50 mm (2 in.)
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Idealized Response

Displacement

Lo
ad

Idealized Crushing Response of a Tube

Peak Load

Sustained Crushing Load

ideal  June 9, 1999  9:24:06 AM
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Specific Energy Absorption

W = total energy absorption
= area under curve

V  = volume of crushed material
ρ = density
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Cross-Ply Panel # CP1

• Predominant damage 
mechanism was delamination

Load Displacement Traces
Akzo Prepreg #602 Cross Ply Panel # CP1
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Specimen Width - 50mm
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Constraint

No ConstraintConstraint Spec.
Initial
Peak

Load (N)

Sustained
Crush

Load (N)

SEA
(J/g)

None CP1-4 5489 5280 11.1

CP1-5 7562 4372 13.8

Loose CP1-1 4532 3581 19.9

CP1-2 4617 4194 21.2

CP1-3 3807 3505 13.6

Tight CP1-6 4421 5039 25.5

CP1-7 4092 1103 5.2
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Cross-Ply Panel # CP2

• Predominant damage mechanism was delamination

• Lower SEA than panel # CP1

Load Displacement Traces
Akzo Prepreg #602 Cross Ply Panel # CP2
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None CP2-1 5962 3971 7.9

CP2-2 4310 3259 7.1

Loose CP2-3 4595 2176 6.3

CP2-4 4437 1463 6.9

Tight CP2-5 4670 4619 20.1

CP2-6 4583 3020 15.1
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Load Displacement Traces
Baydur Glass Fiber CSM
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Glass Fiber CSM

• Finite length fractures across entire specimen width

• Profile constraint resulted in specimen buckling

Constraint Spec.
Initial
Peak

Load (N)

Sustained
Crush

Load (N)

SEA
(J/g)

None CSM-1 7478 4829 10.8

CSM-2 8156 4444 9.7

CSM-3 8334 4561 10.1
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Tri-Axial Braid

• Localized crushing, fiber fracture on tensile side, fiber 
buckling on the compressive side

Load Displacement Traces
Akzo 556 Triaxial Braid Panel # 10-13
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Initial
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None 0-7 4233 1917 7.4

0-8 3674 1001 6.9

Loose 0-6 3490 2417 14.2

0-9 3366 2934 20.2
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Test Observations

• A test fixture has been developed for conducting 
progressive crush tests on composite plates

• Different damage mechanisms can be activated depending 
on the condition of the profile constraint

• Modifications to the basic specimen geometry are required 
when testing material systems having a low axial stiffness

• Future testing will investigate the progressive crush 
behavior of chopped carbon fiber composites

• Experimental results are being used to develop analytical 
models for predicting the crashworthiness of automotive 
composite structures
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Chopped Carbon Fiber

• Test variables
– Profile radius: 0.25 in. and 0.50 in.

– Load rate: 0.2 in./min.

– Constraint: none, loose, tight

• Specimen variables
– Width: 0.5 in., 1.0 in., 2.0 in.

– Areal weight: 150 gsm, 300 gsm

– F.V.: 40%, 50%

– Fiber length: 1.0 in, 2.0 in.

Areal
Weight
(gsm)

Vf (%)
Fiber

Length
(in.)

300 50 1

300 40 1

300 50 2

300 40 2

150 50 1

150 40 1

150 50 2

150 40 2
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Missing Links

• “Where is the energy?” (Ron Averill, MSU)
– Splaying mode or frond formation is only part of the total energy 

absorbing process

– Alternative tests are needed to isolate and quantify the other 
damage mechanisms that absorb energy

• Are the damage mechanisms and SEA rate dependent?
– Results from tube testing show that the dynamic SEA is less than

the static SEA

– Experimental data is needed at intermediate and higher strain rates


