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Abstract - We consider the identi�cation of a

parametrized time-invariant non-linear plant using a

smooth model such as a sigmoid non-linear network. There

is measurement noise associated with the plant parameters

as well as it's input and output. An initial plant model is

obtained by utilizing the domain-speci�c knowledge in terms

of the fundamental plant equations, which in general only

partially capture the plant dynamics. Once the initial model

is �xed, measurements are collected on the plant parameters

and input/output. We show that the iid measurements can

be fused with the initial plant model by recomputing the pa-

rameters. The updated parameters yield a more accurate

identi�er of the original plant both in parameter and in-

put/output space. The method is based on empirical ver-

sions of the closed-form solutions derived in the nuclear

engineering literature for an ideal version of the problem

based the sensitivity analysis. We show the asymptotic con-

vergence of our computational procedure as well as derive

its �nite sample results. We illustrate the method using an

identi�er based on a sigmoid feedforward neural network.

Keywords: Sensitivity and uncertainty analysis, system

identi�cation, neural network, information fusion.

1 Introduction

In a number of engineering systems, one needs to accu-

rately identify a plant for the purposes such as predict-

ing abnormal operation, fault diagnosis, and designing

controllers [14, 9]. A variety of identi�cation methods

are currently employed [8], and recently, sigmoidal neu-

ral networks were shown to be very useful for designing

such identi�ers [7]. Identi�cation of complicated dy-

namical systems, such as the transient up
ow of high

pressure water in light water reactor heat transfer, was

originally developed in the area of nuclear engineering

using sensitivity and uncertainty analysis [1]. In practi-

cal systems, an initial model of the system is developed

based on the overall system equations of the plant,

which is then re�ned by utilizing plant measurements.

Such methods were shown to be particularly e�ective

in practice, since the basic functionality is captured by

the well-established relationships, whereas the residual

unmodeled parts are handled by combining plant mea-

surements with the initial model. These information

fusion methods have been shown to be very e�ective

even under limited number of measurements, although

no convergence results are known. One of our objec-

tives is to extend these information fusion methods to

new classes of systems, and bring the corresponding

techniques to the information fusion community. Fur-

thermore, we relate this technique to the empirical risk

minimization method of Vapnik [17, 18] by showing it

to be a particular implementation, namely using a em-

pirical estimate of the closed-form solution derived for

the ideal case. By utilizing the smoothness properties

of the identi�er, we show the convergence of the pro-

posed computational method in terms of asymptotic

consistency as well as distribution-free �nite sample

guarantee. For the latter, we show that given large

enough iid (independently and identically distributed)

measurements, the error of the computed solution can

be made arbitrarily close to the optimal error with a

speci�ed probability in the sense of Probably Approx-

imately Correct (PAC) learning [15, 5].

We consider a time-invariant non-linear plant which

is characterized by certain key plant parameters. There

are random errors associated with measuring the pa-

rameters as well as the plant input and output. We

consider that an initial plant model is designed based

on the equations modeling the basic plant phenomenol-

ogy, and then some measurements of plant parameters

and inputs/outputs have been collected. In this pa-

per, we present an information-fusion method for com-

bining the plant measurements with the initial model

so that the fused model more accurately identi�es the

plant both in terms of plant parameters and output.

Without loss of generality and to simplify the tech-

nical treatment, the input parameters that cannot be

measured without errors are combined with the orig-

inal parameters to be treated as parameters. The in-

puts that can be measured without errors are left as

explicit inputs. The method is based on the uncer-

tainty analysis performed on a locally linearized plant

model [2, 1, 19]. The computational complexity of our

method is O(n3), where n is the sample size, and the

computation involves matrix operations such as inverse

and product. This computational aspect must be con-

trasted with the general empirical risk minimization

solutions for fusion problems [12] that typically are
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Figure 1: Plant Model.

not polynomial-time solvable. Sensitivity-based uncer-

tainty analysis methods have been used extensively in

uncertainty reduction in the area of nuclear engineering

for the analysis of plants such as light water reactors

[20, 1]. In this paper, we present a general information

fusion method and apply it to the identi�ers based on

sigmoid feedforward networks to compute the connec-

tion weights.

In section 2, we present a formulation of the prob-

lem and describe the information fusion operation. In

Section 3, we describe a computational method to im-

plement the fusion method. We show in Section 3.1

the asymptotic convergence of the proposed method

and also derive �nite sample results for the simple case

where the correlation between parameters and outputs

are ignored. The performance guarantees are shown

in Section 3.2 for the case when these correlations are

considered. In Section 4, we provide the details about

an implementation using sigmoid feedforward neural

networks.

2 Problem Formulation

We consider a general non-linear plant with input

x 2 <dx , output y 2 <dy , and parameter � 2 <d�

as shown in Figure 1. Note that inputs that cannot be

measured without error are included as components of

the parameter �. The input x represents only those

inputs that can be measured without error. There is a

probabilistic relation between � and y denoted by the

joint distribution P�;y, which is unknown. We assume

that the plant operates at a �xed and known value for

x. On the other hand, the parameter � is �xed but is

unknown, and y varies (due to randomness) even for a

�xed value of �.

There are errors in measuring � and y as shown

in Figure 2. The corresponding measurements, �̂ and

ŷ, are distributed according to the unknown condi-

tional distributions P�̂j� and Pŷjy, respectively. We

assume that both measurements are zero mean in that

E[�̂j�] = � and E[ŷjy] = y.

The objective is to build a plant model or iden-

ti�er that accurately represents both the parameters

and the output. Let h~�;M(x; ~�)i represent such iden-

ti�er, where ~� is an estimate of the parameter �,
and M : <dx � <d� 7! <dy produces an estimated

value M(x; ~�) of the plant output as shown in Fig-

ure 3. Dependence on x is not critical to certain

parts of the paper, and hence M(x; ~�) is sometimes

denoted by M(~�). We consider that M(:; :) has been
derived from the basic plant equations. In general,

M(:) does not adequately model the plant noise (due

to Pyj�), and does not account for the measurement
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Figure 2: Measurement Model.

noise, since measurements are not a part of the plant.

To account for the unmodeled parts of plant equa-

tions and the measurement noise, a set of measure-

ments (�̂1; ŷ1); (�̂2; ŷ2); : : : ; (�̂n; ŷn) are collected from

the plant (�̂i 2 <d� and ŷi 2 <dy for i = 1; 2; : : : n).
Our goal is to combine or fuse the information con-

tained in the predetermined modelM(:) with the mea-

surements to estimate ~� such that

(i) ~� is close to the unknown parameter �, and

(ii) M(x; ~�) is close to the unknown output y.

Note that the requirement of the fusion operation is

two-fold in that both the estimates of parameter and

output must be close to the actual values. Note that

even though � is �xed, the observable �̂ is random. On

the other hand, randomness in ŷ is due to the plant

characteristics given by Pyj� as well as the measure-

ment noise given by Pŷjy.

Let � = (a1; a2; : : : ; ad�) and ~� = (~a1; ~a2; : : : ; ~ad�)
A cost measure that re
ects solely the criterion (i)

above is given by

[~�� �]C�1
� [~�� �]T

where C� = [cij ] is the covariance matrix such that

cij = E[(~ai � ai)(~aj � aj)]. Note here that � itself is

not a random variable. Similarly, a cost measure based

solely on the criterion (ii) above is given by

[M(~�)� y]C�1
y [M(~�)� y]T

where Cy is the covariance matrix such that Cy =

E[(y � E[y])(y � E[y])T ]. By simultaneously utilizing

the criteria (i) and (ii), the fusion operation is achieved

at the minima of the random cost function

Q(~�) = [(~�� �) (M(~�)� y)]

�
C�C�;y

Cy;�Cy

��1

[(~�� �)(M(~�)� y)]T ; (2:1)

where Cy;� = [dij ] for dij = E[aiyi] and C�;y = [eij ]
for eij = E[aiyi]. The correlations between parameters

and outputs are captured by Cy;� and C�;y. Since this

is a random cost, it it not possible to minimize it. We



now de�ne a cost function by taking expectation to

obtain

R(~�) = [(~� �E[�]) (M(~�)�E[y])]

�
C�C�;y

Cy;�Cy

��1

[(~��E[�])(M(~�)�E[y])]T ; (2:2)

where E[�] refers to expectation with respect to the

measurement noise. We seek to minimize R(:) to ob-

tain the estimator ~��. In the present case, however,

we cannot explicitly minimize R(:) since it depends on
the expectations and covariance matrices that depend

on the unknown distributions. When a set of measure-

ments are given, such problems are studied extensively

under the method of empirical risk minimization due to

Vapnik [17]. In this method, a minima is computed for

an empirical version of R(:), denoted by R̂(:), as will
be shown in the next section. In general, the minimizer

of R̂(:) is shown to be close to that of R(:) with a high

probability. The minima of R̂(:) is computed in gen-

eral by solving a non-linear optimization problem. In

the next section, we show that the existing solutions

to Eq (2.2) derived in [3, 19] can be used to obtain

a simple expression for the solution. This solution is

very easy to compute as opposed to the minimization

problem for R̂(:), which is computationally intractable

in general. The validity of our results are based on

the smoothness of the model and small deviations of �̂
from � as described in the next section.
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Figure 3: Identi�cation Model.

3 Sensitivity-Based Uncertainty

Analysis

We now describe sample-based computational meth-

ods to minimize the cost R̂(:). One of the simplest

way to is to use an observation �̂ as an estimate such

that ~� = �̂, and the corresponding predicted output is

M(�̂). Assume that M(x; ~�) is di�erentiable in ~�, and

M(x; ~�) = (m1;m2; : : : ;mdy), ~� = (~a1; ~a2; : : : ; ~ad�).
Then, for smooth M(:) and small �� such that ~� =

�+ ��, we have

M(�̂) =M(�+ ��) �M(�) + S��; (3:1)

where S =
h
@mi

@~aj

i
is the sensitivity matrix of the iden-

ti�er M(:). If M(:) is a good representation of the

regression E[yj:], then M(�) will be a good estimate

of y. Recall that M(:) is a priori chosen by utiliz-

ing the basic plant equations and the domain-speci�c

knowledge; thus, the basic functionality is captured in

M(:). We can compute ~�, which will close to �, and
and M(~�) will be close to y.

3.1 Uncorrelated Parameters and Out-

puts

We �rst consider a simpler case studied in [19] that ig-

nores the correlations between parameters and output,

which results in a simpler version of the cost function

in Eq (2.1)

Q(~�) = [~���]C�1
� [~���]T+[M(~�)�y]C�1

y [M(~�)�y]T :

For this case, under the condition Eq (3.1), the solution

is given by the closed-form expression (see [19] for the

derivation)

~� = �� C�S
T (Cy + CM )�1(M(�)� y);

where CM = SC�S
T is the covariance matrix of M .

This solution is not computable because � and y are

not known, and the covariances depend on the un-

known distributions. Such computation is not possible

even in theory since it will not be possible to predict a

random number. Instead, we replace � and y by their

expectations, which yields the solution

~�� = E[�]� C�S
T (Cy + CM )�1(M(E[�])�E[y]);

which minimizes the cost function

R(~�) = [~��E[�]]C�1
� [~��E[�]]T

+[M(~�)�E[y]]C�1
y [M(~�)�E[y]]T :

Now, ~�� is computable in principle since the right hand

side is a deterministic quantity. In practice, however,

it is not possible to compute it since it depends on the

covariances C� and Cy which in turn depend on the

unknown distributions.

Now consider that the measurements

(�̂1; ŷ1); (�̂2; ŷ2); : : : ; (�̂n; ŷn) are independently

and identically distributed (iid). Then we consider a

sample-based cost function de�ned as follows:

R̂(~�) = [~�� ��]Ĉ�1
� [~�� ��]T

+[M(~�)� �y]Ĉ�1
y [M(~�)� �y]T ; (3:2)

where (i) �� and �y are the sample means of � and y
based on measurements, and (ii) Ĉ� and Ĉy are the

empirical covariances computed based on the sample,

corresponding to C� and Cy, respectively. The cost in



Eq (3.2) is minimized by ~�sample, which is the solution

of [19] where distributions are taken as the empirical

distribution of the sample.

~�sample = ��� Ĉ�S
T (Ĉy + CM )�1(M̂(��)� �y):

Note that ~�sample can be computed using the sample.

We employ ~�sample as an estimator of ~�� (which can

only be computed if the distributions are known). We

now show that ~�sample is a good estimator of ~�� in the

following theorem.

Theorem 3.1 Consider the bounded parameters and

outputs such that � 2 [�A;A]d� and y 2 [�B;B]dy

and the condition Eq (3.1) be satis�ed. Let �� and

�y denote the upperbounds on the entries of C�1
� and

C�1
y , respectively. Let D be an upperbound on

@mi

@~aj
for

all i; j, and R(~�) � � for all ~�. Let

L = 4(d���A+ dy�yBD):

Given a sample of size at least

n =
512�

�2
[d� ln(32=L�) + ln(8=�)] ;

we have, for any � and �,

P [R(~�sample)�R(~��) > �] < �:

Furthermore, R(~�sample)! R(~��), as n!1.

Proof: Consider the function class

R = fR(~�) : ~� 2 [�A;A]d�g:

By the result of Vapnik [16] (page 41), we have

P [R( ~�sample)�R(~��) > �]

� P

"
sup

r2[�A;A]d�
jR̂(r) �R(r)j > �=2

#
:

To see this result, consider the condition

P

"
sup

r2[�A;A]d�
jR̂(r)�R(r)j > �=2

#
< �

or equivalently

P

"
sup

r2[�A;A]d�
jR̂(r) �R(r)j < �=2

#
> 1� �:

Then, with probability 1� �, we have

R(~��) � R̂(~��) + �=2

� R̂(~�sample) + �=2

� R(~�sample) + �

where the �rst and third inequalities are due to the

application of supremum bound for ~�� and ~�sample,

respectively, and the second inequality is due to the

condition R̂(~��) � R̂(~�sample). As a result, we have

P [R(~�sample)�R(~��) > �] � �;

which shows the above Vapnik's result.

For any function g : [�A;A]d 7! <, let

k g(r) k1= sup
r2[�A;A]d�

jg(r)j:

The covering number N1(�;G) of a function class G

is the smallest cardinality for a subclass G� of G such

that

min
g�2G�

k g � g� k1� �

for each g 2 G.
Based on Lemma 3 of Appendix of Krzyzak et al. [6]

(which itself is based on Pollard [10]), we have

P

"
sup

r2[�A;A]d�
jR̂(r) �R(r)j > �

#

� 8N1(�=8;R)e��
2n=128�

where R(~�) � � , for all ~� 2 [�A;A]d� .
By combining the above two results, we have

P [R(~�sample)�R(~��) > �]

� 8N1(�=16;R)e��
2n=512� :

Thus, the sample size required to ensure the result of

the theorem is given by

512�

�2
[lnN1(�=16;R) + ln(8=�)] :

We subsequently compute an upper bound for

N1(�=16;R), which proves the theorem. Consider

that R(~�) is Lipschitz with the constant L that is for

all ~�1; ~�2 2 [�A;A]d� we have

k R(~�1)�R(~�2) k1� L k ~�1 � ~�2 k1 :

By using a mesh with points � apart, we can cover

[�A;A]d� with
�
2A
�

�d�
points. Then, because of the

Lipschitz property of R(:), we have

N1(�;R) � N1(�=L; [�A;A]d�) �

�
2A

L�

�d�
:

Thus, the last step of the theorem is to show that

R(~�) is Lipschitz with the constant

L = 4(d���A+ dy�yBD):

Note that R̂(:) is the sum of two quadratic forms in ~��
��. We note that Lipschitz constant is no higher than

the magnitude of the largest value for the derivative
@R
@~ai

, where ~� = (~a1; : : : ; ~ad�). For �� = (�a1; : : : ; �ad�),
we have the following upper bound

@R

@~ai
� 2d���max

~ai; �ai
f~ai � �aig

+2dy�y
@M

@~ai
max
~ai; �ai

f~ai � �aig

� 4d���A+ 4dy�yDB:

The sample size follows from by using this value for L
in the bound for N1(�=16;R).



To show the asymptotic convergence, let

�(n; �)8N1(�=16;R)e��
2n=512�

show the explicit dependence of � on n and �. Un-

der the �niteness of N1(�;R), the consistency result

follows from the Borel-Cantelli Lemma [4] if

1X
l=1

8N1(�=16;R)e�n�
2=512� <1

for every � > 0. This condition is true since

1X
n=1

e�n�
2=512�

�

Z 1

x=0

e�x�
2=512�dx

�
512�

�2
e��

2=512�

which is �nite for all � > 0.

The �rst part of the theorem provides a distribution-

free �nite sample result. It says that given a su�ciently

large sample size, with a probability 1� �, we have

R(~�sample)�R(~��) � �;

i. e. the cost of the sample-based solution is within �
of the lowest achievable cost (which can only be com-

puted if all error distributions are known). This result

is distribution-free, and only depends on the sample

size. It is best possible result in that stronger results

such as showing � = 0 is not possible, since ~�� depends
on a distribution (which is not �nite-dimensional) and

~�sample depends on a �nite sample. The asymptotic

results such as R(~�sample)! R(~��) are more common

in statistics literature [11]. The �nite sample result is

stronger in that it implies the asymptotic result, and

also establishes that the method is justi�ed even for

small sample sizes. To our knowledge, these are the

�rst convergence results shown for this method of iden-

ti�cation.

3.2 Correlated Parameters and Out-

puts

We now consider the case studied in [3] based on the

cost function in Eq (2.1). The sample-based cost in

this case is given by

R̂(~�) = [(~�� ��) (M̂(��)�E[y])]

�
Ĉ�Ĉ�;y

Ĉy;�Ĉy

��1

[(~�� ��(M(��)� �y)]T ; (3:3)

where (i) �� and �y are the sample means of the mea-

surements of � and y, respectively, and (ii) Ĉ�, Ĉ�;y,

Ĉy;� and Ĉy are the empirical covariances computed

based on the sample corresponding to C�, C�;y, Cy;�,

and Cy, respectively. The solution to this equation is

is given by (see [3] for the details of the derivation)

~�sample = ��+ (Ĉ�y � Ĉ��S
T )Ĉ�1

dd (M̂(�) � �y)

where Ĉdd = Ĉy + CM � SĈ�y � Ĉy�S
T . Let ~�� min-

imize R(:) in Eq (2.2).

The discussion of this case follows along the lines of

previous section, except the technical details are more

involved.

Theorem 3.2 Consider the bounded parameters and

outputs such that � 2 [�A;A]d� and y 2 [�B;B]dy ,
and the condition Eq (3.1) be satis�ed. Let ��, ��;y,

�y;�, and �y denotes the upperbounds on the entries

of C�1
� , C�1

�;y, C
�1
y;�, and C�1

y , respectively. Let D and

E be upperbounds on
@mi

@~aj
for all i; j and M(:), respec-

tively, and let R(~�) � � for all ~�. Let

L = 4(d���A+ dy�yBD)

+(d� + dy)(��;y +�y;�)[E + 2B + 2DA]:

Given a sample of size at least

n =
512�

�2
[d� ln(32A=L�) + ln(8=�)] ;

we have, for any � and �,

P [R(~�sample)�R(~��) > �] < �:

Furthermore, R(~�sample)! R(~��), as n!1.

Proof: The proof is almost identical to that in Theo-

rem 3.1 except for the estimation of the Lipschitz con-

stant L. For �� = (�a1; : : : ; �ad�), we have the following

upper bound

@R

@~ai
� 2d���max

~ai; �ai
f~ai � �aig

+2dy�y
@M

@~ai
max
~ai; �ai

f~ai � �aig

+(d� + dy)��;y�
max
�;y

fM(�)� yg+
@M

@~ai
max
~ai; �ai

f~ai � �aig

�
+(d� + dy)�y;��

max
�;y

fM(�)� yg+
@M

@~ai
max
~ai; �ai

f~ai � �aig

�
� 4d���A

+(d� + dy)(��;y +�y;�)[E + 2B + 2DA]

+4dy�yDB;

which yields the required bound on L.

4 Feedfoward Sigmoid Networks

We consider the class of feedforward neural networks

with a single hidden layer of l nodes and a single output
node. The output of the network corresponding to

input x 2 [�C;C]dx is given by

fw;
(x) =

lX
j=1

aj�(b
T
j x+ tj)

where: (i) �(z) = 1
1+e�
z

, for 0 < 
 < 1, called

the gain, and (ii) w = (w1; w2; : : : ; wl(d+2)) is the

weight or parameter vector consisting of a1, a2, : : :, al,



b11; b12; : : : ; b1d; : : : ; bl1; : : : ; bld and t1; t2; : : : ; tl. We

employ the function fw;
(:) for w 2 [�W;W ]l(d+2)g

to implement M(�; x) = f�;
(x) and A = W . The

gain 
 is a priori �xed, and we set w = ~�, which has

d� = l(d + 2) components. For simplicity we consider

y to be 1-dimensional.

For computing the solution based on neural net-

works, we need its sensitivity matrix S, which is ob-

tained by the following partial derivatives of fw with

respect to wi [13]. We have, for x = (x1; x2; : : : ; xd),

bj = (bj1; bj2; : : : ; bjd), and bTj x =
dP
i=1

bjixi,

@fw

@aj
= �(

dX
i=1

bjixi + tj)

@fw

@bji
= aj�

0(

dX
i=1

bjixi + tj)
xi

@fw

@tj
= aj�

0(

dX
i=1

bjixi + tj)
:

To obtain the bound D, �rst note that

d�(z)

dz
= 
�(z)[1� �(z)] � 
=4

since the right hand side is maximized at �(z) = 1=2.
Then we have

@fw

@aj
� 1

@fw

@bji
�WC
2=4

@fw

@tj
�W
2=4:

Thus, the bound on the derivative D required in The-

orems 3.1 and 3.2 is given by

D = max(1; CW
2=4;W
2=4):

In addition, the bound E in Theorem 3.1 is given by

lA, since �(z) � 1 for all z.

5 Conclusions

We presented a method for the identi�cation of a

parametrized time-invariant non-linear plant using

a smooth model, where plant parameters and in-

puts/outputs can be measured with noise. An initial

plant model is obtained by utilizing the domain-speci�c

knowledge in terms of fundamental plant equations,

which in general only partially capture the plant dy-

namics. Once the initial model is �xed, measurements

are collected on the plant parameters and output. We

showed that the iid measurements can be fused with

the initial plant model by recomputing the parame-

ters. We established the asymptotic convergence of our

computational procedure, and derived its �nite sample

results of the PAC learning kind. Our method is based

on the empirical versions of the closed-form solutions

derived in nuclear engineering literature for an ideal

version of the problem based on the sensitivity analysis

of the identi�er. The computation is of low-order poly-

nomial complexity, and involves matrix multiplication

and inversion. We also provided the details about an

identi�er based on a sigmoid feedforward neural net-

work.

We assume that various distributions are stationary.

If they are time-varying [1], then observations must

be time-windowed to implement the proposed method.

The time-window must be carefully chosen to provide

the suitable convergence properties. These aspects are

of future interest.
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