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Multiframe combination and
blur deconvolution of video data

Timothy F. Gee*, Thomas P. Karnowski, Kenneth W. Tobin

Image Science and Machine Vision Group†, Oak Ridge National Laboratory, Oak Ridge, TN 37831

ABSTRACT

In this paper we present a technique that may be applied to surveillance video data to obtain a higher-qualit
from a sequence of lower-quality images. The increase in quality is derived through a deconvolution of optic
and/or an increase in spatial sampling. To process sequences of real forensic video data, three main s
required: frame and region selection, displacement estimation, and original image estimation. A user-ide
region-of-interest (ROI) is compared to other frames in the sequence. The areas that are suitable matches
tified and used for displacement estimation. The calculated displacement vector images describe the transfo
of the desired high-quality image to the observed low quality images. The final stage is based on the Pro

Onto Convex Sets (POCS) super-resolution approach of Patti, Sezan, and Tekalp.1 This stage performs a deconvo
lution using the observed image sequence, displacement vectors, and ana priori known blur model. A description
of the algorithmic steps are provided, and an example input sequence with corresponding output image is g

Keywords: Blur Deconvolution, De-interlacing, Super-resolution, Motion Estimation

1. INTRODUCTION

Restoration of video data is important for a number of applications, including surveillance video proce
motion picture restoration, advancements to video capture electronics, upsampling for higher-resolution tel
monitors, and the removal of video compression artifacts. In this paper, we discuss software developed
Ridge National Laboratory (ORNL) which can be used in the processing of surveillance video. This type of
ration software can aid law enforcement personnel when they attempt to identify a person in a criminal inv
tion.

In this application, the analyst performing the restoration may or may not be an expert in image processin
person may restore one video a year or several in a day. The analyst is available to assist the processing,
mation is advantageous. Since the restoration occurs well after the incident, real-time processing is gener
necessary. Therefore, an iterative process is acceptable. In the approach taken here, multiple video frames
to obtain one high-quality still image. This might be applied successively to restore the entire sequence, but
ally that is not the goal in forensic restoration, and the computational cost would be large with current de
computing hardware.

The main causes of degradation to surveillance video are the same as for general video and to some exten
raphy. They are motion and optical blur, noise, and low resolution. In surveillance video these problems ca
particularly great concern. Motion blurring is often present due to fast movements of a suspect. Optical bl
problem since surveillance cameras are often expected to monitor a large area with a long depth-of-field. N
aggravated by low-cost cameras and excessive reuse of videocassettes. Lastly, resolution is limited by th

* Correspondence: Email: geetf@ornl.gov; WWW: http://www-ismv.ic.ornl.gov/~gee/; Telephone: 865 574 0338; Fax
574 6663
† Prepared by OAK RIDGE NATIONAL LABORATORY, Oak Ridge, Tennessee, 37831-6285, managed by LOCKHE
MARTIN ENERGY RESEARCH CORP. for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR224
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number of pixel cells, and in surveillance imagery, a small increase in resolution might make the difference in
ing key visible features in a crime scene.

Solving for the final high-quality image follows the POCS architecture outlined by Patti, Sezan, and Tekalp.1 The
POCS method enables a variety of constraints to be placed on the high-quality image estimate. Initially an im
created by interpolation to the higher resolution. Then the image estimate is iteratively projected toward th
straint sets. One such constraint is clipping the intensity amplitude so that it falls within an acceptable rang
as 0 to 255. However, the most important constraint is that the image estimate must be able to create the o
images given a model of the video system. This requires creating an accurate model of the video system. In
lowing section we will introduce the video system model. In sections 3-5, we will discuss parts of the model.
parts are frame and region selection, displacement estimation, and blur modelling. Section 6 briefly discus
POCS approach used to project errors back to the original image. An example is provided in section 7, and
conclusions are offered.

2. VIDEO MODEL

In Figure 1 we have a generic video model. It consists ofK channels, where each channelk is a different image.

The original images are represented by . The original image is convolved with blur , n

is added, and then the image is sampled on a 2-dimensional grid to obtain the observed image

. This model ignores correlation between successive images. To achieve a benefit from multifram

cessing, it is necessary to relate the images. This is generally done with a motion transform. In Figure 2, we
sent the sequence with one image andK motion transforms. These motion transforms must be very precise in o

to make this type of processing possible. We have experimented with a dense optical flow method2 as well as a

parametric affine-displacement matching algorithm3. The optical flow method has the advantage of allowing sp
tially-variant motion data; however, the affine-displacement matching algorithm has better performance wh
moving object fits the affine motion model.

Figure 1: Generic video model

fk x y,( ) hk x y,( )

wk x y,( )

gk m n,( )

h1(x,y) Samplingf1(x,y) g1(m,n)
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h2(x,y) Samplingf2(x,y) g2(m,n)

w2(x,y)

hK(x,y) SamplingfK(x,y) gK(m,n)

wK(x,y)
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In equation form, the model of Figure 1 becomes

where is a two-dimensional convolution operator,m and n are the indices for the discrete two-dimension

sequence , andTx andTy are thex andy sensor spacings. The model of Figure 2 is represented in the

lowing equation

where and are the displacement vectors for each pixel. Note that the displacements ar

tracted. This is a backward-mapping approach, which is a convenient approach for getting values at integ

locations.2

Although not represented in the above video models, the input video is often obtained from an interlaced
Since the odd and even fields are captured at different time instances, it is necessary to separate the field
additional processing. Some de-interlacing technique might be applied to fill the missing lines in each field
restore the original aspect ratio. This also aids the motion estimation algorithms in properly aligning the fr

Once de-interlacing has been performed, the fields are used in the model as separate frames.1 If motion blur is to be
modeled, care should be taken to make sure that the time-ordering of the fields is correct.

3. FRAME AND REGION SELECTION

A forensic analyst must choose a video sequence for multiframe processing. Within that sequence, the
selects the reference frame that will be used for processing. In that reference frame, the analyst selects a rec
region-of-interest (ROI) that contains some features that might be helpful to an investigation. Such areas m
a face or a clothing insignia (e.g. cap or T-shirt text). It is important to reduce the problem to the ROI becau
algorithms require significant processing time. Including image content surrounding the ROI would only be
ficial if it contains edges or other features that might aid displacement estimation.

Figure 2: Video model using motion compensation

h1(x,y) Sampling g1(m,n)

w1(x,y)

h2(x,y) Samplingf(x,y) g2(m,n)
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An automated region matching can be used to choose frames that wi
useful for constructing a high-quality still image. This region matchin
involves performing an autocorrelation in the neighborhood of the R
on the preceding and following frames. The neighborhood used for
search is a rectangular region slightly larger than the ROI. The RO
scanned along the search neighborhood, performing an autocorrelati
each position. When the best match for the ROI is found in the adjac
frame, the procedure is continued to the next adjacent frame. As
search continues, the search rectangle is adjusted to correspond t
neighborhood of the most recently found ROI. The process continu
working outward from the reference frame, one search going backw
in time, and the other search going forward in time. The result of this p
cessing is a ROI for each frame in the sequence. Next, the autocorrela
values can be used to judge which frames are most suitable for m
frame processing. Those with values lower than a predefined thres

are rejected on the assumption that when the autocorrelation is low, an occlusion occurred or there was a sig
change in the object’s orientation relative to the camera. This region selection can be extended to more e
matching techniques such as image warping using affine motion parameters or per-pixel motion data. How
the frame selection method is made more complicated by motion estimation, one starts to defeat part of the
of frame selection, which is to reduce unnecessary processing. Figure 3 shows the interface used to select t
and rectangular ROI.

4. DISPLACEMENT ESTIMATION

The performance of multiframe processing is very dependent on the accuracy of the displacement estimati
ally we would like to obtain an independent, or nearly independent, motion vector for each pixel. This ty
information would account for subtle spatial variations in the movement of faces or clothing. However, allow
motion vector for each pixel makes it difficult to obtain very accurate motion data.

In optical flow approaches such as Horn and Schunck4, the motion estimation is dependent on pixels in a sm
area. Also, the calculation involves gradients which can have problems with noise. To overcome this pr

some of our work uses a type of affine motion block-matching similar to that of Fuh and Maragos.3 Fuh and Mara-
gos perform block matching to search for the optimum parameters: scale, rotation angle,x displacement, andy dis-
placement.

We modified the algorithm by using a hierarchical multi-resolution approach. A pyramid of successively low
filtered images are created from the input images. The block-matching to achieve parameter estimation b
the highest pyramid level (lowest resolution) and successively works down the pyramid. The parameter
space for each lower-level image is limited to the neighborhood of the selected parameters from the next
level. On the lowest level, two searches are conducted, one with integer displacements, and another with s
displacements obtained through interpolation. Hierarchical processing is common in block-matching type
rithms, and it is used to reduce the amount of processing required to find a match. However, since every di
ment is not tested at the highest resolution, there is the possibility of not finding the best displacement param

It is important to note that there are two types of displacement estimation that must be addressed. Those are
erence frame displacement and the sequential frame displacement. These two are related, and this relation
be used to reduce processing. The reference frame displacements are the motion transforms shown in F
These displacement vectors describe how to warp the reference frame into the position of the observed fram
sequential frame displacements describe the warpings between frames that are adjacent in time. These ar
to describe motion between frames, allowing us to model the motion blur.

Figure 3: Defining of ROI
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5. BLUR MODELING

There are two components to the blur modeling. Those are the motion blur and the optical blur. Each blur i
eled with a point-spread function, and the total blur is the convolution of the two. The motion blur is modele
line response by assuming that the motion between frames for each pixel is at a constant velocity and in a
line. The optical blur is assumed to be a uniform-intensity disk.

As mentioned above, the motion blur relies on the sequential frame displacements for its description. At eac
the length of the motion blur is obtained by

where is the aperture’s open time, and are the sequential displacement vectors for thex andy

dimensions, andT is the time between frames or fields. The end result is a blur length that is in units of pixel s
ings and is proportional to the displacement vector at the corresponding pixel. The direction of the blur is id
to the displacement vector.

Once the length of the blur is obtained, we use a model introduced by Tull and Katsaggelos5 and shown in Figure
4. The blur length is rounded to the nearest integer, and the blur is uniformly distributed among points of uni
ing. These are shown as dark dots in Figure 4. Each of those points are distributed among its four surro
neighboring pixels. The weighting assigned to each of the four pixels is inversely proportional to the distanc
center from the point of the blur response.

Optical blur models are discussed by Lee.6 He explains how geometric optics models optical blur as a circular d
of uniform intensity. According to geometric optics, light rays travel in straight lines unless refracted by a ch
in medium. In a camera, a lens or combination of lenses is used to converge the light from an observed ob
point inside the camera. If the object is properly focused, the convergent point is on the camera’s sensor plan
erwise, a spreading occurs on the sensors because the light rays have not yet converged, or have already c
The shape of this spreading on the sensor array is the point-spread function (PSF) for the observed object
ally a camera has an aperture that is formed by several metal blades arranged in a circle, so the convergin
light are shaped into a circle of uniform intensity. This is shown in Figure 5. In this model, we are assuming th

light source is on the optical axis of the lens, and we are neglecting diffraction and spherical aberration.7 The uni-
form-intensity disk is a crude approximation, and Lee shows how real optics can deviate from that model.
ever, the disk is a commonly used approximation because it is easy to compute.

Figure 4: Motion blur model used by Tull and Katsaggelos
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The only difficulty in using the disk model is in determining how to approximate it using rectangular pixels.
disk covers a grid of rectangular sensor cells as shown in Figure 6. The edge pixels are partially covered
response, so they will receive a coefficient proportional to the area of the circle occurring in that cell. Here w
assuming that each sensor cell is a perfect rectangle, and there is no space between adjacent sensor cells
assume that the value of a pixel is the result of a uniformly weighted integration of the light impinging on tha
ticular sensor cell. To avoid the complication of integrating the area bounded by the curved line in the bord
els, those pixels are divided by a sub-grid of rectangles. The resolution depends on the desired accurac
circular shape. The rectangles are turned “on” or “off” depending on whether their center falls within the bou
of the circle. Those pixels that are fully covered by the blur circle have all of their sub-rectangles turned “on”
response for each pixel in the PSF is defined as

so that the total blur response is equal to one.

6. POCS ITERATIONS

The method of frame combination is the POCS method used by Patti, Sezan, and Tekalp.1 Their main group of con-

vex sets is shown here using slightly different notation for a brief review. The convex sets are defin

Figure 5: Converging light rays as predicted by geometric optics and several approximations

Figure 6: Circular blur approximation

pixel response =
number of sub-rectangles “on” in pixel

number of sub-rectangles “on” in total blur response
(4)

Ck m n,( )
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wheremr andnr are the indices of the estimate for which is at the reference time, is the resi

for any image being used as the estimate, and is the allowed error, which is due to mod

errors and noise. The residual is defined as

where is the response observed at in framek for the source pixel at in the esti-

mate image. A projection is defined which is applied to the image estimate once for each output pixel. Each
tion causes the residual to decrease for the corresponding output pixel, although it may cause an increas
residual at another pixel. The projections are applied iteratively until the average error decreases or a ma
number of iterations have been performed.

7. EXAMPLES

The algorithms were applied to three images chosen from a video sequence. The images were digitized at
frame size, and then down-sampled by 2 in each dimension to reduce the resolution. Part of the reference
shown in Figure 7. Here it is very difficult or impossible to read the word “Kansas” on the sweatshirt.

Figure 8 contains the three extracted ROIs. The middle frame was chosen to be the reference frame, and
was user-defined. The ROIs in the other frames were software-selected. Per-pixel optical flow information w

culated for the low-resolution images,2 and the motion images were up-sampled and used to describe the wa
from the reference frame to the observation frames. Multiple iterations of the POCS algorithm were applied
duce an image up-sampled by a factor of two in thex andy dimensions. The reconstructed image is the right ima
in Figure 9, while the left image has the same upsampling factor achieved by bilinear interpolating the ref
image. A dramatic increase in quality is obtained, and the word “Kansas” is much more readable. It sho
noted that this increase of resolution requires that aliasing is present in the image sequence. The digital dow
pling increased the amount of aliasing present in the original images. For the resolution increase to be be

Figure 7: Part of reference frame from image sequence

Ck m n,( ) y mr nr,( ): rk
y( )
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with frames extracted directly from a camera, there must be aliasing caused by the spacing of the sensor ce
can occur and is evidenced by the aliasing effect that may be observed when small patterns on textiles are

8. CONCLUSIONS

We discussed how POCS could be used with modeling and automation software to aid surveillance video
tion. We introduced a method for automated region and frame selection, a hierarchical region matching ap
and a method for approximating the circular response of optical blur. An example was given to demonstr
effectiveness of using dense optical flow information with POCS reconstruction to increase resolution when
ing is present. We are currently testing our software for the use of video degraded by motion and optical blu
inclusion of blur models should prove helpful in these cases and increase the variety of image sequences
be restored by this software.
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Figure 8: Extracted regions before processing

Figure 9: Bilinear interpolation of reference frame (left) and multiframe reconstructed image (right)
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