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ABSTRACT

In this paper we present a technique that may be applied to surveillance video data to obtain a higher-quality image
from a sequence of lower-quality images. The increase in quality is derived through a deconvolution of optical blur
and/or an increase in spatial sampling. To process sequences of real forensic video data, three main steps are
required: frame and region selection, displacement estimation, and original image estimation. A user-identified
region-of-interest (ROI) is compared to other frames in the sequence. The areas that are suitable matches are iden-
tified and used for displacement estimation. The calculated displacement vector images describe the transformation
of the desired high-quality image to the observed low quality images. The final stage is based on the Projection

Onto Convex Sets (POCS) super-resolution approach of Patti, Sezan, and*l'éh'fﬂmtage performs a deconvo-
lution using the observed image sequence, displacement vectors, argtian known blur model. A description
of the algorithmic steps are provided, and an example input sequence with corresponding output image is given.
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1. INTRODUCTION

Restoration of video data is important for a number of applications, including surveillance video processing,
motion picture restoration, advancements to video capture electronics, upsampling for higher-resolution television
monitors, and the removal of video compression artifacts. In this paper, we discuss software developed at Oak
Ridge National Laboratory (ORNL) which can be used in the processing of surveillance video. This type of resto-
ration software can aid law enforcement personnel when they attempt to identify a person in a criminal investiga-
tion.

In this application, the analyst performing the restoration may or may not be an expert in image processing. That
person may restore one video a year or several in a day. The analyst is available to assist the processing, but auto-
mation is advantageous. Since the restoration occurs well after the incident, real-time processing is generally not
necessary. Therefore, an iterative process is acceptable. In the approach taken here, multiple video frames are use
to obtain one high-quality still image. This might be applied successively to restore the entire sequence, but gener-
ally that is not the goal in forensic restoration, and the computational cost would be large with current desktop
computing hardware.

The main causes of degradation to surveillance video are the same as for general video and to some extent photog-
raphy. They are motion and optical blur, noise, and low resolution. In surveillance video these problems can be a
particularly great concern. Motion blurring is often present due to fast movements of a suspect. Optical blur is a
problem since surveillance cameras are often expected to monitor a large area with a long depth-of-field. Noise is
aggravated by low-cost cameras and excessive reuse of videocassettes. Lastly, resolution is limited by the finite
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number of pixel cells, and in surveillance imagery, a small increase in resolution might make the difference in gain-
ing key visible features in a crime scene.

Solving for the final high-quality image follows the POCS architecture outlined by Patti, Sezan, and Tekelp.

POCS method enables a variety of constraints to be placed on the high-quality image estimate. Initially an image is
created by interpolation to the higher resolution. Then the image estimate is iteratively projected toward the con-
straint sets. One such constraint is clipping the intensity amplitude so that it falls within an acceptable range, such
as 0 to 255. However, the most important constraint is that the image estimate must be able to create the observed
images given a model of the video system. This requires creating an accurate model of the video system. In the fol-
lowing section we will introduce the video system model. In sections 3-5, we will discuss parts of the model. Those
parts are frame and region selection, displacement estimation, and blur modelling. Section 6 briefly discusses the
POCS approach used to project errors back to the original image. An example is provided in section 7, and finally
conclusions are offered.

2. VIDEO MODEL
In Figure 1 we have a generic video model. It consist& @hannels, where each chanket a different image.
The original images are represented fyX, y) . The original image is convolved withhb(i; y) , hoise

W, (X, y) is added, and then the image is sampled on a 2-dimensional grid to obtain the observed image frame

g,(m, n). This model ignores correlation between successive images. To achieve a benefit from multiframe pro-

cessing, it is necessary to relate the images. This is generally done with a motion transform. In Figure 2, we repre-
sent the sequence with one image &nehotion transforms. These motion transforms must be very precise in order

to make this type of processing possible. We have experimented with a dense optical floweetiveel| as a

parametric affine-displacement matching algori?hffhe optical flow method has the advantage of allowing spa-
tially-variant motion data; however, the affine-displacement matching algorithm has better performance when the
moving object fits the affine motion model.
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Figure 1: Generic video model
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Figure 2: Video model using motion compensation

In equation form, the model of Figure 1 becomes

gk(m’ n) = [fk(x’ y) D hk(x’ Y) + Wk(X! y)] |X (1)

=mT.y = nTy
where[] is a two-dimensional convolution operatorand n are the indices for the discrete two-dimensional

sequence, (M, n) , andl, andTy are thex andy sensor spacings. The model of Figure 2 is represented in the fol-
lowing equation

ge(m 1) = [F(x=u(x y), y =(x V) B h(x V]| _ 2)

mT,y =nT,

whereu, (X, y) andv,(x,y) are the displacement vectors for each pixel. Note that the displacements are sub-
tracted. This is a backward-mapping approach, which is a convenient approach for getting values at integer pixel
locations?

Although not represented in the above video models, the input video is often obtained from an interlaced source.
Since the odd and even fields are captured at different time instances, it is necessary to separate the fields before
additional processing. Some de-interlacing technique might be applied to fill the missing lines in each field and to
restore the original aspect ratio. This also aids the motion estimation algorithms in properly aligning the frames.

Once de-interlacing has been performed, the fields are used in the model as separatélframt’esn bluris to be
modeled, care should be taken to make sure that the time-ordering of the fields is correct.

3. FRAME AND REGION SELECTION

A forensic analyst must choose a video sequence for multiframe processing. Within that sequence, the analyst
selects the reference frame that will be used for processing. In that reference frame, the analyst selects a rectangular
region-of-interest (ROI) that contains some features that might be helpful to an investigation. Such areas might be
a face or a clothing insignia (e.g. cap or T-shirt text). It is important to reduce the problem to the ROI because the
algorithms require significant processing time. Including image content surrounding the ROI would only be bene-
ficial if it contains edges or other features that might aid displacement estimation.



. p— —=  An automated region matching can be used to choose frames that will be
useful for constructing a high-quality still image. This region matching
involves performing an autocorrelation in the neighborhood of the ROI

on the preceding and following frames. The neighborhood used for the
search is a rectangular region slightly larger than the ROI. The ROI is
scanned along the search neighborhood, performing an autocorrelation at
each position. When the best match for the ROI is found in the adjacent
frame, the procedure is continued to the next adjacent frame. As the
search continues, the search rectangle is adjusted to correspond to the
neighborhood of the most recently found ROI. The process continues,
working outward from the reference frame, one search going backward

in time, and the other search going forward in time. The result of this pro-
cessing is a ROI for each frame in the sequence. Next, the autocorrelation
values can be used to judge which frames are most suitable for multi-
frame processing. Those with values lower than a predefined threshold
are rejected on the assumption that when the autocorrelation is low, an occlusion occurred or there was a significant
change in the object’s orientation relative to the camera. This region selection can be extended to more elaborate
matching techniques such as image warping using affine motion parameters or per-pixel motion data. However, as
the frame selection method is made more complicated by motion estimation, one starts to defeat part of the purpose
of frame selection, which is to reduce unnecessary processing. Figure 3 shows the interface used to select the frame
and rectangular ROI.
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Figure 3: Defining of ROI

4. DISPLACEMENT ESTIMATION

The performance of multiframe processing is very dependent on the accuracy of the displacement estimation. Ide-
ally we would like to obtain an independent, or nearly independent, motion vector for each pixel. This type of
information would account for subtle spatial variations in the movement of faces or clothing. However, allowing a
motion vector for each pixel makes it difficult to obtain very accurate motion data.

In optical flow approaches such as Horn and Schintle motion estimation is dependent on pixels in a small
area. Also, the calculation involves gradients which can have problems with noise. To overcome this problem,

some of our work uses a type of affine motion block-matching similar to that of Fuh and Mar&gbsand Mara-
gos perform block matching to search for the optimum parameters: scale, rotationkasigfdacement, angdis-
placement.

We modified the algorithm by using a hierarchical multi-resolution approach. A pyramid of successively lowpass-

filtered images are created from the input images. The block-matching to achieve parameter estimation begins at
the highest pyramid level (lowest resolution) and successively works down the pyramid. The parameter search
space for each lower-level image is limited to the neighborhood of the selected parameters from the next higher
level. On the lowest level, two searches are conducted, one with integer displacements, and another with sub-pixel
displacements obtained through interpolation. Hierarchical processing is common in block-matching type algo-

rithms, and it is used to reduce the amount of processing required to find a match. However, since every displace-
ment is not tested at the highest resolution, there is the possibility of not finding the best displacement parameters.

It is important to note that there are two types of displacement estimation that must be addressed. Those are the ref-
erence frame displacement and the sequential frame displacement. These two are related, and this relationship may
be used to reduce processing. The reference frame displacements are the motion transforms shown in Figure 2.
These displacement vectors describe how to warp the reference frame into the position of the observed frames. The
sequential frame displacements describe the warpings between frames that are adjacent in time. These are neede
to describe motion between frames, allowing us to model the motion blur.



5. BLUR MODELING

There are two components to the blur modeling. Those are the motion blur and the optical blur. Each blur is mod-
eled with a point-spread function, and the total blur is the convolution of the two. The motion blur is modeled as a
line response by assuming that the motion between frames for each pixel is at a constant velocity and in a straight
line. The optical blur is assumed to be a uniform-intensity disk.

As mentioned above, the motion blur relies on the sequential frame displacements for its description. At each pixel
the length of the motion blur is obtained by

2 2
(X y) = - Emk(x’ ? A )

wherea is the aperture’s open timg(X, y)  afdX, y) are the sequential displacement vectorxfandye

dimensions, and is the time between frames or fields. The end result is a blur length that is in units of pixel spac-
ings and is proportional to the displacement vector at the corresponding pixel. The direction of the blur is identical
to the displacement vector.

Once the length of the blur is obtained, we use a model introduced by Tull and Katségguicmown in Figure

4. The blur length is rounded to the nearest integer, and the blur is uniformly distributed among points of unit spac-
ing. These are shown as dark dots in Figure 4. Each of those points are distributed among its four surrounding
neighboring pixels. The weighting assigned to each of the four pixels is inversely proportional to the distance of its

center from the point of the blur response.

Figure 4: Motion blur model used by Tull and Katsaggelos

Optical blur models are discussed by %ide explains how geometric optics models optical blur as a circular disk

of uniform intensity. According to geometric optics, light rays travel in straight lines unless refracted by a change

in medium. In a camera, a lens or combination of lenses is used to converge the light from an observed object to a
point inside the camera. If the object is properly focused, the convergent point is on the camera’s sensor plane. Oth-
erwise, a spreading occurs on the sensors because the light rays have not yet converged, or have already convergec
The shape of this spreading on the sensor array is the point-spread function (PSF) for the observed object. Gener-
ally a camera has an aperture that is formed by several metal blades arranged in a circle, so the converging rays of
light are shaped into a circle of uniform intensity. This is shown in Figure 5. In this model, we are assuming that the

light source is on the optical axis of the lens, and we are neglecting diffraction and spherical abé Faomi-
form-intensity disk is a crude approximation, and Lee shows how real optics can deviate from that model. How-
ever, the disk is a commonly used approximation because it is easy to compute.



Figure 5: Converging light rays as predicted by geometric optics and several approximations

The only difficulty in using the disk model is in determining how to approximate it using rectangular pixels. The
disk covers a grid of rectangular sensor cells as shown in Figure 6. The edge pixels are partially covered by the
response, so they will receive a coefficient proportional to the area of the circle occurring in that cell. Here we are
assuming that each sensor cell is a perfect rectangle, and there is no space between adjacent sensor cells. Also, w
assume that the value of a pixel is the result of a uniformly weighted integration of the light impinging on that par-
ticular sensor cell. To avoid the complication of integrating the area bounded by the curved line in the border pix-
els, those pixels are divided by a sub-grid of rectangles. The resolution depends on the desired accuracy of the
circular shape. The rectangles are turned “on” or “off” depending on whether their center falls within the boundary
of the circle. Those pixels that are fully covered by the blur circle have all of their sub-rectangles turned “on”. The
response for each pixel in the PSF is defined as

pixel response = number of sub-rectangles “on” in pixel (@)

number of sub-rectangles “on” in total blur response

so that the total blur response is equal to one.
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Figure 6: Circular blur approximation

6. POCS ITERATIONS

The method of frame combination is the POCS method used by Patti, Sezan, and'TEkeipmain group of con-
vex sets is shown here using slightly different notation for a brief review. The conve&€ggts n) are defined as



Ce(m, 1) = {y(m, n):([rP(m ) <3(m n)} ®)

wherem, andn, are the indices of the estimate fi{x, y)  which is at the reference Mé&(,m, n) is the residual

for any imagey(m, n,) being used as the estimate, &pdm, n) is the allowed error, which is due to modeling
errors and noise. The residual is defined as

()

I’k (my n) = gk(m’ n) - z {y(rn'y nr) 0 hk(mr1 nr;m1 n)} (6)
(me, ny)
whereh, (m,, n,.;m, n) is the response observedat, n) in franfier the source pixel afm,, n,) in the esti-

mate image. A projection is defined which is applied to the image estimate once for each output pixel. Each projec-
tion causes the residual to decrease for the corresponding output pixel, although it may cause an increase of the

residual at another pixel. The projections are applied iteratively until the average error decreases or a maximum
number of iterations have been performed.

7. EXAMPLES

The algorithms were applied to three images chosen from a video sequence. The images were digitized at quarter-
frame size, and then down-sampled by 2 in each dimension to reduce the resolution. Part of the reference frame is
shown in Figure 7. Here it is very difficult or impossible to read the word “Kansas” on the sweatshirt.

Figure 7: Part of reference frame from image sequence

Figure 8 contains the three extracted ROIs. The middle frame was chosen to be the reference frame, and its ROI
was user-defined. The ROIs in the other frames were software-selected. Per-pixel optical flow information was cal-

culated for the low-resolution imagésind the motion images were up-sampled and used to describe the warping
from the reference frame to the observation frames. Multiple iterations of the POCS algorithm were applied to pro-
duce an image up-sampled by a factor of two inxtt@aady dimensions. The reconstructed image is the right image

in Figure 9, while the left image has the same upsampling factor achieved by bilinear interpolating the reference
image. A dramatic increase in quality is obtained, and the word “Kansas” is much more readable. It should be
noted that this increase of resolution requires that aliasing is present in the image sequence. The digital down-sam-
pling increased the amount of aliasing present in the original images. For the resolution increase to be beneficial



with frames extracted directly from a camera, there must be aliasing caused by the spacing of the sensor cells. This
can occur and is evidenced by the aliasing effect that may be observed when small patterns on textiles are imaged.

Figure 8: Extracted regions before processing

Figure 9: Bilinear interpolation of reference frame (left) and multiframe reconstructed image (right)

8. CONCLUSIONS

We discussed how POCS could be used with modeling and automation software to aid surveillance video restora-
tion. We introduced a method for automated region and frame selection, a hierarchical region matching approach,
and a method for approximating the circular response of optical blur. An example was given to demonstrate the
effectiveness of using dense optical flow information with POCS reconstruction to increase resolution when alias-
ing is present. We are currently testing our software for the use of video degraded by motion and optical blur. The
inclusion of blur models should prove helpful in these cases and increase the variety of image sequences that can
be restored by this software.
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