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ABSTRACT 
Flow driven by pumping without valves is examined, 

motivated by biomedical applications such as 
cardiopulmonary resuscitation (CPR) and the human fetus 
before the development of the heart valves. The direction 
of flow inside a loop of tubing that consists of (almost) 
rigid and flexible parts is investigated when the boundary 
of one end of the flexible segment is forced periodically in 
time. Despite the absence of valves, net flow around the 
loop may appear in these simulations. The amplitude and 
even the direction of this flow depend on the driving 
frequency of the periodic forcing.  

 
INTRODUCTION 

Pumping blood in one direction is the main function 
of the heart, and the heart is equipped with valves that 
ensure unidirectional flow. Is it possible, though, to pump 
blood without valves? This paper is intended to show by 
numerical simulation the possibility of a net flow which is 
generated by a valveless mechanism in a circulatory 
system. Simulations of valveless pumping are motivated 
by the physical experiments of Kilner [3]. He observed net 
flow in one direction is dependent upon the location of 
periodic forcing in his model, which is a loop of tubing of 
which part is almost rigid and the other part flexible. In 
agreement with Kilner, we find by numerical simulations 
that net flow can indeed be driven around such a loop by 
periodic forcing at one location, but we also find 
something new:  the direction of the flow depends on the 
driving frequency of the periodic forcing.  
      One of the applications of valveless pumping may be 
cardiopulmonary resuscitation (CPR). The blood flow 
during CPR has been explained by two conventional 
theories: thoracic pump  and cardiac compression 
mechanisms. In the thoracic pump model, it has been 
reported that the heart is “a passive conduit for blood 
flow” during chest compression, with an open mitral valve 
throughout the cardiac cycle and anterograde (forward) 
transmitral blood flow even during chest compression [1]. 
However, in the theory of the cardiac pump model, the 
heart acts as a pump and its valves function normally [2]. 
Our computational model of valveless pumping may 
provide assistance in understanding the thoracic pump 

mechanism. Another biological example of valveless 
pumping may occur in the human embryo at the end of the 
third week of gestation. At this stage of development, the 
valves of the heart have not yet formed. Nevertheless, 
there is a net flow in the circulatory system that is 
somehow generated by the beating of the heart. An 
industrial application of valveless pumping is in 
microelectromechanical system (MEMS) devices [4], 
where there is a need to produce fluid motion without 
moving anything inside the fluid. MEMS devices could be 
built that incorporate flexible flow channels. In that case, 
our findings might be applicable to the design of valveless 
pumps for MEMS devices. 
 
1.Immersed Boundary Method 
1.1.Mathematical formulations. The immersed boundary 
method is applicable to problems involving an elastic 
structure interacting with a viscous incompressible fluid. It 
has been applied to a variety of problems, including 3-D 
simulations of blood flow in the heart [6,7], the design of 
prosthetic cardiac valves, platelet aggregation during 
blood clotting, wave propagation in the cochlea, the flow 
of suspensions, and aquatic animal locomotion. The 
philosophy of the immersed boundary method is that the 
elastic material is treated as a part of the fluid in which 
singular forces are applied. The fluid and the elastic 
immersed boundary constitute a coupled mechanical 
system: the motion of the fluid is influenced by the force 
generated by the immersed boundary on the fluid, but at 
the same time the immersed boundary moves at the local 
fluid velocity. The strength of this method is that it can 
handle the complicated and time dependent geometry of 
the elastic immersed boundary that interacts with the fluid, 
and that it does so while using a fixed regular lattice for 
the fluid computation. 
 Consider a viscous incompressible fluid which fills a 
periodic rectangular box Ω and an immersed boundary S, 
which is contained in the box. We shall now consider the 
mathematical formulation of the equations of motion for 
the fluid-immersed boundary system.  The equations of 
motion are as follows: 
 
 



 
ρ(∂u(x,t)/∂t  + (u(x,t) · ∇)u(x,t)) + ∇p(x,t) 

              = µ∇²u(x,t) + F(x,t)   (1) 
∇ ·  u(x,t) = 0       (2) 
F(x,t) = ƒS  f(s,t) δ²(x – X(s,t)) ds      (3) 
U(s,t) = ƒΩ  u(x,t) δ²(x – X(s,t)) dx       (4) 
∂X(s,t)/∂t = U(s,t)      (5) 
f(s,t) = -κ1(X(s,t) – Z(s,t)) + κ2(∂²X(s,t)/ ∂s²)                 (6) 
 
Equations 1 and 2 are the fluid (Navier-Stokes) equations, 
in Eulerian form. The fluid velocity u(x,t), the fluid 
pressure p(x,t), and the singular force density F(x,t) are 
unknown functions of (x,t), where x = (x,y) are fixed 
Cartesian coordinates and t is the time. Equations 3 and 4 
are the interaction equations in mixed Eulerian and 
Lagrangian form. The core of the immersed boundary 
method is the delta function, which describes the 
interaction between the fluid and the immersed boundary.  
Equations 4 and 5 are, in effect, the no-slip condition, 
since they state that the immersed boundary moves at the 
local fluid velocity. Equations 5 and 6 are the immersed 
boundary equations in Lagrangian form. The 
configuration of the immersed boundary is described by 
the unknown function X(s,t), and Z(s,t) is the target 
position of the immersed boundary, which provides a 
restoring force that keeps the boundary points near their 
target positions, where 0< s < L and L is the unstressed 
length of the immersed boundary. The force density f(s,t) 
and the velocity on the immersed boundary U(s,t) are also 
unknown functions of (s,t).  A fixed value of the 
Lagrangian parameter s marks a material point of the 
immersed boundary. κ1 and κ2 are stiffness constants. 
1.2. Numerical method. We present the summary of the 
immersed boundary method to find a numerical solution 
to the system of Equations 1-6. We impose periodic 
conditions on the computational rectangular domain. Our 
goal is to compute the update un+1, Xn+1 from given un,  
Xn. This is done in the following steps: 
 Step 1: Find the force fn on the immersed boundary 
from the given boundary configuration Xn.  
 Step 2: Spread the boundary force into the nearby 
lattice points of the fluid using the delta function. 
 Step 3: Solve the Navier-Stokes equations on the 
rectangular lattice to get the update un+1 and pn+1 from un 
and Fn. These equations are solved by the implicit first 
order scheme in time and space. The upwind scheme for 
the convection terms and the backward Euler differencing 
for the Stokes system are chosen. Because of the periodic 
boundary conditions of the computational domain, it is 
natural to use the Fast Fourier Transform (FFT) algorithm 
to solve equations for the unknowns un+1 and pn+1.  
 Step 4: Once the updated fluid velocity, un+1 has been 
determined, we can find the velocity Un+1 and then the new 
position, Xn+1 of the immersed boundary points. 
 This completes the description of the process (Steps 
1-4, above) by which the quantities u and X are updated. 
 
2. Two-Dimensional Model of Valveless Pumping 

2.1.Initial position. Consider an incompressible viscous 
fluid with a constant density ρ and viscosity µ in a 
periodic rectangular box, which contains an immersed 
elastic boundary. Figure 1 shows the initial configuration 
of the immersed boundary in the form of a racetrack of  2-D 
valveless pumping in our numerical experiments. In this 
paper, we assume that the motions are driven by periodic 
vertical oscillations of the left 1/3 of the flexible tube 
boundary.    
 

 
Figure 1. Initial position: flexible boundary (thin lines),  
almost  rigid (thick lines), and fluid markers (dots). 

 
2.2. Target positions and parameters. Recall that the 
equation for the force on the immersed boundary 
(Equation 6) involves target positions Z(s,t). For most of 
the flow loop, these are independent of time and serve the 
purpose of maintaining the racetrack shape of the flow 
loop. Time dependent target positions are used in the left 
1/3 of the flexible segment of the flow loop (as shown in 
Figure 2) in order to provide periodic forcing to the flow. 
Figure 2 displays the target positions at eight equally 
spaced times over one cycle.  
 

 
Figure 2. Target positions during one cycle. 

 
 In this work, we use CGS units. Tables 1 and 2 display 
the physical and computational parameters, respectively.  





is that valveless pumping has a strong dependence on the 
frequency of the driving oscillation.  Indeed, there appear 
to be resonances at rather specific frequencies, which are 
most effective in driving the flow in one direction or the 
other. At the lower amplitude, the net flow is almost 
always counterclockwise, so these peaks are in the 
negative direction. As we shift to the higher amplitude, the 
negative peaks seem to be preserved, but now positive 
peaks emerge as well.  Another indication of the dynamic 
character of valveless pumping is that it seems to 
disappear at the extremes of frequency, the net flow 
approaches zero. In any case, strong valveless pumping 
happens at specific frequencies that are neither too large 
nor too small. The maximum net flow are generated at 
periods, T =  0.325 s (clockwise flow), and T = 0.21 s  
(counterclockwise flow) in the amplitude of the driving 
oscillation, A0 =0.6 cm.    
 

 
Figure 4.  Time-averaged flux vs. Period (1/Frequency). 

 
4. Conclusions 
 We have presented numerical experiments of 
“valveless pumping” in the two-dimensional case using 
the Immersed Boundary Method. As in the earlier papers 
and physical experiments of valveless pumping, we have 
also observed the existence of a net flow. Furthermore, we 
have presented the new, unexpected results that the 
direction of the flow around the loop of tubing is decided 
not only by the position of the driving oscillations, but 
also by the frequency and the amplitude of the driving 
oscillations. Since cardiopulmonary resuscitation (CPR) 
may involve valveless pumping, it is of obvious 
importance to know what frequency and amplitude of 
chest compression will produce the most effective CPR. Of 
course we cannot hope to answer this question 
quantitatively with such an idealized model, but perhaps 
we have shown qualitatively what phenomena may be 
expected as the frequency and amplitude of the driving 
oscillation are varied. 
 The immersed boundary methodology used here may 
also be applicable to other biological instances of 
valveless pumping, such as the blood circulation within 
the human embryo at the end of the third week of 

gestation, and to engineering applications such as the 
design of microelectromechanical system (MEMS). 
 We are confident that numerical experiments such as 
those begun in this paper will help answer many questions 
about the mechanism of valveless pumping. Even though 
these results demonstrate success in modeling valveless 
pumping, there is still much future work remains to be 
done. One avenue of research is giving a theoretical 
explanation for this mysterious phenomenon, and another 
is extending this model to the three-dimensional case in 
order to make it more realistic and more applicable real-
world biomedical problems (e.g., CPR). 
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