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Abstract. Single-particle resonances in deformed nuclei are considered using the
coupled-channel Schrodinger equation method with the outgoing boundary conditions.
Two variants of this method are investigated: the non-adiabatic one (based on the
weak-coupling scheme) and the adiabatic one (based on the strong coupling). The R-
matrix theory and the Gamow state approach are discussed and compared with each
other. It is shown that the widths of very narrow proton resonances can be calculated
by combining the harmonic oscillator expansion method with the R-matrix approach.

I INTRODUCTION

The Gamow (resonant) state approach is among the best time-independent meth-
ods for discretizing the single-particle continuum. The Schrodinger equation for
deformed proton emitters leads to an eigenvalue problem with coupled-channel dif-
ferential equations. Solving these equations accurately and reliably requires special
care. Calculating the parameters of the resonances can be carried out directly
by employing the pure outgoing wave boundary condition of a Gamow state or
indirectly by using the R-matrix theory of Wigner and Eisenbud.

In order to avoid the cumbersome numerical solution of the coupled-channels
eigenvalue problem, the simple harmonic oscillator expansion method, which leads
to a matrix eigenvalue problem, can be applied to get the energy of a Gamow
state. We show that the combination of the R-matrix theory and the harmonic
oscillator expansion method is able to reproduce the widths of very narrow proton
resonances.

In Sec. II the coupled-channel equations with and without Coriolis coupling are
given. In Sec. III we discuss the different boundary conditions leading to the R-
matrix and Gamow formalism. The exact R-matrix calculations are discussed in



Sec. IV. Finally, Sec. V shows an example of the application of the harmonic
oscillator expansion method to the proton decay of *'Eu.

I COUPLED EQUATIONS FOR PROTON EMISSION

We describe the scattering of an inert, spin one-half projectile by a nucleus. The
Hamiltonian is

H = Ho(€) + T+ 3_VA(r)(Qa(§) - Ya(#)), (1)

where Hy(£) is the internal Hamiltonian of the target, ¢ denotes the internal co-
ordinates of the target. and T is the kinetic energy of the relative motion. The
target-projectile relative coordinate is 7. The projectile is considered to be inert
so it is not necessary to specify its Hamiltonian in Eq. (1). The third term in Eq.
(1) is the target-projectile interaction. It is given by an appropriately chosen inner
product of tensor operators.

A Non-adiabatic method: weak coupling

In the non-adiabatic method, the wave function of the parent nucleus (i.e., par-
ticle emitter) can be written in the weak-coupling form:

(7 Zulﬂ (I)I]l (7. ¢) (2)

I]l

where the channel function is

7 (7€) = D (GmIu|d M)Vjtm (P, ms)or u(€). (3)
In Eq. (3)
1
Vitm (F,ms) = Y {migms|jm) Yo, (F) X, (4)

with .. being the spin function of the projectile (in our case: emitted nucleon).
The states 7 ,(€) are eigenstates of the target (i.e., daughter nucleus) Hamiltonian

Ho(§):
Ho(§)vr,.(8) = eroru(§). (5)

The radial functions u{jl(r) are the solutions of the coupled differential equations
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where the coupling matrix element is defined by
V}]jz r "l'(/\) = (47)_1/2(_1)J V2-Ititi'+ 3 Z)JJ I
u—;flum<ramumtvunveJ». (7)

The coupling matrix (7) is derived under the assumption of the rigid rotational
motion of the daughter nucleus. The detailed form of the form factors and the
derivation of (7) can be found in Ref. [1].

B Adiabatic approximation: strong coupling

In the adiabatic approximation, one assumes the complete degeneracy of the
rotational states in the daughter nucleus: ¢; = ¢y = 0. Using a Racah identity, one
can prove

ZI(—l)J+I{+j+1/2<j[/(J - [/X’|[O>V1Lf]j171/j/l/(/\) —

VI (N (— )P — K1), 5)
where
i1 /2R 1 .y
Vi) = (=) AT G — —I/\0><JB.7 — K|)0). (9)
By introducing the functions
g (r) =2 Z 1)/HEHH2 (GKT — K|T0)uy,(r), (10)

the set (6) reduces to the following coupled equations:

P d* 114 1) IK TK () _
o (g - ) - Bt + 5 V) V) ot =0, ()

r A

Since the coupling potential in (11) is independent of .J, from now on this index is
dropped from g‘”‘( ) in the adiabatic method.

One can easﬂy show that Eq. (11) describes the scattering of the projectile by a
deformed potential. The adiabatic single-particle wave function

\IIB Zgﬂ y]llx T, ms) (12)

is equivalent to a deformed Nilsson orbit. The fact that the eigenstates of (11) do
not depend on J implies that in the adiabatic limit the rotational band built upon
the Nilsson orbital (12) is degenerate (i.e., its moment of inertia is infinite).



IIT R-MATRIX AND GAMOW THEORY

By specifying the boundary conditions, the coupled differential equations (6) and
(11) correspond to an eigenvalue problem. It is always assumed that the solutions
are regular at the origin, i.e., u{ﬂ(()) = g]I‘l(O) = 0. In the following, we shall use
the shorthand notation wu.(r) either for uf;(r) or for gfj(r), and I, will denote the
single-nucleon orbital angular momentum in the channel c.

The R-matrix theory, developed by Wigner, Eisenbud [2], and later by Lane and
Thomas [3], is intended to give the parameterization of the scattering S-matrix on
the real energy axis and subsequently the parameterization of the scattering cross
section. The R-matrix boundary condition is

AN (13)

where the boundary condition parameters, B., are arbitrary real numbers. It is
assumed that the short-range interaction between the projectile and target can be
neglected beyond the (large) channel radius a. The boundary condition (13) defines
a discrete complete set of functions u)(r) corresponding to the real eigenvalues
E,. They are normalized to one inside the channel surface, 3", [ |u.(r)|*dr = 1.
Written in terms of the real reduced width amplitudes,

2 N 1/2
e () " "

2m.a

the R-matrix can be written as

YAV Ae
R.. = . 15
S E)\ o E ( )

(In Eq. (14), m. is the reduced mass.) The R-matrix is related to the scattering
S-matrix in a complicated way [3]. It can be demonstrated that if all the eigenstates
are taken into account in Eq. (15), then the calculated S-matrix does not depend
on the boundary condition parameters or on the exact choice of the channel radius.

The Gamow (or Siegert) states of Eqs. (6) and (11) are defined by the following
boundary condition

o) _ k0L (ko
uc(a) O (kea)

(16)

where Oy, is the outgoing wave (e.g., Coulomb function for protons). A solution

with complex wave number k. = {/2m.(FE — ¢.)/h leads to a Gamow state with

complex energy K, —il', /2. At that energy the scattering S-matrix has a pole [4]
in the complex energy plane. Lane and Thomas in Ref. [3] call that pole of the
S-matrix a “radioactive state”. The real-energy states defined by the R-matrix
theory of Wigner and Eisenbud should not be confused with the Gamow states.



The advantage of the Gamow state is that the particle-decay half-life can be
readily obtained from the width I'., 77, = hIn2/I'.. Since the R-matrix theory
gives the scattering S-matrix only on the real energy axis, further considerations
are needed to determine the parameters of a resonance if the R-matrix boundary
condition is selected for the solution of the coupled equations. Assuming that in a
given energy region only one term A = Ag dominates in Eq. (15), Thomas showed
[5] how to obtain the Gamow resonance energy F, and its width I', within the
R-matrix theory. Specifically, if the R-matrix boundary condition parameters are
set so that

B. = 5.(E)), (17)

the complex-energy pole of the S-matrix, £, satisfies the equation

E\, —E+ (£ = E\)A\(E,) — %ZT,\O(E,\O) =0, (18)
where
S(F) = Y PUE), (19)
and
AN(EY) = =3 SL(EM. (20)

The functions P (F) and S; (F) are referred to as the penetration and shift func-
tions, respectively. (They are expressed by the Coulomb F;, and (G;, functions, see,
e.g.. Ref. [3].) The dot in Egs. (18) and (20) denotes the derivative with respect to
energy. Assuming that (20) is negligible, one obtains £, = F) and the resonance
width is given by the frequently quoted expression I', = I'\(F)).

IV EXACT R-MATRIX CALCULATIONS

The phrase “exact R-matrix calculation” means that the coupled differential
equations are solved numerically. The solution with the R-matrix boundary condi-
tion is generated by a modified version of the code CCGAMOW [6] which is based
on the piecewise perturbation technique.

Since we are interested in describing decaying systems. our main objective is to
calculate the position and width of Gamow states. Hence the result of the R-matrix
calculation will be compared with the calculation using the Gamow state boundary
condition; the latter will be referred to as the exact one. The Gamow states are
generated by the code CCGAMOW using extended precision. All calculations
based on the R-matrix theory are done in double precision. It is not necessary to
use extended precision in R-matrix theory but it is unavoidable to apply extended
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FIGURE 1. Energy and half-life of the spherical 1hy,,2 proton orbit in 147Tm calculated in the
R-matrix theory as a function of the boundary condition parameter B, for different values for the

channel radius.

precision in Gamow state calculations if the width of the resonance is very small
(T, < 107 MeV).

Consider first a narrow spherical proton emitter, e.g., the 1Ay, orbit of ""Tm
discussed in Ref. [8]. The R-matrix calculations have been performed for three
different values of the channel radius. Figure 1 shows the calculated eigenvalue and
the half-life as functions of the boundary condition parameter. The eigenvalue is
quite stable if the channel radius is large and it is very close to the exact position of
the resonance (1.70562 MeV). The calculated width however varies greatly. In this
form, the R-matrix theory is unable to give a reliable prediction for the resonance’s

half-life.

Fortunately, the “natural boundary condition” assumption of Eq. (17) turns out
to work well. In the iterative R-matrix technique, first we take a boundary condition
parameter, calculate the eigenvalue F\, and check whether the condition (17) is
satisfied or not. If this condition is violated, the boundary condition parameter is
modified and the whole procedure is repeated until the correct solution is found.
The result of this type of calculation is shown in Fig. 2. Here the half-life is shown
as a function of the channel radius. At each channel radius, the optimal boundary
condition is determined and then the half-life is calculated. The exact result is
reproduced extremely well. Note the difference of the scales on Fig. 1 and Fig. 2.
The small deviation between the Gamow and R-matrix results is probably related
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FIGURE 2. Half-life of the spherical 1hy;/5 orbit in 147Tm calculated in the R-matrix theory

as a function of the channel radius using the “natural boundary condition”.

to the fact that only the one-channel R-matrix expression is used. The iterative
R-matrix technique, “the natural boundary condition” method, can be applied also
in the case of a deformed mean field. In the many-channel case the accuracy of the
iterative R-matrix approach is similar to the one-channel calculation.

V OSCILLATOR EXPANSION

The eigenfunctions of an axially deformed average nuclear field, the Nilsson or-
bits, can be expanded in a complete set of functions. In this way one can avoid
the numerical solution of the eigenvalue problem of coupled differential equations.
The wave function (12) may be approximated [7] by

VR () & Y C(K.npns.my)ng, n., K.m), (21)

NpNz,Ms

where |n,,n,, K, m) is the eigenfunction of the axially deformed harmonic oscil-
lator in the cylindrical basis. The coefficients C(K.n,,n,, ms) are determined by
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FIGURE 3. The energies of the three lowest spherical proton h;;,5 orbitals of 47Tm in the
spherical Woods-Saxon model as a function of the size of harmonic oscillator basis Ngs.. The

length parameter of the spherical basis is 2 fm.

matrix diagonalization using the code SWBETA [7]. After the the eigenvalue prob-
lem of the Hamiltonian matrix has been solved, the wave function (21) can be
transformed into a similar form as in Eq. (12) with

g (r) = 3 A(K. n,j. ) Rul(r), (22)

where R,;(r) is the radial function of the spherical harmonic oscillator. (We carried
out the transformation from cylindrical variables p, 2, ¥ to polar variables r, ©, ¢
because it is easier to formulate the R-matrix theory in these variables.)

It was recognized long ago that by using the harmonic oscillator expansion (or any
expansion in a square integrable basis) not only can the bound states be determined,
but also the positions of narrow resonances. If M basis functions are used in the
expansion, then M eigenvalues are obtained from the matrix diagonalization. When
the size of the basis is increased, the eigenvalues of all the positive energy solutions
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FIGURE 4. Half-life of the spherical 1hy;/2 orbit of 147Tm as a function of the channel radius
calculated in the R-matrix theory based on the harmonic oscillator expansion. Three different

basis sizes are used in the calculation.

tend toward zero. The sign of a resonance is that specific positive energy solutions
are relatively stable with respect to increasing the size of the basis. This is shown in
Fig. 3 for the three lowest spherical %4/, proton orbits of M7Tm. The lowest ha1/2
state obtained from the diagonalization is a good approximation to the resonance;
its energy is very stable with respect to the size of the oscillator basis used, at
least in the range of N, considered . (In the calculations we take all the deformed
oscillator states with principal quantum number N<N,..) The higher-lying states
cannot be represented by the expansion procedure; they correspond to the high-
energy hii/p continuum.

Thus the position of the resonance can be found, but how can its width be deter-
mined? Several proposals exist in the literature. They are dubbed “L? stabilization
methods” (since only square integrable functions are used in the expansion). Here
we combine the oscillator expansion method and the R-matrix formalism.

In the R-matrix theory, the coupled equations are solved with the boundary
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FIGURE 5. Half-life of the K™ = 3/2% deformed Nilsson resonance resonance in '*'Eu cal-
culated in the R-matrix theory based on the harmonic oscillator expansion as a function of the

channel radius. Two different basis sizes are used in the calculation.

conditions given in advance. This cannot be achieved in the framework presented
here, but the procedure can be reversed: Starting from the approximate solution

(22), the corresponding boundary condition parameter can be derived at each r,
and then the machinery of the R-matrix theory can be applied. It is to be noted,
however, that although the boundary condition is independent of the wave function
normalization, the reduced width amplitude depends critically on it. Thus, at each
r the approximate solution (22) must be normalized to one inside the channel

surface.
Figure 4 shows the half-life of the lowest spherical %1/, orbit of “TTm as a
function of the channel radius using three different basis sizes. A perfect stabiliza-

tion of the result is obtained at large N,s.. The quality of the oscillator-expansion
method is similar to that of the R-matrix result discussed in Fig. 2. The deformed

nucleus " Eu with deformation $,=0.32 is considered in Fig. 5. The Nilsson orbit
is characterized by the quantum numbers K™ = 5/2%. The calculations use the



Becchetti-Greenlees potential parameters, with the depth of the potential adjusted
to the position of the resonance at 0.950 MeV. The calculations are carried out
using Nye.=20 and 40 oscillator quanta. Again, at large N the result is very
stable. In summary. the results presented in Figs. 4 and 5 show that the harmonic
oscillator expansion can be successfully used for the determination of widths of very
narrow resonances if the size of the basis is large enough.
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