Proton emission from Gamow resonance
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Abstract. We developed two computer codes: CCGAMOW and NONADI for cal-
culating the complex energy eigenvalues and eigenfunctions of deformed Gamow res-
onances with high accuracy by using the piecewise perturbation method. The code
CCGAMOW calculates resonant Nilsson orbitals using the adiabatic approximation in
which the energies of the ground and excited rotational states of the daughter nucleus
are degenerate. In the code NONADI this approximation is lifted and the rotational
degree of freedom of the core and the Coriolis coupling in the parent nucleus are taken
into account. The difference between adiabatic and non-adiabatic approaches is found
to be non-negligible for the proton emission from the ground state of '*'Ho.

I INTRODUCTION

Nuclear states decaying predominantly by proton emission are often described
by using single-particle (s.p.) proton states with complex energy eigenvalues, i.e.
by Gamow resonances. Gamow states were introduced by Gamow [1] in order to
describe a-decay. Since they describe a time-dependent process within a stationary
picture, Gamow states are not wave functions in the normal quantum mechanical
sense. They have complex energy eigenvalues which correspond to poles of the S-
matrix extended to complex energy, £ and wave number, k. Nevertheless, they are
extremely useful mathematical tools to describe narrow resonances or long-lived
quasistationary states [2].

In this paper we use Gamow states to describe proton emission. We shall focus
attention on the mathematical and numerical approaches needed for calculating
narrow Gamow resonances in spherically symmetric and axially deformed nuclei.



We compare the adiabatic and non-adiabatic approaches to proton emission from
the deformed ' Ho nucleus and demonstrate the importance of the non-adiabatic
description.

II DEFINITION OF GAMOW STATES

Let us first consider the simplest case in which the proton moves in a spherically
symmetric, finite potential v(r), which is a sum of the central nuclear potential,
vy, the nuclear spin-orbit term, v,,, and the Coulomb potential, v¢:

v(r) = v(r) = on(r) 4+ vs(r) + ve(r). (1)

The Gamow state, t,,, is the eigenvector of the single-particle Hamiltonian h =
i+ v(r), where the kinetic energy operator is i = —%A (p is the reduced mass):

The eigenfunction v, is characterized by the angular momentum quantum numbers
(l7 j: m):

ul,j(r: k)

r

Yy = ¢l,j=m(r: k) = [}/l(f)xl/z]j,m' (3)
Let us abbreviate [ and j as a single subscript ¢« = {[, 7} and introduce the complex
wave number, k (k% = ;—55) We can write the radial equation as

I(1+1)

2

ul(r k) = + V(r) — k*| ui(r, k), (4)

r

where V(r) = ;—é‘v(r) is the potential in units of k?. The Gamow solution should

be regular at the origin,

and asymptotically, where only v¢ is present, it should join to an outgoing Coulomb
wave, O; = G+ F). Therefore, at r = r,; (where r,; is the asymptotic radius, which
is much larger than the range of the average potential) the logarithmic derivative
of the solution should be

D(TGS: k) = u;(ra& k)/ui(ra& k) = 02(777 kraS)/Ol(nz kraS): (6)
where n = thkﬂ is the Sommerfeld parameter. The solutions defined by Eqs. (4-6)
are either bound states, &, = E; < 0, with negative real energies and imaginary
wave numbers k, = iy, (., > 0), or Gamow states, &, = F, — zg with a nonzero
imaginary part I' # 0, and &, = k,, — 19,.




The asymptotic behavior of these solutions is determined by k,; at a very large
distance the outgoing solution (for = 0) is proportional to e*»". The resonance
is called a decaying Gamow resonance if I' > 0 or a capturing resonance if I' < 0.
For a real potential v, the pair of resonances lies symmetrically with respect to the
imaginary k-axis; hence decaying Gamow states have ky = k,, — 17, and capturing
ones have k. = —k,, — 17,, with k, > 0 and v, > 0. The radial wave function of
the capturing Gamow state is the complex conjugate of that of the decaying one.
u.(r) = uqg(r)*. Both u. and wuy oscillate with increasing amplitude as a function of
r.

Berggren proposed a new completeness relation, which includes Gamow states [3],
by generalizing the scalar product. He introduced a bilinear basis set and a regu-
larization procedure (Reg). With this generalization, the norm is

(uclug) = Reg/ ui(rydr =1 . (7)
0
A convenient method for regularization is to rotate r to the first quadrant of the
complex r-plane beyond a certain distance r,,,,. This is often referred to as the
exterior complex scaling method.
The total width of the Gamow resonance with complex energy &; is given by

I = —%zm(gd). (8)

The half-life of the state is T/, = h1In2/I" .

IIT NUMERICAL CALCULATION OF SPHERICAL
GAMOW STATES

For realistic potentials, the radial equation has to be solved by means of numerical
integration. In Ref. [4] the code GAMOW was introduced, which uses the Fox-
Goodwin method for solving the radial equation. A more powerful method, the
piecewise perturbation, is used for the same purpose in Ref. [5] (code ANTI). The
main features are similar in the two codes. The total r domain of Eq. (4) consists

of a real r domain, [0,7,,:]. and a complex ray I3 = [rpaz, ras], Where ryg is
complex. The real domain is further divided into two intervals, I1 = [0, r,:,] and
Iy = [Pmin, T"maz). For some approximate value of k,. one finds the “left” solution

of Eq. (4), u*(r, k), that satisfies the boundary condition at the origin, and it is
calculated by integrating numerically from r = 0 to r,,. The “right” solution of
Eq. (4), uf(r,k,), satisfies the asymptotic boundary condition at r = r,,; the
numerical integration proceeds on I3 inward from the point r,s to the real axis
at 7,42, and then continues along the real r-axis in region [, until reaching the
matching point, r,,. The complex eigenvalue, k,,, can be found by finding the zero
of the transcendental function



(I)(k):DL(TM:k)_DR(rm:k):O: (9)
where the logarithmic derivatives of uy and ug at the matching distance are

(10)
The root finding can be done by means of the Newton-Raphson technique. Note
that in order to get the contribution of the asymptotic region to the norm in Eq.
(7)., r must be complex in region [5. The corresponding rotation angle (which for
large values of r,; coincides with arg(r)) should satisfy the condition

m —arg(k) > arg(r) > —arg(k) (11)

so that the magnitude of the solution converges to zero as r,s — oc along the
complex ray. The contribution to the norm beyond r,; is neglected, and at r,s we
use the asymptotic series of the outgoing Coulomb function O; (and its derivatives)

B . m T+l +g)in—1+5—1)
Oi(n, p) = exp [@ (p—nln?p—l§ —I-Jl)] {1 +§1£{1 i2ip) }

(12)

with p = kr,s. We use the convergence acceleration procedures of Wynn [6] and
Levin [7] to speed the convergence of the summation.

For the known proton emitters, the width I' is so small that extremely high
numerical accuracy is required for ;. The width can also be calculated from the
outgoing probability current [9]

I(r) = iﬁu&*(r: kn)ug(r, kn) — uly(r, k) ul(r, k)
2p Iy |ua(z, ky)|2dz

(13)

which, by construction, does not depend on r. If we use extended precision arith-
metic, the width calculated using Eq. (13) is indeed r-independent, and it agrees
well with the value obtained from Eq. (8). Another way to estimate the width is
to use the R-matrix expression of Thomas [10],

Rk,  Re(ugla, kn))?

I'= ;
o [O(Re(n), nras)*

(14)

where we approximate the (real) R-matrix resonant wave function with the real
part of the normalized Gamow resonance. This approximation works fairly well
for the narrow Gamow resonances corresponding to the known proton emitters
[11]. For large values of r,s, expression (14) is generally within 5% of the values

calculated from Egs. (8) and (13).



IV. GAMOW STATES IN THE DEFORMED
POTENTIAL

A Adiabatic approach

The generalization of the s.p. Hamiltonian to an axially symmetric, deformed
potential, v(r)=v(r, ), leads to a system of n coupled, differential equations. In the
intrinsic frame of reference, defined by the principal axis of the deformed average
potential, the proton moves in an orbit with good quantum numbers 7 (parity) and
Q (projection of the total s.p. angular momentum j onto the symmetry axis). The
s.p. wave function can be expanded in spherical partial waves

lmaz:jmas ' .
P k)= S (k)

Ly

Yi(#)x1/2);6 - (15)

r

in which the radial wave functions are the solutions of a set of coupled differential
equations

wi(r k) =3

Z’l

2

T P R

Here 1 = 1,2,....n runs over all partial waves which can be coupled to the given
Q and 7, and V, ;. (r) = ([7Q|V(r)|l'j'Q) are the matrix elements of the deformed
potential. The system of coupled equations can be written in matrix form as

(k) = (f% V() - k-?l) u(r, k), (17)

where the underlined quantities denote n xn matrices. In Eq. (17) V. is the potential
matrix, L is the diagonal matrix ;(/; + 1)d;;. 1 is the identity matrix, and

u(r, k) = [uy(r, k), us(r, k), ..., un(r, k)7 (18)

is an n dimensional column vector. This eigenvalue problem is solved with bound-
ary conditions given by Egs. (5) and (6). First, the radial wave functions are
regular at the origin, u;(0, k)=0. At large values of r (r>r,;), all the off-diagonal
coupling terms vanish and (17) reduces to a decoupled set of n differential equa-
tions. Therefore, an adiabatic Gamow state should satisfy Eq. (6) in every channel
(¢ =1,....n) with the same value of k.

The problem of determining complex eigenvalues and eigenfunctions can be re-
duced to a set of initial value problems for the system of coupled equations (17).
As in the spherically symmetric case, one calculates “left” and “right” solutions
which are then matched at r,,.

For solving the initial value problems with high accuracy. a package of subroutines
based on the piecewise perturbation methods are used (see Ch.3 of Ref. [12] and



Ref. [5]). This package is aimed at solving initial value problems for systems of
ordinary differential equations of the form

u'(r k) = (TL:Q + S(r) + P(r) — kQE) u(r.k), a<r<hb, (19)

r

along a straight-line segment s = [a,b] in the complex plane. The matrices S(r)
and P(r) are symmetric and their elements are complex functions of (complex)
r. Furthermore, it is assumed that each matrix element is well approximated by a
polynomial of second degree inside any reasonably large subinterval of the segment.

The package consists of two sets of subroutines. One set is designed for the
vicinity of the origin r € [0, 7,.;,] = I1, where the centrifugal term has the largest
importance. It produces the regular solution inside the [i-interval by a pertur-
bative technique in which the centrifugal term is taken as the reference potential
and the sum of the other three terms is taken as a perturbation. The other set of
routines is designed for the remaining part of the r-domain, i.e., for /5 and /5. Here
the integration is performed on a lattice of non-equidistant mesh-points which is
determined by the variation of the potential and the accuracy required. On each
subinterval, matrix elements of the sum of the three potentials are first approxi-
mated by their average values. The deviations from the second degree polynomial
are considered to be perturbations which are then taken up to the second order. In
both regions, the respective packages produce the vector u and its derivatives. A
detailed description of this package will be given elsewhere [13].

The code which calculates the Gamow states in a deformed potential using the
adiabatic approximation is called CCGAMOW. Besides the energy eigenvalue and
the normalized wave function, it computes the partial widths using the current
expression [9],

R (r, ke )us(r ) — (ke )ud(r, k)
Li(r) =1— T ,
T I T ke

where the sum of the partial widths,

(20)

I'(r)= zn: L'i(r), (21)

gives the total decay width as a function of r. A serious check of our calculation
is that for large r-values the condition Zm(€) = —1/2 I'(r) is satisfied if we use
extended precision arithmetic. (In principle, I'(r) should be independent of r at
any r.) The partial widths of Eq. (20) are in reasonably good agreement with
those calculated by using the Thomas formula of Eq. (14) at large values of r,s.
(This R-matrix expression was used recently in Refs. [14,15] dealing with deformed
proton emitters.)

In our calculations, we assume that the spin-orbit term vy, is spherical; i.e., it
does not contribute to the off-diagonal couplings of Eq. (17). As discussed by



Nilsson [17], the impact of the deformed component of the spin-orbit term, dvs,, on
the Nilsson orbitals is weak. In addition, there is some arbitrariness in defining the
average spin-orbit interaction, and the influence of dv,, on the final result is well
below this uncertainty.

B Non-adiabatic approach

The deformed Gamow state can be associated with a deformed, resonant Nilsson
orbital in a finite potential. Since it describes the s.p. motion in the intrinsic
frame, it breaks angular momentum conservation. In order to restore rotational
invariance, one can adopt the strategy of the particle-plus-rotor model and couple
the intrinsic, deformed state to the deformed core. This is the strong-coupling
scheme of Ref. [16].

Another strategy, adopted in this work, is the weak-coupling approach in which
the wave function of the parent nucleus is obtained by coupling the spherical single-
proton wave functions to the deformed states of the daughter nucleus. In this
scheme the intrinsic wave function is not introduced, and the parent state pre-
serves the total angular momentum .J, its projection M. and the parity m. The
Hamiltonian of the deformed core-plus-particle system can be written in the labo-
ratory frame as

H = Ho(&) + 1+ > va(r)(@x(&) - YA(F)), (22)

where ]flo(f) is the internal Hamiltonian of the core (daughter nucleus), with in-
ternal coordinates £. The eigenstates vy ,(¢) of ]:]0(5) are that of the symmetric
top, and the corresponding eigenvalues, €;, can be either taken from experiment
or modeled according to the rotational expression ¢;=xI(I + 1). In Eq. (22) 1 is
the kinetic energy of the particle and the third term is a multipole expansion of
the core-particle interaction. (A similar Hamiltonian was introduced in Ref. [18] to
describe alpha emission from deformed nuclei.)
The parent wave function,

M (€)= 3 “”jf” oM (7€), (23)

1jl
is composed of the radial function and the channel function,

O (7, &) = Y (im I T M) Vit (7, m )1, (€), (24)

m.u

in which Y (7. ms) is the spin-angular part of the single-proton wave function.
The radial functions, ufﬂ(r), are the solutions of the coupled, differential equations



B[ &2 (+1
l_ﬂ (W B r? )) s E] ugﬂ(r) - MZ];;/ U/\(r) V{il-l’j’l’(/\) ug’j/l/(r) =0,

(25)

where the matrix element V}]jJTI,J-,l,(/\) corresponds to the rotational coupling (for
details, see Refs. [19-21]) and the channels are characterized by quantum num-
bers ¢ = {Ijl}. In order to solve the system of coupled equations (25), the pro-
gram CCGAMOW had to be extended. Since the resulting coupled-channel code,
NONADI. does not employ the adiabatic approximation, the k£ values in the differ-
ent 17l channels,

2
k% = h_/;(E - 6[)7 (26)
Ze*u
K2k
¢r. Consequently, the boundary condition at large distance, Eq. (6), has to be
modified as:

and the Sommerfeld parameter, n; = , both depend on the excitation energy

Di(ras, k1) = ui(ras)[wi(ras) = O1(nr, krras) /Oi(nr, kiras).- (27)

The eigenvector of Eq. (25), with proper boundary conditions, represents the
Gamow states in the laboratory system of reference. The normalization of the
solution is done exactly in the same way as in CCGAMOW. The method of solution
also follows the adiabatic case, but the degeneracy in [ is lifted. For more details,

see Refs. [22,23].

V RESULTS

We have analyzed proton emission from deformed nuclei using both adiabatic
(CCGAMOW) and non-adiabatic (NONADI) approaches. Results of the analysis
are presented elsewhere [22.23]. Here we only present an illustration that illumi-
nates the differences between the adiabatic and non-adiabatic methods. For our
example, we consider proton emission from the ground state of *'Ho, which accord-
ing to the adiabatic calculations of Refs. [14,15,24,25] is the 7/27[523] deformed
Nilsson orbit. The parameters of the s.p. potential are those of Chepurnov [26] save
the strength, V5, which has been fixed by the ()-value of the proton decay to ensure
the correct barrier penetrability. We assume that the proton emission feeds the
members of the ground state rotational band in '*°Dy having a constant moment
of inertia. The excitation energy of the 2% state is unknown: hence, it has been
taken as e = 0.16 MeV based on systematics. As one can see in Table 1, the parent
wave function is dominated by the A;;,, spherical proton component. On the other
hand, the partial width to the 0% ground state, Iy, is primarily determined by the
f7/2 component in the wave function. Though the total summed weights, |¢;]*, of



TABLE 1. Weights |cp;|? of the main configurations
in the ground state J™ = 7/2~ wave function in '*'Ho
(#2=0.27, 34=—0.06) calculated in non-adiabatic and adi-
abatic approaches. The results of the adiabatic calcula-
tions are shown in the third and fourth columns where the
7/27 [523] deformed Nilsson (resonant) orbit is calculated
both by CCGAMOW and by NONADI (with ¢; = 0).

NONADI NONADI CCGAMOW
channel €0 = 0.16 MeV e =0.0

Il len;|? len; |? leij |?
25 11/2 0.028 0.074
4511/2 0.289 0.462
6511/2 0.377 0.260
8511/2 0.115 0.020

AT 0.809 0.816 0.817
03 7/2 0.011 0.027
23 7/2 0.046 0.063
43 7/2 0.046 0.017
63 7/2 0.018 0.001

S e 0.121 0.108 0.108

the different partial waves in the parent wave function are influenced very little
by the removal of the degeneracy of the daughter states, their distribution among
the members of the rotational band, |cy;|*, are changed considerably due to Cori-
olis coupling. The removal of the degeneracy reduces the ground-state component
in the wave function (0.011) by a factor of 2.5 with respect to the adiabatic case
(0.027). This in turn reduces TY4 = 2.6 x 1072° MeV to one-third of the adiabatic
value of T'3 = 8.3 x 1072° MeV. In the adiabatic approach, the total width was
approximated by T4 = T+ T2 = 8.6 x 1072° MeV. (I'4 was estimated by repeating
the adiabatic calculation at the modified ()-value corresponding to the transition to
2% state. This gives ['4 = 2.3 x 1072! MeV.) The total width of V4 = 2.8 x 10720
MeV turned out to be only one-third of the adiabatic value. This example shows
that the effect of the Coriolis coupling might be important in certain cases and, in
general, cannot be neglected.
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