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ABSTRACT 

While considerable progress has been made in recent years toward the development of multi-robot teams, much work 
remains to be done before these teams are used widely in real-world applications. Two particular needs toward this 
end are the development of mechanisms that enable robot teams to generate cooperative behaviors on their own, 
and the development of techniques that allow these teams to autonomously adapt their behavior over time as the 
environment or the robot team changes. This paper proposes the use of the Cooperative Multi-Robot Observation 
of Multiple Moving Targets (CMOMMT) application as a rich domain for studying the issues of multi-robot learning 
and adaptation. After discussing the need for learning and adaptation in multi-robot teams, this paper describes 
the CMOMMT application and its relevance to multi-robot learning. We discuss the results of the previously- 
developed, hand-generated algorithm for CMOMMT and the potential for learning that was discovered from the 
hand-generated approach. We then describe the early work that has been done (by us and others) to generate multi- 
robot learning techniques for the CMOMMT application, as well as our ongoing research to develop approaches that 
give performance as good, or better, than the hand-generated approach. The ultimate goal of this research is to 
develop techniques for multi-robot learning and adaptation in the CMOMMT application domain that will generalize 
to cooperative robot applications in other domains, thus making the practical use of multi-robot teams in a wide 
variety of real-world applications much closer to reality. 
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1. INTRODUCTION 

Research in multi-robot cooperation has grown significantly in recent years. While the growth of this topic area is 
due in part to a pure scientific interest in teams of autonomous robots, much of the growth is due to the increasing 
realization by the user community that teams of robots may provide solutions to difficult problems that previously 
were untenable. Certainly, it has been shown (e.g., in1 and elsewhere) that multi-robot teams can increase the 
reliability, flexibility, robustness, and efficiency of automated solutions by taking advantage of the redundancy and 
parallelism of multiple team members. 

However, before multi-robot teams will ever become widely used in practice, we believe that advances must be 
made in two important areas: (1) the development of automated mechanisms that enable the cooperative robots 
to be initially programmed much more easily than is currently possible, and (2) the development of automated 
techniques that enable robot team members to automatically adapt their actions over time in response to changes in 
their environment or in the robot team itself. With the current state of the art, the implementation of cooperative 
behaviors on physical robot teams requires expert behavior programming and experimentation, followed by extensive 
tuning and revision of the cooperative control algorithms. It is unlikely that a significant real-world impact of 
cooperative robot teams will occur as long as the current level of effort is required to implement these systems. 

Researchers have recognized that an approach with more potential for the development of cooperative control 
mechanisms is autonomous learning. Hence, much current work is ongoing in the field of multi-agent learning 
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(e.g.,2). The types of applications that are typically studied vary considerably in their characteristics. Some of the 
applications include air fleet control,3 predator/prey,4-6 and multi-robot soccer.7’8 Of these previous application 
domains, however, only the multi-robot soccer domain addresses the real-world complexities of embodied robotics, 
such as noisy and inaccurate sensors and effecters in a dynamic environment that is poorly modeled. 

In this paper, we propose the use of a second, new application domain for embodied multi-robot learning and 
adaptation - the Cooperative Multi-robot Observation of Multiple Moving Targets (CMOMMT) application. Like 
the multi-robot soccer domain, the CMOMMT application has a number of characteristics that make it suitable for 
study as a real-world application of multi-agent systems. 

2. THE NEED FOR LEARNING AND ADAPTATION IN MULTI-ROBOT 
COOPERATION 

The generally-accepted motivations9 for incorporating learning and adaptation into autonomous robots are to ease 
the difficulty of the initial robot programming and to enable the robots to change their performance over time as 
the world changes. Although the distinction between learning and adaptation is not precise, multi-robot learning is 
usually distinguished from multi-robot adaptation by the degree to which new behaviors and processes are generated. 
Typically, in multi-robot learning, new behaviors or behavior sequences are generated or functions are learned, thus 
giving the robot team radically new capabilities. Frequently, the learning takes place in an initial phase, where 
performance during learning is not of importance. In multi-robot adaptation, the robot team exercises a control 
policy that gives reasonable results for the initial situation, and which the team is able to gradually change during 
the application to improve performance over time. The emphasis in multi-robot adaptation is the ability to change 
its control policy on-line while the team is performing its mission, in response to changes in the environment or the 
robot team. 

An important goal in the development of autonomous robot systems is enabling robots to perform their tasks 
over a long period of time without human supervision. So-called “lifelong” robot systems must be capable of dealing 
with dynamic changes that will inevitably occur over time, such as changes in the environment or incremental 
variations in their own performance capabilities. Environmental changes may occur due to shifts in the weather, 
time of day daylight and temperature variation, the effect of the robot system itself in performing its application, or 
other causes external to the robot system. Incremental variations in robot performance capabilities may occur as a 
natural consequence of wear and tear on the robots, which may cause incremental or sudden degradations in robot 
performance, or, in more advanced robots, as a consequence of robot learning that improves an individual robot’s 
performance of a particular task. 

The ability to adapt to these types of dynamic changes is especially important in multi-robot applications, since 
the effects of individual robot actions propagate across the entire team. In most real-world applications, a multi-robot 
team with static capabilities will not be able to continually achieve its goals over time as the system of robots and 
the environment drift further and further from the original state. Instead, a successful lifelong multi-robot team 
will adapt to changes in robot team member capabilities, robot team composition, mission requirements, and the 
environmental state. 

One important consequence of dynamic changes in lifelong multi-robot systems is that continuing drift in in- 
dividual robot capabilities creates a team of heterogeneous robots, even if the original team was designed to be 
homogeneous. This may actually be true at the outset of the application. Experienced roboticists are aware that 
several copies of the same model of robot, even direct from the manufacturing line, can vary in capabilities due to 
differences in sensor tuning, etc. Over time, the minor initial differences among robots will grow, since sensors and 
effecters may degrade or break on certain robots, or, for learning robots, some robot team members may learn faster 
than others. Thus, mechanisms for generating lifelong multi-robot teams must necessarily deal with the issue of 
heterogeneity among robot team members. 

Heterogeneity in multi-robot teams presents a particular challenge to efficient autonomous control when overlap 
in team member capabilities occurs. Overlap in team member capabilities means that more than one robot may 
be able to perform a given task, but with different levels of efficiency. In these cases, the robots must continually 
determine which individual on the team is currently the best suited for a given task in the application. These types 
of decisions are usually not easy to make, especially when the multi-robot team control is distributed across all 



team members. Thus, the multi-robot team control mechanism must have some effective means of distributing tasks 
so that an acceptable level of efficiency is achieved without sacrificing the desirable features of fault tolerance and 
robustness. 

3. THE PROPOSED LEARNING APPLICATION: CMOMMT 

The application domain that we propose to use as a multi-robot learning testbed is the problem we entitle Cooperative 
IMulti-Robot Observation of Multiple Moving Targets (CMOMMT). This problem is defined as follows. Given: L 

s: a two-dimensional, bounded, enclosed spatial region 
v: a team of m robot vehicles, 2ri, i = 1,2, . . . m, with 360’ field of view observation sensors 

that are noisy and of limited range 
O(t) : a set of n targets, oj(t), j = 1,2, . . . . n, such that target oj(t) is located within 

region S at time t 

We say that a robot, vi, is observing a target when the target is within vi’s sensing range (defined explicitly 
below). 

Define an m x n matrix B(t), as follows: 

B(t) = [hj(t)]mxn such that hj(t) = 
1 if robot vi is observing target oj(t) in S at time t 
0 otherwise 

Then, the goal is to develop an algorithm, which we call A-CMOMMT, that maximizes the following metric A: 

d 
where: 

S(B(%j) = 
1 if there exists an i such that by = 1 
0 otherwise 

In other words, the goal of the robots is to maximize the average number of targets in S that are being observed 
by at least one robot throughout the mission that is of length T time units. Note that we do not assume that the 
membership of O(t) is known in advance. Also note that when evaluating adaptive algorithms that improve their 
performance over time, this metric would be changed to sum over a recent time window, rather than the entire 
mission. This would eliminate the penalty for the early performance of processes that improve over time. 

In addressing this problem, we assume the following: 

Define sensor-cowerage as the region visible to robot WI’S observation sensors, for vi E V. Then we assume 
that, in general, the maximum region covered by the observation sensors of the robot team is much less than the 
total region to be observed. That is, 

U sensor-cowerage < S. 
v;EV 

This implies that fixed robot sensing locations or sensing paths will not be adequate in general, and instead, the 
robots must move dynamically as targets appear in order to maintain their target observations and to maximize the 
coverage. 

In some situations, the observation sensor on each robot may be directional (e.g., a traditional CCD camera), 
and can only be used to observe targets within that sensor’s field of view. However, new sensory technology, such 
as the recently prototyped omni-directional cameras (e.g., by SRI, CMU/Columbia, etc.), make it feasible in future 
implementations for a robot, to be able to observe targets around its entire 360’ field of view. 



4. CMOMMT AS A TESTBED FOR LEARNING AND ADAPTATION 

CMOMMT offers a rich testbed for research in multi-robot cooperation, learning, and adaptation because it is an 
inherently cooperative task. That is, the utility of the action of one robot is dependent upon the current actions of 
the other team members. In addition, many variations on the dynamic, distributed sensory coverage problem are 
possible, making the CMOMMT problem arbitrarily more difficult. For example, the relative numbers and speeds 
of the robots and the targets to be tracked can vary, the availability of inter-robot communication can vary, the 
robots can differ in their sensing and movement capabilities, the terrain may be either enclosed or have entrances 
that allow objects to enter and exit the area of interest, and so forth. Many other subproblems can also be addressed, 
including the physical tracking of targets (e.g. using vision, sonar, IR, or laserrange), prediction of target movements, 
multi-sensor fusion, and so forth. 

One previously-identified application domain for multi-robot cooperation and learning is the multi-robot soccer 
domainlo which is of considerable interest in the research community. Like the multi-robot soccer domain, the 
CMOMMT application requires addressing many issues that are of importance in general multi-agent systems. 
Stone and Velosoll have conducted an extensive survey of the multi-agent learning research, and have identified the 
following issues that are of importance in various types of multi-agent interaction: 

4 I 

l Homogeneous non-communicating agents: 

- Reactive vs. deliberative agents 

- Local or global perspective 

- Modeling of other agents’ states 

- How to affect others 

l Heterogeneous non-communicating agents: 

- Benevolence vs. competitiveness 
- Evolving agents (arms race, credit/blame) 

- Modeling of others’ goals, actions, and knowledge 
- Resource management (interdependent actions) 

- Social conventions 

- Roles 

l Heterogeneous communicating agents: 

- Understanding each other 

- Planning communicative acts 

- Benevolence vs. competitiveness 
- Resource management (schedule coordination) 

- Commitment/decommitment 

- Truth in communication 

Like the multi-robot soccer domain, the CMOMMT domain also encompasses these challenging issues of multi- 
agent cooperation. The CMOMMT application also has the benefit of being perceived as a “real-world” task, as 
opposed to a game (even though the issues of cooperation are quite similar), which is of importance in some research 
endeavors, and is potentially important in the perception of the research by the general public. Additionally, one 
aspect of CMOMMT that is different from multi-robot soccer is that it raises the issue of scalability much more 
than in multi-robot soccer. The issue of dealing with larger and larger numbers of robots and targets must be taken 
into account in the design of the cooperative control approach*. Thus, we feel that these characteristics make the 
CMOMMT domain worthy of study for multi-robot cooperation, learning, and adaptation. 

*We assume that the game of soccer does not involve arbitrarily large numbers of players! 
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Figure 1. Function defining the magnitude of the force vectors acting on a robot due to a nearby target. 
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Figure 2. Function defining the magnitude of the force vector acting on a robot due to another nearby robot 

5. A HUMAN-DEVELOPED SOLUTION TO CMOMMT 

In previous research,12J3 we have developed a hand-generated solution to the CMOMMT problem that performs well 
when compared to naive approaches. This solution has been implemented on both physical and simulated robots to 
demonstrate its effectiveness. We emphasize, however, that the developed solution does not enable the robot team 
members to adapt their performance over time in response to changes in the environment, or changes in the team. 
The hand-generated solution also required considerable “tweaking” of parameters to develop a good solution. 

The hand-generated solution, which we call A-CMOMMT, is described briefly as follows. Robots use weighted 
local force vectors that attract them to nearby targets and repel them from nearby robots. The weights are computed 
in real time by a higher-level reasoning system in each robot, and are based on the relative locations of the nearby 
robots and targets. The weights are aimed at generating an improved collective behavior across robots when utilized 
by all robot team members. 

The local force vectors are calculated using the functions illustrated in Figures 1 and 2. In this context, the 
predictive tracking range is a range just beyond the sensing capability of the robots, but within which robot trackers 
should continue to adjust their motions if targets are nearby (i.e., corresponding to targets that have just recently 
left the sensing range). The function in Figure 1 defines the relative magnitude of the attractive forces of a target 
within the predictive tracking range of a given robot. Note that to minimize the likelihood of collisions, the robot 
is repelled from a target if it is too close to that target (distance < dol). The range between do2 and dog defines 
the preferred tracking range of a robot from a target. In practice, this range will be set according to the type of 
tracking sensor used and its range for optimal tracking. The proper setting of these thresholds is the subject of the 
multi-robot learning task we are proposing in this paper. The attraction to the target falls off linearly as the distance 
to the target varies from dos. The attraction goes to 0 beyond the predictive tracking range, indicating that this 
target is too far to have an effect on the robot’s movements. The robot sensing range will lie somewhere between 
do3 and the predictive tracking range. 

Figure 2 defines the magnitude of the repulsive forces between robots. If the robots are too close together 
(distance < drl), they repel strongly. If the robots are far enough apart (distance > drz), they have no effect upon 
each other in terms of the force vector calculations. The magnitude scales linearly between these values. 



Figure 3. Simulation results of 5 robots at 20 targets, with the robots using the hand-generated solution to 
CMOMMT, and the targets moving randomly. 

Using only local force vectors for this problem neglects higher-level information that may be used to improve the 
team performance. Thus, the hand-generated approach enhances the control approach by adding higher-level control 
to weight the contributions of each target’s force field on the total computed field. This higher-level knowledge can 
express any information or heuristics that are known to result in more effective global control when used by each 
robot team member locally. The hand-generated approach expresses this higher-level knowledge in the form of a 
weight, Wlk, that reduces robot Q’S attraction to a nearby target if that target is within the field of view of another 
nearby robot. Using these weights helps reduce the overlap of robot sensory areas toward the goal of minimizing the 
likelihood of a target escaping detection. Here, each robot assumes that its teammates have the same sensing range 
as its own. 

The proper setting of these weights is also appropriate for the multi-robot learning task proposed in this paper. 
Intuitively, it seems that if a robot vi detects another robot ‘uj nearby and within sensing range of target ok, then wlk 
should be set to a low value. In the simplest case, since we define (in section 3) a robot ‘~1 to be observing a target Ok 
when it is within ~1’s sensing range, we could assign Wlk to be zero whenever another robot is within sensing range 
of ok. However, it is possible that will increase the likelihood that a target will escape detection, and thus it may 
give better results to set Wl,Q to some non-zero value. It remains to be seen if the results of the learning correspond 
to this finding. 

The proper setting of Wlk is also dependent upon the estimated density of targets in the vicinity. If targets are 
sparsely located in the area, then the robot team risks losing track of a higher percentage of targets if any targets are 
ignored. On the other hand, if targets are densely distributed, then the risks are lower. Thus, a multi-robot learning 
task must address the proper computation of these weights based upon these issues. 

These weights have the effect of causing a robot to prefer the observation of certain targets over others. In 
more complex versions of the CMOMMT problem, robots could also learn about the viewing capabilities of their 
teammates, and discount their teammates’ observations if that teammate has been unreliable in the past. 

Figure 3 shows one of the simulation runs of the hand-generated algorithm (out of over l,OOO,OOO simulation test 
runs), in which 5 robots attempt to observe 20 targets. Figure 4 shows a snapshot of one of the physical robot 
experiments (out of over 500) in which the the robots perform the task with no obstacles in the work area. Figure 5 
shows the physical robots performing the task with obstacles randomly positioned in the work area (one of over 300 
actual experimental runs). 



5 

Figure 4. Robot team executing hand-generated solution to CMOMMT in area with no obstacles. 

Figure 5. Robot team executing hand-generated solution to CMOMMT in area with obstacles in the work area. 
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Figure 6. Comparison of A-CMOMMT results with non-weighted local force vector approach (Local) and two naive 

/ control algorithms (Random and Fixed). 

The results of the hand-generated approach to CMOMMT vary depending upon a number of factors, including 
the relative numbers of robots and targets, the size of the work area, the motions of the targets (i.e., whether random 
or evasive), and the setting of the weights. In general, the A-CMOMMT algorithm performed best for a ratio of 
targets to robots greater than l/2. We compared the hand-generated A-CMOMMT approach with a non-weighted 
local force vector approach, as well as two control cases in which robots either maintained fixed positions or are 
moved randomly. Figure 6 gives a typical set of these comparative results. Refer to12 for more details on these 
results. 

6. LEARNING IN THE CMOMMT APPLICATION 

I 6.1. Cooperative behavior learning without a priori models 

Touzet has studied the CMOMMT problem r4 from a learning perspective without the assumption of an a priori 
model. In his approach, he combines reinforcement learning, lazy learning, and a pessimistic algorithm able to 
compute for each team member a lower bound on the utility of executing an action in a given situation. The 
challenges in this multi-robot learning problem include a very large search space, the need for communication or 
awareness of robot team members, and the difficulty of assigning credit in an inherently cooperative problem. 

In Touzet’s learning approach, lazy learning15 is used to enable robot team members to build a memory of 
situation action pairs through random exploration of the CMOMMT problem. A reinforcement function gives the 
utility of a given situation. The pessimistic algorithm for each robot then uses the utility values to select the action 
that maximizes the lower bound on utility. The resulting algorithm is able to perform considerably better than 
a random action policy, although it is still significantly inferior to the hand-generated algorithm described earlier. 
Even with its relatively inferior performance, Touzet’s approach is an important contribution, because it does not 
assume the existence of a model (as is the case in the Partially Observable Markov Decision Process - POMDP - 
domain), the existence of local indicators that help individual robots perform their tasks, nor the use of symbolic 
representations. 

However, Touzet’s approach does not address the issue of adaptation over time as the environment or robot team 
changes over time. In fact, the lazy learning approach assumes the environment is not changing. Thus, there is the 
need for new techniques that enable the robot team to adapt their performance over time. 



6.2. Adaptation through parameter tuning 

In previous research,r6 we developed the L-ALLIANCE approach to multi-robot adaptation that enabled teams of 
(potentially heterogeneous) robots to adapt their performance over time as they gained experience with robot team 
members and their capabilities in performing the tasks required by their mission. The L-ALLIANCE approach, 
which is an extension of our earlier work on ALLIANCE,17 is a distributed, behavior-based architecture aimed for 
use in applications consisting of a collection of independent tasks. The key issue addressed in L-ALLIANCE is 
the determination of which tasks robots should select to perform during their mission, even when multiple robots 
with heterogeneous, continually changing capabilities are present on the team. In this approach, robots monitor the 
performance of their teammates performing common tasks, and evaluate their performance based upon the time of 
task completion. Robots then use this information throughout the lifetime of their mission to automatically update 
their control parameters. This approach has been shown to enable heterogeneous robot teams to continue to adapt 
to changes in the robot team member capabilities and in the environment. 

However, the parameter update strategy used by L-ALLIANCE is dependent upon the assumption of independent 
subtasks whose performance can be evaluated based upon the time of task completion. This assumption does not hold 
for the CMOMMT application domain, and thus a new technique is required. In our current work, we are exploring 
a variety of approaches to online adaptation for the CMOMMT domain. In these approaches, we are giving the robot 
team members the general model of cooperation used in the hand-generated approach to CMOMMT - namely, the 
concept of weighted force vector functions that attract robots to nearby targets while repelling them from nearby 
robots. However, the parameters and thresholds of these functions are not fixed, and must be adapted by the robot 
team based upon factors such as the robot team size, the density of targets, the (potentially heterogeneous) sensing 
capabilities of the robots, the online performance of the team, the behavior of the targets, and so forth. Future 
articles will present the approaches and results of this current research. 

7. CONCLUSIONS 

In this paper, we have proposed that the Cooperative Multi-robot Observation of Multiple Moving Targets 
(CMOMMT) application domain provides a rich testbed for learning and adaptation in multi-robot cooperative teams. 
We have described the need for learning and adaptation in multi-robot teams, and have defined the CMOMMT ap- 
plication, along with the characteristics that make it an interesting testbed for learning and adaptation. We reported 
on a hand-generated solution to the CMOMMT problem and discussed how the results from the implementation of 
this solution reveal the need for learning and adaptation in this domain. We discussed some current work that uses 
the CMOMMT problem as a learning domain, as well as some of our ongoing efforts to generate new techniques 
for on-line multi-robot adaptation. The hope is that the new techniques eventually developed using the CMOMMT 
domain will generalize to other real-world domains, and will thus help realize the ultimate goal of enabling the 
widespread, practical use of multi-robot teams. 
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