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ABSTRACT: We apply optimal control techniques to find approximate solutions to an inverse problem
for the acoustic wave equation. The inverse problem is to determine the shape and reflection coefficient of
a part of the boundary from partial measurements of the acoustic signal. The sought functions are treated
as controls and the goal is to drive the model solution close to the experimental data by adjusting these
functions.

§1. An Identification Problem
Let G C R? be a bounded domain with a C* boundary, 8G. Define

{Q:Gx(0,2) c R®,
(1.1)

I'=G x{2}.

Thus, T is the top portion of the boundary #Q. In what follows, we denote a generic point in R? by
z = (z1,22). Suppose ug : G — [1,2] is continuous. Let Q(ug) = {(z,2) € Q |z € G, 0 < z < wo(=)},

1 This submitted manuscript has been authored by a contractor of the U.S. Government under Contract
No. ‘DE—A005—960R22464. Accordingly, the U.S. Government retains a nonexclusive, royalty free license to
publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government

purposes.
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whose boundary is denoted by 9Q(uo) with the top portion, I'(uo), given by I'(ug) = {(z,uo(x)) | # € G}.
We suppose that the region Q(uo) has a known local velocity tensor E € C (T4 R®*?) satisfying

(1.2) E(z,2) >8I, V(z,2) €9,

for some § > 0. Let 0g : G — [0,00) be a function called the reflection rate. We assume that ug and g are
unknown. Our goal is to estimate both ug and oo from observations of the actual solution. Specifically, we
send some signal f to the region Q(up) and receive a corresponding observation h from the region w such

that w C G x (0,1) C Q(up) C . It is reasonable to expect that based on the information contained in f,

h, w, etc., we can approximately determine up and og.
Define

UL {ue HYQ) |1 <u(z) <2, vz € G},
2é{a € U LYG) | o(z) >0, ae. z € G}.

q>2

(1.3)

By Sobolev’s embedding theorem, one has H2(G) = W1?(G)NC*(G), V1< p< oo, a € (0,1), since G
is a bounded domain in R? with a C! boundary. We assume that (ug, 0o) € L{ x 3.

Next, for any u € U, we introduce a domain contained in ©, Q(u) = {(z,2) € Q | reG,0<z<u(z) },
whose boundary is denoted by 8Q(u), with the top portion, I'(u), given by I'(u) = {(z,u(z)) | z € G }.

Now, for any u € U and o € ¥, we consider the following wave equation:

Y

Wy — V(EVW) =f,  in (0,T) x Q(u),

Wl =0,
17% _
(1.4) $ Bng lz=0

(gn_W; t 0W) |1"(u) =0

L W|t=0 =% tht:O =1,

where f € L2((0,T) x Q) is a given source term (representing the signal that we send to the domain). The

»

conormal derivative gnlE is defined by

(1.5) W =(EVW,n), on dQ(u),
6’)’),E

with n being the outward normal of the boundary dQ(u). We note that 8Q(w) is only C* for any o € (0,1)
and thus, standard theory for well-posedness does not apply directly to (1.4). We will show that (1.4) admits
a unique weak solution in a sense that will be made precise in Section 3.

Our identification problem is to find v and ¢ in I/ and ¥, respectively, such that the (weak) solution W

of (1.4) is close to the observation h on w. Specifically, we want to minimize the functional

T
(1.6) J(u,0) = —;—/ / |W (t,z, 2) — h(t,z, 2)|*dzdzdt
0 w
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over all possible pairs (u, o)e U x X.
To regularize this ill-posed identification problem, we introduce the following optimal control problem.
We consider that u and o are controls to be adjusted such that - at optimality - they minimize the following

penalty functional (a,b > 0):

T
J(u,0) =+ /(; / W (t,3,2) — h(t, z, 2)[2dedadt
w

2
v fG br [um(x)2]dm+g /G VT @) P o(z)2ds.

(1.7,

Here, as before, W is the solution of (1.4) corresponding to the chosen v and o. The form of the penalty
* terms indicaf;es that we look for functions u and o that are smooth enough. The functions u, and u,, denote
the gradient and the Hessian of u, respectively. Note that for any u € U, u, € LP(G; R?) for all p € [1,00)
(since G C R? is a bounded region). Thus, we can see that the last integral in (1.7) is well-defined for any

: u € U if and only if o € . The optimal control problem is formulated as follows:

Problem (OC). Find (%,5) € U x X, such that
(1.8) J(@,7) = 1}2% J(u,0).

Assuming the inverse problem (1.6) has a unique solution, then for small a, b, the optimal control pair (%, )
that satisfies (1.8), should approximate this solution reasonably well. To obtain a solution to the original
identification problem (1.6) we let the parameters a,b tend to zero.
The novelty and difficulty of the problem considered in this paper comes from the combination of shape
optimization and bilinear boundary control. The bilinear boundary control alone has been addressed in
J [2]. Shape optimization for the wave equation or related PDEs has been considered in [1,5]. The results
: contained here further the application of our general formalism [3] to the parameter identification problem
for the acoustic wave equation [2]. A characterization of the optimal pairs can be found in the full treatment
: of this problem in [4].
, o . .
: fixed domain. In section 3 we prove the well-posedness of the weak formulation of the direct problem for
any (u,0) € U x T. The existence of optimal controls (7,7) is proven in section 4. Finally, in section 5 we

b connect these results to the identification problem (1.6).
$2. An Optimal Control Problem in a Fixed Domain

In this section, we introduce an equivalent formulation of the original problem. For given (u,0) € U x5,

suppose W is a solution of (1.4). Let y and z be related by

(2.1) 2= L‘;)y 22



Thus, y € [0,2] and z € [0,u(z)]. Define w(t,z,y) = W(t, =, ﬁgﬁ),V(t, z,y) € [0,T] x Q. Then, equivalently,
we have W(t,z,2) = w(t, z, u(m)) Y(t,z,2) € [0,T] x Q(u). Clearly,

. Wa(t, z, 2) = wz(t, 2, ﬁg—)) — %wy( , ,m)
(2.2 ; = wy(t,2,y) - ”xg””gywy@, 2,9),

| W.(t,2,2) = fx)wy(t o H) = 1 )wy(t 2,1).

$ If we let

Uz, y) =U(y,u(@),us(z)), (2,9) €D,

U(y,u,p) 2 ( #PY), yeD,2, uell,2, peR?,

then it follows from (2.2) that
{ (2'4) ‘ V(a:,z)W(t,xa z) = U(:II, y)v(:c,y)w(ta z, y)
On the other hand, for any ©(t,z,2) = (O(t, z,2),0%(t,z,2), 0%(t, z, 2))T, we let (¢, z,y) = (0 (¢, 2,9),
02(t, z,9), 03(t, 2, 9))T = O(t, z, “2). Then, similar to (2.2), one has
Viez) O, z,2) = 0;,(t,z,2) +@§2(t,x z) +@3(t z, 2)

1 | uml( )y xz( )
(25) =9m1(t,x,y)—— u( ) gl(t z y)+9 (t,w,y) ( )y92( s 1y)+ ( ) y(t T, y)

= Ve - (V@ 9)780:2,) + o (U@ 070, 2,9), Vo).

Set
(2.6) E(z,y) = B(z,%3%),
and
2.7 O(t,z,2) = E(z,2)V (2, W(t, z,2).
Then, by (2.4) and (2.6), we have 0(¢,z,y) = E(z,9)U(z, YV (e yw(t, z,y). Thus, by taking O(¢,z, 2) as

(2.7) in (2.5), we obtain

v(:1:,::) . [E(m,z)V(m’z)W(t,m,z)] - v(ar:,y) : (U(:c,y)TE(x,y)U(x,y)V(m‘y)w(t,x,y))
(2.8) 1 -
-+ W (U(IE, y)TE("Ea y)U(.’,'C, y)v(m,y)w(ty z, y)’ v(x,y)u(m) ) .

Let us define

F(z,y) = F(z,y,%(2),u:(2)),  (2,9) €Q,
(29) F(x7y1uap)é (_ ! T (2)>E(x7 22&) (é _2%17) )

y_p =
(7 u U
(x,9) €Q, uel,2], pe R
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Then (2.8) can be rewritten as follows:
Vias  [B@2)VeaW(t2,2)] = Vg - [F@y)Veywtey)]

1
) (F(2,9)V (2wt 2,9), Vizyu(z)) .
Next, we consider the boundary conditions. First, (see (2.4))

0= (SW; + W) '(u)

- ((EV(x,z)W, W (*u”{(w)) ) +aW)

(UT BUV (4 yyw, U™ ( _“9{(9”) ) )+ow))]
y=2

z=u(x)

(2.10) 1

N (\f—l T+ le@P
u(z) T+ [ua(@)]

- ST (FTwe) + o)

with e3 = (0,0,1)7 and hereafter V = V(,,). Then, by defining the conormal with respect to F' as
3nF = (FVw,n), on 89, with n being the outward normal of 8, we have from (2.10) that

Ow 241+ |ug(z)]? _
(2.11) ( Sz ) o(z)w) ‘yzz =0.
Similarly, we have 8w o= 0. Thus, we obtain the following equation for w(%, z,y), over the fixed domain
[0,T] x &
(1w — V(FVw) =g
wlpe =0,
ow -0
(2.12) \ Bnpiy=0
ow
(Bnp + uaw) ’y:? =0,
[ @, = wo, we,_o = w1,
with
,
g(z,y) = ( o (F@ )V, Vu@) +1¢,2,53%), (t2.9) e 0.T)x 2,
_ 24/1+ [ua(2)?

wol@, y,u(z)) = oz, X22),  (z,9) € Q,
\'wl(:v,y,u(a:)) ='¢($,2%22), (.’L’,y) EQ.

The cost functional (1.7) becomes
J(u,o0) = / /lw(t x, u(w) (t,:v,z)|2dzdxdt
+ —/ tr [uge ()2]dz + 2/ V14 |ug ()2 o(z)?d.
2Je 2Je

5
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The advantage of the new formulation is that the equation is considered in a fixed domain. However,
as a result, the control enters in the leading coefficients of the state equation and the cost functional is

somewhat non-standard in the first term.

§3. Weak Formulation and Well-posedness of the State Equation

Let H be the space L2(Q) with the usual L? inner product and norm denoted by |- |z, or simply by |- |
if there is no ambiguity. For p > 1, let

A
(3.1) W3E(Q) 2{v € W) | 9] 56y x 102 = O b
with the norm
' p 1/p 1p
(3.2) Iolhwzgioy = { | 1VolPdzdy} ™, Vo e Wi2(@)

It is clear that ||- ”Wéé’(n) and ||-|lw1r(q) are equivalent (for all p € [1,00)) and the embedding Wgé’ Q)y—H

is continuous for p > &. Now, for fixed (u,0) € U x I, we define (recall (2.3))

(33) ol 0y 2 [ |00 @), 0s) Vote, )] dody + [ tuc@)o@ote, 2P

Note that for (u,0) €U X I, |uzo| € B. Clearly, || - [lv(u,0) is a norm defined on C>(Q). We let V(u,0) be
the completion of {v € C~(Q) | v|(aG)X[0 9 = 0}, under the norm || |y (4,0)- It is clear that V(u,0) is a

Hilbert space under the inner product whose induced norm is || - [|ly(u,0). We have the following result.

Proposition 3.1. (i) For any p > 2, there exists a constant C, > 0, such that

1/2
H'U”V(u,cr) Scp(l + ”u“WL?P/(P—?)(G) + ”ucco'lll,/zz(g))“U“W{;g(gy

(3.4)
V(u,0) EU X T, v € W3E(Q), ¢ > 2.
Consequently,
(3:5) UWs&@ < ) Vw0
: p>2 vex

Moreover, W1?(Q) is dense in V (u, ) for any p > 2 and (u,0) € U x .

(ii) There exists a constant C > 0, such that for any r € (6/5,2),

(3.6) ”’U“Wég(ﬂ) < C(1+HUHW1,21'/(2—7~)(G))”'U”V(u’o-), V(u, 0') eUxB,ve V(u, 0’).
Consequently,
(3.7) UVvwe)c [ W@ —H.

uey r€(6/5,2)
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To prove the above result, we need the following lemma.

Lemma 3.2. For any p > 1, there exists a constant C > 0, such that

(3.8) ||v|IW1_%,p(F) < Clvlwrey,  WYwe whe(Q).

We note that in the case 8 is C?, the above result is standard (see [6]). In our case, 8 is just Lipschitz

and the result can be extended to this case.
Proof of Proposition 3.1. (i) First of all, by definition of 1/, we have
(3.9) UcCWLP(G),  Vpell, o),

since G C R2. Let (u,0) €U x T, v € V(u,0) and p > 2. Let us look at the first term on the right-hand

side of (3.3).
{/Q IU(y,u(w),ugc(a:))V'o(ac,y)’2dasaly}1/2 = {[2 ( Vg — %i—ugc'u!,,l2 + -f%?}i)d:zrd;y}l/2

: 1/2
<C{ [ (losP + 1+ uslPg)dzay} ™ < CO+ lulpranris-aia)lvllwes,

(3.10)

with a uniform constant C > 0. Here, we have used the fact (3.9).

Next, we look at the second term on the right-hand side of (3.3). We claim that
(3.11) o)l z2arce—n(ry < Cpllvllwrey, Yo e WHP(Q), p,q> 2.

~In fact, for any ¢ > 2 and 2 < p < 3, we have 2g/(g — 1) < 2p/(3 — p). Thus, by Sobolev’s embedding

theorem and Lemma 3.2, we have
(3.12) vl z2ara-nry < Cliollpzere-nry < Clolwr-ver@y < Collvllwre)-

For the case p > 3, we let ¢ > 0 such that p —e € (2,3). Then, by (3.12), one has ||[v]| 20/@-n ) <

Cllvllwrro-2(y < Cllvllwir(q), which proves our claim (3.11). Consequently,
1/2
(313)  { /G [ua(@)o(@)0(@,2)%dz} < Juao g el 2oy < Cplluao et Iollwrzcey-

Combining (3.10) and (3.13), we obtain (3.4). Then, it follows that W;é’ Q) CV{u,0), Vp>2, (u,0)€

U x T, which yields (3.5). The conclusion concerning the density is clear.

(ii) For any (u,0) € U x ¥ and v € V(u, o), we have (see (3.3))
(3.14) ||v||%,(u’a) > / |UV'U|2dxdy > / [|'um — guw'uy|2 + I'vy|2] dzdy.
9} 0 u
Here, we have used the fact that u € [1,2]. Now, for any r € [1,2), we have

Y
ez < Ioe = Zusvyllzr@) + | Zusvy o)

AR M SR L T I

(3.15)



Then (3.6) follows, which leads to the first inclusion in (3.7). The last embedding follows immediately from
the continuity of the embedding W35 () — H. O

Next, for any (u,0) € U x £, we introduce a bilinear form a : V(u,0) x V(u,0) — R as follows:

(3.16) a(v,w) =/ (FVv,V'w)dfcdy—l—/uavwda:, Vv, w € V(u,0),
Q r

Note that

317 Jus(2)] < p(@) < 2(1 + fua(@)))-

Thus, the second term on the right hand side of (3.16) is well-defined. It is clear that a is symmetric, i.e.,
a(v,w) = a(w,v), Yo, w € V(u,o) and bounded (see (3.3) and (3.22)), i.e. |a(v,w)| < C|v||v(u,c)llwlviue)
Yo, w € V(u,o). Moreover, by (1.2), (2.9), (3.3) and (3.17), we have the coercivity of a, namely for some
5§>0,

(3.18) a(v,v) = / (FVv,Vv)dzdy + / povide > gHvH%,(u,a), Yo € V(u,0).
Q r

Then, we can define an A € E(V(u, o),V (u, a)’) by

(3.19) (Av, W )y,o = a(v,w), Yo, w € V(u, o),

where (-, )y, is the duality pairing between V(u,0) and V(u,0)’. Since a depends on (u,0) € U x X, we

also use the notation
(3.20) a(v,w;u,0) = a(u,v) = (A, W )y e = (AL, 0)0, Wy

Now consider the following:

~ ¥/ iNY)

7SN . £ N N a
o \l/l i .‘J.WF u\l}/, 111Y \W,Uj )
(3.21)

w(0) = wo, w'(0) = w;.
The following well-posedness result holds for (3.21).

Proposition 3.3. Let (u,0) € U x 3. For any g € L?(0,T;V (u,0)"), wo € V(u,0) and w; € H, problem
(3.21) admits a unique solution w € C([0,T); V(u,0)) NCL([0,T); H) satisfying the following estimate:

T
(3.22) lw(Hlleqo,mv ey + lwCllerorim < C{llwollv ey + lwi| + é l9(8)lv (u,0yds }-
€ can pu . Into a more convenient equivalent rorm:

T T
(3.23) /; () (g(®), v)dt = ~¥(0) (wr,v) +F(0)(wo, ) + /0 (1) @w(®),) + vHa(w(s), v;u,0) }dt,
Yo € V(u, o), v € C2([0,T]), Y(T) = 4(T) = 0. ‘

8
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More precisely, by taking into account the density of W?(Q) in V (u, 5), we can write (3.23) as follows: For
p>2,
(3.24)

/ ’ / v(®)g(t, z, y)v(z, y)drdydt = —v(0) / wy (2, Y)v(e, y)dedy
1] o Q
T
+4(0) /Q wo (e, y)v(, y)dody + /0 /Q §(w(t, z,y)o(e, y)dedydt

T T .
s [ [ 20 (P Vutte). Votew) dedyat+ [ [ s@u@or, e, 200 2dadt,
0o Jo 0o Jo
Yo € WaE(Q), v € C*(10,T]), +(T) = «T) =0.
We see that replacing v € V(u,0) by v € Walg’ (Q) makes the test function in (3.24) independent of (u, o).
Lemma 3.4. Let (u,0) €U x X, and
f e L*0,T;H)= L*((0,T) x Q),
(3.25) 4 \
e WIAQ), veH =1
Let g, wo and w1 be defined by (2.18) with w € V(u, o). Then

(Nlg@®)lveoy < CA+ lulfyrere-nglvllvae + 1 E)),

ae t€(0,7), 1<r< E,
(3.26)

lwollv ey < Cllellwra@ (1 + lollzag),

lwile < Clila.

Proof. For any 1 < r < 3, we denote p = 3_?_gr e (&, %) C (1,2). Then 2r = 3—3_‘-’;, —2-2_% < 2t Thus,

Whe(Q) — L% () = L?7(2). Consequently, by (3.6), for any v € V (u,0),
| [ 247V, Vuyvizay| < [ (050l ldody
Q Q

< ClUVw] ey /Q uel?e?dzdy) < Cllwllyuoylollzero lellwsarrona)
(3.27) < Cllwlly o) lwllwre @ llullwreee-1 (g
< Cllwlly o) 19l (o) (1 + l[ellwrzere-n @) lullwiarre-n g
< C(1+ lullfare-n@)lvee lolvee-
On the ofher hand, |

29 | [ 1 e pimay] < ([ 16 P

u(z)

1/2
dzdz) " o] < CIF@O)lalola-

Thus, the first inequality in (3.26) follows. To prove the second inequality in (3.26), we first let ¢ > 2,
E?‘_q'f < 4. For  smooth,

{[ @)™ ={ [ ows - [ o] a) T

< Cllelizay + ClIVol 2ara-v () < Cllellwie@).

(3.29)
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For general ¢ € W14(Q) — C(Q), we can make an approximation. Hence, (3.29) holds for all ¢ > 2 and
p € W14(Q). Next, similar to (2.4), we have UV (z,)W0 = V(z,z)¢. Thus,

Hwo“%/(u,a)=/QIUV'wo]2da:dy+/G]umolwo(x,zfda:

(3.30) < /mu) Ve(a, z)lza%dzdw + ol zocry ( / ol o) ) T

< 2llol&20y + a3 o1y < CQ+ lucollze@) 1elag)-
This gives the second inequality in (3.26). Finally, the third inequality in (3.26) can be proved similar to
(3.28). O

Definition 3.5. Let (u,0) € U x . Let (p,%) € W;g(ﬁ) x H. A function w € C([0,T]; V(u,0))N
C([0,T]; H) is called a weak solution of (2.19) if (3.21), (3.23) or (3.24) holds with wp, wy and g given by
(2.13).

We note that for any ¢ € [0,77, (3.22) holds with T replaced by ¢ and with the constant C > 0 being

uniform in ¢ € [0, T]. Thus, a standard contraction mapping argument provides the following result.

Proposition 3.6. Let (1.2) hold. Then, for any (¢,9) € W5 (Q) x H, f € L*(0,T; H), (v,0) € U X T,
there exists a unique weak solution w of (2.12). Moreover, there exists a constant depending on ||u|g1(c),
such that

(3.31) lwOlleqomvaey + lwOloromsm < C{lellwra@ + 1+ 1FOllz20,mm )

§4. Existence of Optimal Controls
In this section, we prove the following result.

Theorem 4.1. Let (p,7) € Wgé(ﬂ) x H and f € L?(0,T; H). Then Problem (OC) admits an optimal

triple (W,%,7) .

Proof. We let (uF,0%) € U x T be a minimizing sequence of Problem (OC). Let wk e C([0,T);
V(w*, o) N Cl([b, T); H) be the corresponding state. Then,

1 T
Tux,08) =3 /0 / ¥ (8,2, 725) — h(t, 7, 2) Pdededi + 5 /G or fuk (2)2]de

b k() |20% (2)2 i
+ 2/;;\/1+|ux(x)| ol €9 dm—»unifz.](u,a).

(4.1)

Thus, we may assume that

u* 27, weakly in H2(@),
“2) w57, strongly in WYP(G), Vp € [1,00), and in C*(G), Yo € (0,1),
2
| #3257, weakly in L?(G),

(1+ |u£!2)1/40k A1+ Iﬁm|2)1/45, weakly in L*(G).
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On the other hand, from (3.31), we see that

llew® (Wleqo,mv ek 0%y + 10l er o,y
< Cllellwrae) + Wle + 1F Oz}, Ve 21,
This yields the following (note the definition of U):

(4.3)

-y
(4.4) { |[wk —~ ;ﬁugwqu”w((o;ﬂ)xn) + lwk Nl 2o myxey < C,
llwf | L2qo,myxy < C.

Thus, we may assume that for some %, we have

(wk — %uﬁws 2 W, — %Vﬁwy, weakly in L2((0,T) x ),
wf 2w, weakly in L*((0,T) x Q),
(4.5) $ wl B, weakly in L#((0,T) x Q),
wr 2w, weakly in L7((0,T) x Q),
| w* 5w, strongly in LP((0,T) x Q),

where 7 € (1,2] and p € (4/3,4).To prove that (¥, %, 7) is an optimal triple, note that
T
| [ st vt vdsdya = ©) [ uke,puiedady

T
+6’(0)Aw§(w,y)v(x,y)dxdy+/O /Q&(t)wk(t,x,y)v(m,y)dwdydt

T
(4.6) T /0 /n 7(t) ( F*(z, ) Yok (8, 7, ), V(e y) ) dedyd,
T
—l—/o /;;’y(t)u'“(m)ak(m)wk(t, z,2)v(z, 2)dzdt,
Yo € Wad(9Q), v € C([0,T)), v(T) = 4(T) =0,
where
((ta,1) = e (FH@0) Vot (6, 2,0), V@) +(t 2, 42),
t,z,y) €0, T] x Q,
_ I 0 s (1 —FEus(@)
P = (_u @U@’ E’vz(_x)) Bl =) <0 ;(,?()T) )
(4.7) 4 (z,y) € D,
ph(z) = 2 1;1(1;’3“;(%2’ z€G,

wk(z,y) = oz, LYY, (z,y) € Q,
| wh(z,y) = ¥z, LEL),  (z,y) €Q.

We define g, F, T, Wo and W; the same as (4.7) with w”, u*, o replaced by W, 7 and 7. By (4.2) and (4.5),

we see that

T T
/ / 1 (8)g" (b 2, y)o(z, y)dadydt — / f V()5 2, ) (e, v) dedydt.
0 o 0 Q

1



Similarly, we have the convergence of the first four terms on the right-hand side of (4.6). For the last term on
the right-hand side of (4.6), we note that Wl””((O T) x Q) — W=+r((0,T) x @) — L*((0,T) x G), with the
last embedding being compact for s < 2= Thus, we may assume that w* (¢, z,2) — W(t,z,2), in L°((0,T)x
@),as. (t,z) € (0,T) x G. By takmg r =2 € (1,2), we have 2= = & > s = 2. Thus, for p > 3, which
implies that v(z,2) € C*(G) for some a € (0, 1). The boundedness of v ensures the convergence of the last
term on the fight—ha,nd side of (4.6). Consequently, we see that (7,7) is an optimal control. O
§5. Solution to the Identification Problem

The last two terms in (1.7), which represent the “cost” of the controls in the optimal control problem
are spurious for the identification problem (1.6). Thus, we would like to let a, b tend to zero and recover the
solution(s) to the identification problem (1.7). Consider two sequences of positive numbers {an}, {b,} both
converging to zero. For each pair (an,b,) we denote the optimal tfiple by (Wn, iin, Gy ); this triple minimizes
the objective functional J,, = J(an,bp,Wn, Un,0n). We can prove

Theorem 5.1. Assume there ezist (u*,0*) € U X & such that w* = w(u*,0*) satisfies w*|ux o,y = h
a.e. Then there exist (ug,00) € U X T such that for a pair of sequences {an,bn} — {0,0}, we have (Un,Fn) —
(u,00) in H2(Q) x L3(G), Wy — wo in L2((0,T) x Q) and wolwx,r) = -

Proof. Since (u*,0*) is an admissible control pair and (&y,5,) minimizes J,, we have
In (U, 0n) < Jp(u*,0%)

and

B =

T
/ / |y, — h|2dadzdt + a—”/ tr [(Gin) zz) 2dz + %—/ V14 |ig|25,de
G
< ?"/ tr [ul,)2de + —/ V1+ |utf2e*de.

(5.1)

This bound together with the a priori estimates on @, (independent of n), imply, as in Theorem 4.1,

that there exist (up,00) € U x X such that on a subsequence we have
Ty — ug weakly in L2(G)
Gn — 0o weakly in L%(@)
Wn, — wo  strongly in L2((0,T) x Q)

and 0y, (@n, 0n) — wo(ug,0p). Letting n — oo in (5.1) we also obtain

T
/ / |wo — h|2dzdzdt = 0
0 w

Thus, wolwx(o,ry = b and therefore, ug and o¢ are the identified boundary shape and reflectivity. ]
Note: The identified pair (ug, 0¢) is not necessarily equal to (u o*). If the inverse problem has a unique

solution, then (uo,00) = (u*,0*).
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