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ABSTRACT: We apply optimal control techniques to find approximate solutions to an inverse problem 

for the acoustic wave equation. The inverse problem is to determine the shape and reflection coefficient of 

a part of the boundary from partial measurements of the acoustic signal. The sought functions are treated 

as controls and the goal is to drive the model solution close to the experimental data by adjusting these 

functions. 

$1. An Identification Problem 

Let G c lR2 be a bounded domain with a C1 boundary, dG. Define 

(l-1) 
R = G x (0,2) c lR3, 

l? = G x (2). 

Thus, I? is the top portion of the boundary da. In what follows, we denote a generic point in lR2 by 

2 = (zr,zg). Suppose ue : F -+ [l, 21 is continuous. Let R(Q) = {(x, z) E R 1 2 E G, 0 < z < us(z)}, 
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whose boundary is denoted by aa with the top portion, l?(uc), given by I’(Q)) = { (2, Q(Z)) 1 z E G}. 

We suppose that the region R(uc) has a known local velocity tensor E E C(a; lB3x3) satisfying 

for some 6 > 0. Let crc : G -+ [0, oo) be a function called the reflection rate. We assume that ue and ao are 

unknown. Our goal is to estimate both uo and rre from observations of the actual solution. Specifically, we 

send some signal f to the region R(Q) and receive a corresponding observation h from the region w such 

that w c G x (0,l) c fl(us) c R. It is reasonable to expect that based on the information contained in f, 

h, w, etc., we can approximately determine us and go. 

Define 

(1.3) 

UA {u E H2(G) 1 1 5 u(z) < 2, Y’s E G}, 

CA {a E u Lq(G) 1 CT(X) > 0, a.e. x E G}. 
G-2 

By Sobolev’s embedding theorem, one has H2(G) of WI+‘(G) n P(c), H < p < 00, o E (0, l), since G 

is a bounded domain in lR2 with a C1 boundary. We assume that (~0, ac) E U x C. 

Next, for any u E U, we introduce a domain contained in 0, a(u) = {(x,2) E R 1 x E G,O < z < u(x) }, 

whose boundary is denoted by an(u), with the top portion, I’(u), given by I’(u) = { (x,u(x)) I z E G }. 

Now, for any u E U and CJ E C, we consider the following wave equation: 

wtt - V*(EVW) = f, in (0,T) x a(u), 

where f E L2((0, 7’) x 0) is a given source term (representing the signal that we send to the domain). The 

conormal derivative E is defined by 

(1.5) E = (EVW,n), 
anE 

on I%(U), 

with n being the outward normal of the boundary 69(u). We note that 6%(u) is only C” for any a E (0,l) 

and thus, standard theory for well-posedness does not apply directly to (1.4). We will show that (1.4) admits 

a unique weak solution in a sense that will be made precise in Section 3. 

Our identification problem is to find u and (T in U and C, respectively, such that the (weak) solution W 

of (1.4) is close to the observation h on w. Specifically, we want to minimize the functional 

(1.6) Z(u,g) = f I’S IW(t,x,z) - h(t,a:,zJ2dzdxdt 
0 w 
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over all possible pairs (u, a)~ 24 x C. 

To regularize this ill-posed identification problem, we introduce’the following optimal control problem. 

We consider that u and u are controls to be adjusted such that - at optimality - they minimize the following 

penalty functional (a, b > 0): 

(1.7) 

J(u, a) =$ s’ / IW(t, x, z) - h(t, x, z)12dzdxdt 
0 w 

+ % IG tr [uZZ(x)2]dx + % /G dwg(x)2dx. 

i 

Here, as before, W is the solution of (1.4) corresponding to the chosen u and U. The form of the penalty 

terms indicates that we look for functions u and c that are smooth enough. The functions uZ and uZa: denote 

the gradient and the Hessian of u, respectively. Note that for any u E U, u, E LP(G; lR2) for all p E [l, oo) 

(since G c R2 is a bounded region). Thus, we can see that the last integral in (1.7) is well-defined for any 

u E U if and only if u E C. The optimal control problem is formulated as follows: 

Problem (OC). Find (Z,??) E U x C, such that 

0.8) J(E, F) = & J(u, a). 

Assuming the inverse problem (1.6) has a unique solution, then for small a, b, the optimal control pair (u, 5) 

that satisfies (1.8), should approximate this solution reasonably well. To obtain a solution to the original 

identification problem (1.6) we let the parameters a, b tend to zero. 

The novelty and difficulty of the problem considered in this paper comes from the combination of shape 

optimization and bilinear boundary control. The bilinear boundary control alone has been addressed in 

[2]. Shape optimization for the wave equation or related PDEs has been considered in [1,5]. The results 

contained here further the application of our general formalism [3] to the parameter identification problem 

for the acoustic wave equation [2]. A characterization of the optimal pairs can be found in the full treatment 

of this problem in [4]. 

The outline of the paper is as follows. In section 2 we restate the optimal control problem (OC) in a 

fixed domain. In section 3 we prove the well-posedness of the weak formulation of the direct problem for 

any (u, a) E 24 x C. The existence of optimal controls (‘ii, F) is proven in section 4. Finally, in section 5 we 

connect these results to the identification problem (1.6). 

$2. An Optimal Control Problem in a Fixed Domain 

In this section, we introduce an equivalent formulation of the original problem. For given (u, g) E U x C, 

suppose W is a solution of (1.4). Let y and z be related by 

(2.1) 
4X)Y 22 

x=TT or Y=u(z), x E G. 
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Thus, y E [0,2] and z E [O,u(x)]. Define w(t,x, y) = W(t,x, v), i(t, 2,~) E [0, T] x 0. Then, equivalently, 

we have W(t, x, z) = w(t, x, &),V(t, x, z) E [0, T] x R(u). Clearly, 

If we let 

{ 

U(x, Y> f WY, u(x), UP&>>, (&?I) E 0, 

WY,U,P)~ (; -p) , Y E [0,21, u E [1,21, P E R2, 

then it follows from (2.2) that 

(24 y,,z,wt, x, 4 = U(x, Y)y,,,)w(t, 2, Y>. 

On the other hand, for any O(t,x, z) = (@(t,~,z),@~(t,x,z), 03(t,x, .z))~, we let Q(t,x,y) = (@(t,x,y), 

02(t,z, y),03(t,x, Y))~ = O(t,x, v). Then, similar to (2.2), one has 

V(,,z) * wt, x,2> = o:, (t, x, z) + op, (t, x, 2) + o;(t, 2, z) 

Set 

P-6) 

and 

(Z-7) 

@x, y) = E(x, v), 

Wt, x, ~1 = E(x, -+Q,,,)W(t, x, 2)s 

Then, by (2.4) and (2.6), we have O(t,x,y) = ~(x,y)U(x,y)V(,,~)w(t,s,y). Thus, by taking @(t,z,z) as 

(2.7) in (2.5), we obtain 

V(z,z) - [Eh 4V(z,z)W(t, 
(2.8) 

2, z,] = V(z,g) * (U(x, YP%> YY)U(X, YP(z,,pG XT Y)) 

+ & ( U(x, Y>T-&:, YW(X:, Y)V(z,,pG XT Y), hw/)U(X) > - 

Let us define 

J&Y) = wJ,Y,u(x),%(x)L hY> E Q, 

(2.9) WGYAP$ ( -ip~ $Xx,?) (; -tp) 3 

b,Y) Ef4 UE P,21> PER20 
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Then (2.8) can be rewritten as follows: 

V(,,,) . [E(x, 4V(z,z)W(t, x,-4] = V(qy) . [F(wdV(z,y)w(t,x~ Y,] 

+ & (F(x7 Yn&/)Wk x3 Y>7 V(z,y,U(4 > - 

Next, we consider the boundary conditions. First, (see (2.4)) 

O = (E + uw> L(u) 
( -u;(z,> ) +(4 IL+) = G%w)W~ d& ( 

(2.10) 

= Ji& ( 
(U%uV(,,,)w, u-l ( -“;(z,) ) +4 lvz2 

4x1 ( (FVw e3 > +2M~(x)w 
=24iqqqp ’ u(x) >I y=2’ 

with es = (O,O, l)T and hereafter V = V(,,U). Then, by defining the conormal with respect to F as 

$$ - A FVw,n), on 61%~ with n being the outward normal of 80, we have from (2.10) that 

(2.11) 
>I yz2 = 

0. 

Similarly 

[O,T] x 6: 

we have $$ 
y=o 

= 0. Thus, we obtain the following equation for w(t,x, y), over the fixed domain 

I 

wtt - V(FVw) = g, 

(2.12) 
CYW - =o, 

dnF y=o 

wltzo = wo, Wtlt,O = Wl, 

with 

I 
(F(x, Y)VW, Wx) > +f(t, x, WI, (~,x,Y) E [‘AT1 x Q2, 

(2.13) 
p(x) = h/-FaF 

u(x) ’ 
x E G, 

Wo(X,Y,U(X)) = P(X, q% b:,Y> E f-4 

Wl(X,Y,U(X)) = $(x, qq, (XT Y) E 0. 

The cost functional (1.7) becomes 

(2.14) 
J(u,a) = ; oT 

JJ 
(w(t,x, &) - h(t,x, z)12dzdxdt 

w 

+a J 2 G 
tr [uzz(x)2]dx + i J G -\/l + ]u~(z)]~ a(~)~dx. 
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The advantage of the new formulation is that the equation is considered in a fixed domain. However, 

as a result, the control enters in the leading coefficients of the state equation and the cost functional is 

somewhat non-standard in the first term. 

$3. Weak Formulation and Well-posedness of the State Equation 

Let H be the space L2(s2) with the usual L2 inner product and norm denoted by 1. IH, or simply by 1.1 

if there is no ambiguity. For p 2 1, let 

with the norm 

(3.2) 

It is clear that 11. jlw,g(nj and 11. Ilwl,P(n) are equivalent (for all p E [l, oo)) and the embedding VVj$(R) of H 

is continuous for p > Q. Now, for fixed (~,a) E 24 x C, we define (recall (2.3)) 

Note that for (~,a) E 24 x C, Iuzgl E C. Clearly, II * IIv(u,O) is a norm defined on Coo@). We let V(u, g) be 

the completion of {v E C”(n) 1 v~~sG~X10,21 = 0}, under the norm II . IIv(U,O~. It is clear that V(u,a) is a 

Hilbert space under the inner product whose induced norm is II . IIv(U,D). We have the following result. 

Proposition 3.1. (i) For any p > 2, there exists a constant C, > 0, such that 

(3.4) 

Consequently, 

II4lV(U,~) Icp(l+ ll+vw(P4)(G) + II~“~ll~/,;~))Il~llw,l;,P(n)~ 

V(u,a) E u x c, v E W,‘;=“(iq, q > 2. 

(3.5) u w;;~“(sz) G n ~h4. 
P>2 WEU 

OEC 

Moreover, W1+(s2) is dense in V(u, g) for any p > 2 and (u, a) E U X C. 

(ii) There exists a constant C > 0, such that for any r E (6/5,2), 

(3.6) 11~11 ws’g@-q I c(~+IIuIJw1,2r/(2-r)(~)) Ilvllv(u,o), V(u, a) E 2.4 x c, v E V(u, a). 

Consequently, 



To prove the above result, we need the following lemma. 

Lemma 3.2. For any p > 1, there exists a constant C > 0, such that 

(3.3) II~llw’-~‘p(~) I wlw~~“(n), vv E ivq-q. 

We note that in the case dR is Cl, the above result is standard (see [6]). In our case, Xl is just Lipschitz 

and the result can be extended to this case. 

Proof of Proposition 3.1. (i) First of all, by definition of 24, we have 

(3.9) U c iV1yP(G), VP E P,m), 

since G c lR2. Let (u, a) E U x C, v E V(u, g) and p > 2. Let us look at the first term on the right-hand 

side of (3.3). 

(3.10) 
{s, IU(?I,U(x),21Z(“))Vv(x,I)12dxdy}1’2 = {J, (1~ - $GJ~I~ + $v@M/}1’2 
IC {s, (lv,12 + (1 + Iu,12)v$h&}1’2 5 C(l+ ll~ll~1,2~/(~-2,~~~)IIvllwl.~(n), 

with a uniform constant C > 0. Here, we have used the fact (3.9). 

Next, we look at the second term on the right-hand side of (3.3). We claim that 

(3.11) 117&w~~-1~(r) 5 Cpll4Iw~qn), QTI E W’7p(fC p,q > 2. 

In fact, for any 4 > 2 and 2 < p < 3, we have 2q/(q - 1) < 2p/(3 - p). Thus, by Sobolev’s embedding 

theorem and Lemma 3.2, we have 

(3.12) 

For the case p 2 3, we let E > 0 such that p - E E (2,3). Then, by (3.12), one has ]]v]]~Q,,(~-~)(~) 5 

Cllvllw~~“-“(n) I Cll4lwlqn), which proves our claim (3.11). Consequently, 

(3.13) { s, lw&>+>lv(~, 2)2dx}1’2 5 IIwII;~~) ll4lL2~~(~-qr) 5 Cpll?-Lzd;j,2~)ll4lwl.r(s2). 

Combining (3.10) and (3.13), we obtain (3.4). Then, it follows that W;;=“(a) C V(u, a), ‘v’p > 2, (u, CT) E 

U x C, which yields (3.5). The conclusion concerning the density is clear. 

(ii) For any (~,a) E U x C and v E V(u,a), we have (see (3.3)) 

(3.14) I1412v(u,o) 2 
s 

n IUVv12dxdy 2 s, [Iv, - $w, I2 + lq, I”] dxdw 

Here, we have used the fact that u E [l, 21. Now, for any r E [l, 2)) we have 

(3.15) 
II’u~IILw) I llvz - +JllLr(n) + Il$&vyllLqss) 

5 ~lV1lww) + ~ll~Yll~3(~)Il~~ll~~~/~~-~~(~) I c(1 + IIUllW1,2’,(2-r)(n)) llVllVCU,~). 
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Then (3.6) follows, which leads to the first inclusion in (3.7). The last embedding follows immediately from 

the continuity of the embedding W;;=‘(n) q H. 0 

Next, for any (u, a) E 24 x C, we introduce a bilinear form a : V(u, a) x V(u, a) + lR as follows: 

(3.16) a(v, w) = 
I 

(FVv, VW) dxdy + ~~vwdx, Vv, w E V(u, a), 
R I l- 

Note that 

(3.17) lu,(x)l I p(x) I 20 + I%(X)l)* 

Thus, the second term on the right hand side of (3.16) is well-defined. It is clear that a is symmetric, i.e., 

u(v,w) = u(w,v),‘v’v,w E V(u,a) and bounded (see (3.3) and (3.22)), i.e. ]a(v,w)] 5 C~~V~~~~~,~~IIW~~~~~,~~, 

Vv,w E V(u,a). Moreover, by (1.2), (2.9), (3.3) and (3.17), we have the coercivity of a, namely for some 

g> 0, 

(3.18) u(v, v) = 
I s-l 

( FVv, Vv) dxdy + r /m2dx 2 ;il~vl~&++ 
I 

vv E V(u, a) I 

Then, we can define an A E C(V(u, a), V(u, 0)‘) by 

(3.19) (Av),,, = a(v,w), vv, w E V(u, c), 

where ( a, .& is the duality pairing between V(u, g) and V(u, a)‘. Since a depends on (u, g) E 2.4 x C, we 

also use the notation 

(3.20) u(v, w; u, a) E u(u,v) = ( Av, w)u,a E ( A(u, n)v, w)u,p 

Now consider the following: 

w”(t) + Aw(t) = g(t), in V(u, c)‘, 
(3.21) 

W(O) = wo, w’(0) = Wl. 

The following well-posedness result holds for (3.21). 

Proposition 3.3. Let (u, a) E U x C. For any g E L2(0, T; V(u, a)‘), wc E V(u, a) and w1 E H, problem 

(3.21) admits a unique solution w E C( [0, T]; V(u, a)) n C1 ([O, 2’1; H) satisfying the following estimate: 

(3.22) llw(.)llc([o,~l;v(~,a,, + lIw(*)kw[o,~~;~) I C{ llwohw) + lwl + I’ llds)Ilv~u,,yd~}. 

We can put (3.21) into a more convenient equivalent form: 

I 

T T 

(3.23) 0 
y(t)(g(t),v)dt = -Y(‘$(w,v) +%Wwo,v) + 

I 
{%W-4t),v) +y(t)u(w(s),v;u,a)}dt, 

Vv E V(u,g), y E C2([0,T]), y(T) = q(T)‘= 0. 
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More precisely, by taking into account the density of W’fP(fi) in V(u, a), we can write (3.23) as follows: For 

P > 2, 

(3.24) 
T 

II y(t)g(t, x, y>v(x, y)dxdydt = -Y(O) I wl (x, yY)v(x, y)dx& 0 n i-l 
T 

+ m I wo(x, Y>V(X, y)dxdy + II %t>w(t, x, YMX, y)dxdydt R 0 R 
T 

II 
T 

+ y(t) ( F(x, y)Vw(t, GY), Vv(x, Y) > dxdydt + 
0 R II r(Mxb(xG>w(t, x,~)v(x, Wxdt, 

0 G 

Vu E W;;=“(fl), y E C2([0,T]), y(T) = jl(T) = 0. 

: We see that replacing v E V(u, g) by v E W;:(O) makes the test function in (3.24) independent of (u, g). 

Lemma 3.4. Let (u, P) E U x C, and 

f E L2(0,T; H) E L2((0,T) x M), 
(3.25) 

HEW;@), $EHHL~(Q). 

Let g, wc and WI be defined by (2.13) with w E V(u, a). Then 

llS(~)IIV(u,a)~ 5 c(1 + Ilull W1+“/+1)(G) Ilwllv(U,O) + If@)l) 7 

(3.26) 
a.e. t E (O,T), 1 < r < i, 

IIWOIIV(%a) 2 Cllvll w1,4(a) (l + lld;$G)) 7 

IWIH 5 WH. 

Proof. For any 1 < r < 8, we denote p = &I E (8,;) C (1,2). Then 2r = 8, & 5 5. Thus, 

Wr+‘(fl) of L&(R) = L2’(s2). Consequently, by (3.6), for any v E V(u, a), 

1 s, ; (FVw,Vu) vdxdyl 5 Cl lUVwll~~l lvldxdy 
R 

I c11UV41~ynj( J, Iwz12v2dx&)1’2 2 C11W11V(u,a)11v11L2~(sl)11~11Wl~2~/(~-1)(G) 

(3.27) 
2 CIIWIIV(~,,)llvIlW1,P(n)IIUIIW1,2~/(~-1)(G) 

< ~~~~h’(u,o) ~bh+,c~) (l + bllWl~X’+d(G)) bdW1,2~/(‘-1)(G) 

5 c(1 + ll412W1.2~/~~-1~(G)) Il~llv(~,~)Il~llv(u,o)~ 

On the other hand, 

Thus, the first inequality in (3.26) follows. To prove the second inequality in (3.26), we first let 4 > 2, 

2 < 4. For ‘p smooth, 

(3.29) 
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For general cp E WlT4(Q) LS C(D), we can make an approximation. Hence, (3.29) holds for all Q > 2 and 

cp E w1*4(R). Next, similar to (2.4), we have UV(,,,)ws = V(,,,)cp. Thus, 

IIw~ll;(~,~) = I 52 IUVwo12dxdy + G luzdwo(x, 212dx I 
(3.30) 

1 

I wPll2w’~2(n) + ll~~~ll2L4(n)II~ll2wl~4(n) I cc1 + Ibz4lLqn)) llb42Wlqn). 

This gives the second inequality in (3.26). Finally, the third inequality in (3.26) can be proved similar to 

(3.28). cl 

Definition 3.5. Let (~,a) EUxC. Let (ip,$) E Wig(Q) x H. A function w E C([O,T]; V(u,a))n 

C1([O,T]; H) is called a weak solution of (2.19) if (3.21), (3.23) or (3.24) holds with ws, wr and g given by 

(2.13). 

We note that for any t E [O,T], (3.22) holds with T replaced by t and with the constant C > 0 being 

uniform in t E [0, T]. Thus, a standard contraction mapping argument provides the following result. 

Proposition 3.6. Let (1.2) hold. Then, for any (cp,$) E W,‘$(fi) x H, f E L2(0,T; H), (~,a) E 2.4 x C, 

there exists a unique weak solution w of (2.12). Moreover, there exists a constant depending on [Iu~~~I(G), 

such that 

(3.31) IIW(‘)IIC([O,Tl;V(~,~)) + IIw(‘)Ib([O,T];H) < ~{11~llW~~4(Sl) + I$‘/ + Ilf(-)jIL2(0,T;H)}. 

$4. Existence of Optimal Controls 

In this section, we prove the following result. 

Theorem 4.1. Let (cp,$) E W&$(R) x H and f E L2(0, T; H). Then Problem (06’) admits an optimal 
-- 

triple (75, U, g) . 

Proof. We let (uk, cr”) E U x C be a minimizing sequence of Problem (OC). Let wk E C([O, T]; 

V(u”, 0”)) n C1( [O, T]; H) be the corresponding state. Then, 

(4-l) 

J(Uk, Uk) 2 II T Iw"(t , x, &) - h(t, x, z)12dzdxdt + ; I tr [&.(x)2]dx 

~~~~~uk(x)2dx~~~~(u;u). G 

Thus, we may assume that 

u”%i, weakly in H2(G), 

u”>iz , strongly in W1gp(G), Vp E [l,oo), and in CQ(??), Va E (0, l), 

u”%F, weakly in L2 (G) , 

(1 + ]uE/~)~‘~~~ 2 (1 + ]E~]~)~‘~F, weakly in L2(G). 
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On the other hand, from (3.31), we see that 

(4.3) 
Il~“(.)llc([o,T];v(uk,ak,, + Ilwkc)llcy[o,T];H) 

L q II~llwl~4(n) + Mx + Ilf(*NLy0,T;H)}, tJkJ 2 1. 

This yields the following (note the definition of U): 

(4.4 IId - 7 z y LQ((o,T)Xn) + IIW;llL2((0,T)xn) 5 CT y ukwkII 

IIdllL2((o,T)xn) 5 c* 

Thus, we may assume that for some m, we have 

(4.5) 

/WE 
Y kkxE 

- &p&y z - pm,, weakly in L2 ((0,T) x 0)) 

kW- 
wY 

-wy, weakly in L2((0,Z’) x R), 

kW- < wt -wt, weakly in L2((0,T) x R), 

kw- w,-wz, weakly in L’((O,T) x CI), 

\Wk>7J > strongly in Lp((O,T) x M), 

1,2] and p E (4/3,4).To prove that (FJ,E,F) is an optimal triple, note that where r E ( 

(4.6) 
T 

+ IS -dt) ( Fk(x, ~)Vw”(t, x,Y), Wx, Y> ) dxdydt, 0 R 
T 

+ JJ $t)pk(x)ak(x)wk(t, x, 2)v(x, 2)dxdt, 
0 G 

VW E W,gyR), y E C2([0,T]), y(T) = -y(T) = 0, 

where 

I 
91c(t, x, Y> = & (F’“(x, Y)VW”@, X,Y), Vu”(x) ) +f(t, x, q%> 

(6 2, Y> E 10, Tl x 02, 

F”(x, Y) = ( -$&dT 
0 

&q > 
qx, 4p) 

( 
; -*uE(x) , 

w > 
(4.7) < (X,Y) E f& 

pk(x) = 2m 

u”(x) ’ 
x E G, 

&X,Y) = dxc, *,, (X,Y) E 0, 

\ Wb,Y) = ti(x, q%, (Xc,Y) E fl* 

We define 3, F, p, Ee and iJr the same as (4.7) with wk, uk, CJ~ replaced by Ei, ‘ii and F. By (4.2) and (4.5), 

we see that 
T 

SJ 
T 

dt)g”(t,x, YMX, ddxdydt -+ 
0 R ss 

r(t)B(t, x, Y)~x, y)dxdydt. 
0 R 
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Similarly, we have the convergence of the first four terms on the right-hand side of (4.6). For the last term on 

the right-hand side of (4.6), we note that IVr~‘((O,T) x a) q I@-$“((O,T) x G) -+ LS((O,T) x G), with the 

last embedding being compact for s < &. Thus, we may assume that w"(t, x, 2) + TC(t, Z, 2), in L3((0, T) x 

G), a.s. (t, x) E (0,T) x G. By taking r = Q E (1,2), we have & = g > s = 2. Thus, for p > 3, which 

implies that 21(x,2) E P(E) f or some a E (0,l). The boundedness of 2, ensures the convergence of the last 

term on the right-hand side of (4.6). C onsequently, we see that (E,??) is an optimal control. 0 

§5. Solution to the Identification Problem 

The last two terms in (1.7), which represent the “cost” of the controls in the optimal control problem 

are spurious for the identification problem (1.6). Thus, we would like to let a, b tend to zero and recover the 

solution(s) to the identification problem (1.7). Consider two sequences of positive numbers {a,}, {b,} both 

converging to zero. For each pair (a,, bn) we denote the optimal triple by (ti,, ii,, ?i,); this triple minimizes 

the objective functional J, = J(a,, b,, a,, fi,, Cn). We can prove 

Theorem 5.1. Assume there exist (u*,o*) E U x C such that w* = w(u*, g*) satisfies w*lwx(o,T) = h 

a.e. Then there exist (~0, a~) E U x C such that for a pair of sequences {a,, bn} -+ (0, 0}, we have (ii,, So) - 

(UO,(TO) in H2(G) x L2(G), tin 2 wo in L2((0,T) x R) and ~ol~~(o,T) = h . 

Proof. Since (u”, P*) is an admissible control pair and (En, an) minimizes Jn, we have 

~n(iin, *n) 5 Jn(u*, a*> 

and 

(5.1) 

1 T 

20 w IS 
lti1, - h12dxdzdt 

&I 
%F G s 

tr [u&12dx + % 

This bound together with the a priori estimates on Ur, (independent of n), imply, as in Theorem 4.1, 

that there exist (ue, ae) E U x C such that on a subsequence we have 

?i, - ue weakly in L2 (G) 

a;, - 00 weakly in L2(G) 

tin + ws strongly in L2((0, T) x M) 

and a,(&, 5,) 2 we(uc, as). Letting n --+ 03 in (5.1) we also obtain 

T 

IS Iwo - h12dxdzdt = 0. 
0 w 

Thus, WOlwx(O,T) = h and therefore, ue and (~0 are the identified boundary shape and reflectivity. El 

Note: The identified pair (ue, cre) is not necessarily equal to (u*, a*). If the inverse problem has a unique 

solution, then (~0, ac) = (u”, a*). 
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