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ABSTRACT: The Vector Perturbation Approach is introduced for addressng the generdized parts
grouping problem, identifying part families for a generd set of suppliers, not just a single supplier.
This method is driven by the need for flexible and lean supply chain sysems. A vector space model
Is used to represent a set of operation sequences as opposed to the traditional matrix and integer
programming models in Group Technology. Using this approach we find that we are able to generate
part groups from 90% of the available parts, in which dl the operation sequences are preserved. This
contrasts with only 66% of the avalable parts grouped using the traditiond methods. Furthermore, a
vector representation of operation sequences provides an intuitive means for discovering the natura
dructure of the pat data From these results we conclude tha this technique can dramaticaly
improve the effectiveness of the entire supply chain.

I. INTRODUCTION

A key chdlenge to military readiness is the ability to maintain and quickly repair damaged arcraft.
This chdlenge requires manufacturers and digtributors of spare parts to be able to supply the military
with the right part, in a short amount of time, for a reasonable price. Higoricdly, this chalenge has
been addressed by developing and maintaining a very large spare parts inventory.

A solution to these types of problems is for part manufacturers to ddiver a needed part in a matter of
hours. This gpproach completely bypasses the need for an inventory of spare parts and thus greetly
reduces inventory codts, as advocated by a number of just-in-time methods. These methods advocate
the building of efficdent manufacturing cells by grouping parts based on how they are made, often
referred to as Group Technology (GT).1?

The conventional agpplication of GT is to creste manufacturing cedls for parts to be produced on a
angle manufacturing floor. A cdl condgs of a st of functiondly dissmilar machines dedicated to
the production of one or more families of Smilar parts. Grouping Smilar parts is consdered as a part
of the cdl formation problem® Most of the methods of addressing this problem are rooted in
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mathematical approaches* whose objectives are to optimize a single menufacturing environment
under anumber of congraints specific to this environment.

A new goplicaion of GT, driven by the need for flexible and “lean” supply chan management
(SCM), has recently been introduced in the literature® In that paper, a framework for approaching
the generalized parts grouping problem was proposed based on the use of the Autonomous
Intelligent Agent Technology (AIA) in combination with the extensons to traditiond Group
Technology. In the generdized parts grouping, rather than grouping parts based on a known set of
manufacturing capabilities, these groups are developed for agenera set of part manufacturers.

This paper presents the vector perturbation approach to the generdized parts grouping problem
while further extending traditiond GT approaches. The need for this method is dictated by magor
diginctions in the traditiond, manufacturing oriented, and generdized, supply chain oriented,
grouping problems. The fundamental digtinction between these two problems is based on the
differences in the objectives/condraints they seek to satisfy.

Traditional Approach

In traditiond GT, the existing gpproaches can be distinguished as structural and operational. By
dructura we mean methods that group parts while building the manufacturing cdls based on routing
information done. Some of these methods use this information in a limited sense by utilizing only a
mechine-part incidence matrix.®® McAuley'ss approach is a dasscd example in this category.
Methods in the second category, which we referred to as operationd, build cells while incorg)orating
operationd information such as part production volume, cost, a processng time, ec’!® Since
operationd information is aways manufacturer specific, methods in this category can not be directly
applied to solve the generdized parts grouping problem found within most production supply chains.

The structure and operational approaches described above have a common objective, i.e, they drive
to increase production effectiveness of a sngle menufecturing environment. This is achieved by
identifying part groups and building manufacturing cdls in such a way tha each part group can be
fully processed in a cdl. Examples of mathematical formulations of this objective previoudy used
are to minimize the inter and intra cdl moves® to maximize cdl independence®’ and to minimize
the accumulative materid handling costs!' Some production constraints used are the desirable
number of cells, the maximum number of machinesin each cdl, or the maximum processing time.

Generalized Approach

In the generalized parts grouping problem, the objective is to group parts into families in order to
optimize the efficiency of the entire supply chain rather than a sngle manufacturing floor. This
process involves the following key stages:
(1) Grouping parts based on how they are made;
(2) Sdlecting asupplier for building each family of parts from abroad set of suppliers,
(3) Arranging the selected manufacturing environment to efficiently build these part families.
Any solution to this problem a a minimum is subject to the following condraints.
The supply chain must respond to the immediate need for a spare part (time congtraints);
The cumulative inventories within the supply chain have to be minimized (waste congtraints);
Parts from the supply chain must be affordable (cost congtraints).

Based on the above discusson, we conclude that 1) the traditiona cdl manufacturing problem and
the generdlized supply chan problem are quite different; 2) there is a need for the methods that
provide a flexible solution to grouping parts from a broad set of suppliers rather than a dngle
manufacturing floor and that condder the objectives/condraints specific to the supply chan
operation in just-in-time environment.

This paper presents a generdized parts grouping method that meets these requirements. The
remainder of the paper is organized as follows. The next section provides details of the vector



perturbation method that we developed to group parts based on operation sequences and discusses its
advantages and limitations. Different measures of pats dissmilaity ae introduced for further
evauation. We then illudrate the method numericaly. Findly, conclusons are given based on the
results from this study.

II. METHOD DESCRIPTION

This Vector Perturbation Approach extends the current literature in GT by representing the operation
sequences required to manufacture parts as a vector space model. From this mode we can then
identify independent part families. We dine the operation sequence of a part as the ordering of the
manufacturing operations required to congruct the part. We chose the operation sequence
representation over the routing card representation due to the fact that routing cards describe the
specific machinery a a given manufacturer. In the generdized parts grouping problem, we need to
consgder operations over the entire supply chain, as opposed to a given supplier. Therefore, we
believe that the operation sequence is an appropriate abstraction br the machinery used throughout a
given supply chain.

In addition to this higher level of abdraction that operation sequences provide, we aso need the
cgpability to preserve the order of the operations. In the generdized grouping problem, part families
must be as closdy talored to a supplier’s capabilities as possble. This problem is not solved by
merely providing a supplier with a family of pats tha can potentidly be built usng a supplier's
operations done. The pats must flow through the supplie’s manufacturing cdl in a proper
sequence. Therefore the sequence of operationsis akey input to the generalized grouping problem.

This vector perturbation method contains the following essentia steps:
(1) Representing the ordered operations of apart in theform of d-dimensiona part vectors,
(2) Evduating ardationship between each pair of part vectors usng adissmilarity function;
(3) Applying an agppropriate smilarity coefficient based cdustering dgorithm to determine part
families based on the dissmilarity matrix computed in step 2);
(4) Finding amore optima solution by changing the perturbation parameter d.

I1.1. Data Representation

Typicaly, to represent the operations required to build parts, a 2-dimensgond matrix is used. There
are a number of problems with this type of representation. Most notably, these are the loss of
operation sequences information, the lack of support for visudizing the information, and the
difficulty in discovering the natural Structure of the data To overcome these limitations we propose a
new approach for representing part operation sequences. We begin with a set P of part operation
sequences and a derived vaue d of distinct operations liged in al these sequences. We modd each
operation sequence as a vector u in the d-dimensional space K. This alows for one coordinate for
each of the d operations. The ;* coordinate of a vector u is a number that relates the j” operation
with the given operation sequence. The vadue of the ;” coordinate can be expressed mathemdically
asfollows

0, if the operation sequence does not contain operation

2.1
u it d>order(j), @D
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—_— — —

otherwise
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- w;isthe weight assigned to each operation. Thisweight represents a non-operation based factor
that may influence the grouping of the parts, for example, the cost of equipment, the unit
operation time, its average workload, etc.;

- distheperturbation parameter used to represent the importance of the sequencing of operations;

- order( j )is the number that defines the order in which the operaion ; occurs in the operation
sequence.

For example, consder a hypothetica set of operation sequences for two parts as shown in Table 1.
There are four (d = 4) didinct operations, resulting in a 4-dimentitiond space. The operationa
sequence vectors areillustrated in Table 2.

TABLE 1. TABLE 2.
Routing Sequences for Two Parts. Vectors Corresponding to Parts P, and P,
Part No. Routing sequence Vector No.  Vector components
P1 02-01-04 uz 1+2¢,1 + d, 0, 1+3x)
P, 03-04—-0:-07 uz (1+3¢,1+4%¢,1+d,1+2x)

I1.2. Analysis of the Relations Using Dissimilarity Functions

Now that we have represented the data, we need to andyze the relations between parts, i.e, the
gmilarity, or dissmilarity between them. To do this five different dissmilaity coefficients are
introduced and compared to each other.

(1) Euclidean square distance D¢(U;,U;) showing the most natural relations for vectorsin the
Euclidean space. It is defined by

k=d
De(ﬁi , 61) = él (O - 5jk)2 (2.2)

Notice that clusters defined by Euclidean distance will be invariant to trandations or rotations of
the pat vectors However, they will not be invariant to linear trandformations or other
trandformations that digtort the distance reationship. Thus, introducing weighting terms for the
operations can result in a different grouping of the partsinto clusters.

(2) Dissimilarity coefficient D¢(U;,u;) computed as the contraction of the Euclidean distance

between two part vectors by a factor proportional to the number of common non-zero vector
components, or the number of common operationsin the part operation sequences

D.©.5) =4n5.9)),.0.5)) (2.3)

where y (Nc(U;, U;)) is a function of the totad number Nc(U;, U;) of common non-zero vector
components. For this anaysis we set Y (n¢(u;, U;)) = 1/ (1 + n(u; u;)), to avoid division by
zero. The Euclidean distance measurement is srongly influenced by the dissmilarities of the

vector coordinates. This dissmilarity measure distinguishes two pairs of part vectors a the same
Euclidean digance as being different if the number of common operatiions between their part



pars is different. . The proposed dissmilarity coefficient weighs the Euclidean distance between
vectors based on the smilarities of the vectors.

(3) City-block distance Dy(U;,U;) (i.e., Manhattan distance) defined by

k=d
~ =~ 0 |~ ~
D (Gi.0) = a |0k - Ojk‘ (24)
k=1
(4) McAuley’s® dissimilarity coefficient Dy (ui,uj) defined by
~ n (6!6)
DM(Oi,Oj):l' % (25)
n.(5;.9;)

where Ng(U;, U;) is the totdd number of common non-zero vector components as defined above
and n(U;,U;) is the total number of non-zero vector components of both vectors.
(5) Dissimilarity coefficient Di(U;,U;) defined by the ratio

o\ 1
Dr(oi,oj)—1+ n.(5,.0,) (2.6)
D.(®:.9;)

If two vectors are the same, i.e. Dg(U;,u;) = O, then the dissmilarity coeffident D(uj,u;) is
defined to be equa to 0, to avoid divison by zero. Of particular note here is the observation that
0 £ Dy(u;,u;) £ 1 and it is equal to 1 when there are no common non-zero components. Thus,
the two parts are less dissmilar when the number of commons, N., operations in ther routing
sequences is larger and the Euclidean square distance De(Uj,U;) is smaller. It is dso interesting
to note here that if the perturbation prameter is ignored (in Equation (2.1) d=0), the dissmilarity
coeffident D,(U;,U;) reduces to McAuley's dissmilarity coefficient. The results for a grouping
problem therefore, can be verified usng this specid case and compared with McAuley's for
various changes of the perturbation parameter.

I1.3. Advantages and Limitations of the Vector Perturbation Approach

The proposed vector perturbation method for grouping the parts has several advantages over existing
gpproaches, particularly, when it is evaluated in terms of the generdized grouping problem.

The proposed agpproach is the first known method in the GT literature that builds a vector space
model for a st of operation sequences. This modd adlows the representation of part operation
sequences information and the &bility to visudize the information and andyze the naturd sructure
of the data Additiondly, one can apply geometric and linear agebra methods in andyzing part
information within this type of modd.

Most of the exising clustering techniques are strongly dependent on the shape, sze and density of
the clugters. With our vector representation there is the potentid to transform the n-dimensond
sace into forms well suited for the cludering techniques. A choice of a particular clustering
agorithm may dso depend on the smilarity measure used to define the relaions between parts. At
the smplest leve, the vector representation of operation sequences naturaly suggests numerica



amilarity metrics for parts, based on the Euclidean distance. However, many other related metrics
(Mahdanobis distance, city-block distance, etc) or nonmetric smilarity functions (cosne measure,
efc.) to relate two vectors can be introduced based on the nature of the data.

The proposed method takes into account both the 1) commonality of operations and 2) the amilarity
in operation sequences. These are the two essentiad features by which the amilarity of parts can be
characterized in the generdized parts grouping problem. The variation of the vector perturbation
parameter provides a dedrable compromise between the ease of resource assgnment and the
increese in production throughput by teking advantage of interleaving various parts through a
common set of sequenced operations. Moreover, in real world gpplications al the operations may be
not equaly important due to their difference in cods, unit processng time, etc. This new method
dlows mode heterogeneity among operations by assgning various weights to different operations.

Parts that are processed by the same operation more than once cause a specid problem when
unidirectiond materid flows in the manufacturing cdls are assumed. So far, the proposed method
assumes that the operation sequences do not contain backtracking operations. Research is underway
to extend the method by making it “sengitive’ to backtracking operations.

II1. CASE STUDY

In this section, the proposed method is applied to the problem used by Burbidge' and frequently
cited in the Group Technology literature. A list of parts and their operation sequences are shown in
Table 3. Each dement in the operation sequence denotes an operaion and not a machine as specified
by Burbidge. Since the method does not currently address backtracking, we have adjusted the data as
follows If an operation gppears more than once in a routing sequence, only one of these occurrences
was left to avoid backtracking; the rest are diminated (crossed out in Table 3). The objective is to
group 43 partsinto families based on the smilarity of their operation sequences.

Firdt, the input data has to be analyzed as to whether it has any sequencing problems. In the sdected
example, there are many part pars that may cause problems when assgned to the same family,
assuming that this family is processed in a unidirectiona flow cdl. For example, if the parts R=(7-4-
14-3) and B;=(3-14-7) are grouped together then any ordering of operations 3, 4, 7, and 14 within
the production cell results in backtracking of materid flow, and therefore, such pairs ae considered
as prohibited pairs.

Usng the Burbidge input data, the values of a dissmilarity matrix have been computed for each of
the dissmilarity coefficients described in Section 11.2. To illugrate the method we st the operation
weight W; = 1in Equation (2.1). For example, the dissmilarity between parts B and P computed
by McAuley'sis Dy (Us,U1) = 1 — (3/4) = 1/4. The dissimilarity coefficient D,(Us,U»;) between
the operation sequences of these parts is Dy(Us,Uy) = 1/ (1 + 3/ (1+26d+125d%). If we set the

vaue of d=0.2, then D,(Us,U») @0.38, which shows the effect of adding sequence information in
determining part Smilarity.

The next gep in parts clugtering is to group parts according to the dissmilarity coefficients that were
cacuaed. In this paper, the hierarchicd agglomeraive dudering dgorithm that utilizes Ward's
Minimum Variance criteria is used for parts grouping.'? Figure 1 is a Phyllips tree, or dendogram,
representing the breskdown of how the 43 parts, (Table 3), were actudly grouped based on the
McAuley’'s measure. The length of the branches shows how close one group of parts is to another.
For dl the dissmilarity matrices, there are five badc wel-separated part groups. When the vaue of
the perturbation parameter is smdl, the separation of the groups of parts is determined by their
differences in requirements of operations. And only closer to the leaves, are the differences in the
orders of operations more apparent, (see Table 5 and Table 6).



TABLE 3.
Operation Sequences for 43 parts and 16 operations Example Problem

Oneration Seauence
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Figure 1. Dendogram for McAuley's dissmilarity mairix Dy




To evduae the pats families 9eweraed for different dissmilarity measures we used the smple
matching measure of comparison.™® This measure is kased on a 2 x 2 contingency table as shown in
Table 4 in which dl part pars are classfied for two partitions into four classes. Table 5 shows the
comparison between the McAuley’s partition and each of the consdered dissmilarity coefficient
based partitions for different number of part families. Each entry in Table 5isin aform of a/ (b + ).
When the number of groups increases, the number of different assgnments, or misses, is getting
larger and the number of the same assgnments, or hits, is getting smdler.

TABLE 4. - (1,1) cdlass — two parts are assigned to the
Contingency Table for Paired Comparisons same family in the two partitions
between Partitions . (0,0) class — two parts are assigned to
different familiesin the two partitions
Partition1/Partition2 1 0 (10) class — two pats ae in the same
1 b family in the firg partition and in different
0 C d families in the second partition
(0,2) class — same as (1,0) class but with
the oppogite assgnment
TABLES.
Comparison of McAuley’ s Part Families with the Part Familiesfor Different Dissmilarity
Coefficient Measures
Dissimilaritv Measure Number of Grouns
5 6 7 8 9 10
|Citv Block Distance 13582 | 119/44 | 107/28 97/34 66/65 58/67
Euclidean Distance 159/34 106/76 82/78 66/87 47/105 43/104
Euclidean Contracted 181/0 120/42 88/66 74171 58/79 49/82
| Dissimilaritv Ratio 181/0 120/42 100/50 76/66 60/74 56/70

To compare the efficiency of the proposed method, the sequence utilization measure™* has been used.
This measurement is expressed as the ratio of the number of violated dements to the total number of
prohibited dements. The results of this andyds for different dissmilarity measures and different
number of groups are illudrated in Table 6. As one can see, the Euclidean distance based method
performs the best and the McAuley’'s peforms the worst out of al consdered dissmilarity
measures.

TABLE 6.
Andyss of Sequence Utilization for Different Dissmilarity Messures

Dissimilarity Measure Number of Groups

5 6 7 8 9 10
McAuley’s 0.56 0.62 0.64 0.65 0.66 0.66
Euclidean Distance 0.59 0.73 0.85 0.87 0.88 0.90
Euclidean Contracted 0.56 0.70 0.85 0.86 0.87 0.89
City Block Distance 0.60 0.59 0.68 0.68 0.80 0.86
Dissimilarity Ratio 0.56 0.70 0.71 0.86 0.87 0.89

Grouping parts a various levels on the dendogram gives different part families. Table 7 shows a 7
group solution of the example problem usng McAuley's and Euclideean disance dissmilarity
measures. It can be noticed that the two solutions for the same problems are different — 82 hits vs. 78
misses from Table 5 in the assgnments of parts to part families. The sequence utilizetion messure is
aso improved by 21% when the Euclidean distance combined with the vector perturbation approach
is used compared to the McAuley’ s approach.



TABLE 7.
Part Familiesfor a 7-group Solution Using McAuley’ s and Euclidean’s Dissmilarity Measures

McAulev EFuclidean Distance
Familv 1 {1.12.13.25. 26. 31. 39 {1.12.13.25. 26. 31. 39
Familv 2 {2 1028 32 37 38 40 47 {4 10 18 28 38 40
Familv 3 {6.7.17.34. 35. 36} {6.7.17.34. 35. 36}
Familv 4 {4.8.9.14.15.18.19.21. 23} [{8.14.15.16. 23. 29}
Familv 5 {33 431 {5.19.21.33.41.43}
Familv 6 {3.11.20.24.27. 30 {3.9.11.20.22.24.27_30}
Familv 7 {5.16.22.29. 41} {2.32 37 47

The next question that comes up in the andyss of the vector perturbation approach is whether the
proposed method is “sendtive’ to the variations of the perturbation parameter and wha are the
suggested default values for this parameter.

Viewing the problem geometricaly, when the perturbation parameter is set d = 0 and the operation
weight is st wj = 1 in Equation (2.1), each operation sequence is mapped in one of the vertices of the
d-dimensiond unit hypercube. We cdl these vertices the resource centers. In this case, the operation
sequences (01-0,-03) and (03-0,-01) will be mapped to the same resource center. When sequencing
is taken into account, the god is to map each operation sequence into a point of K in the vidnity of
its corresponding resource center. Thus, if L is the maximum routing length in the set of dl operaion
sequences, then taking d < (1 / L) will guarantee that the distance between any par of points in the
same neighborhood will be less than the distance between any par of points from the different
neighborhoods. In dl the examples above, we set Ogerayr = (0.99 / L). Table 8 summarizes the
results of 8-group clugtering for different perturbations of the parameter d. The results are the pair
wise comparisons (in terms of hits and misses) of part families obtained using the McAuley's and D,
dissmilarity measures with different values of d. The last row in the table specifies the vaues of
sequence utilization measure™ for each of the considered cases.

TABLES8.
Sengitivity to the Variaions of the Vector Perturbation Parameter
McAuley| D, (d = 0.05) |D, (dggauit =0.14)[ D, (d = 0.25)
McAuley -
D, (d =0.05) 92/42 —
D, (dgefauit = 0.14) 76/66 93/24 -
D, (d =0.25) 85/51 102/9 92/21 —
Sequence Utilization: 0.65 0.73 0.86 0.78

IV. SUMMARY AND CONCLUSIONS

This paper has presented a vector perturbation approach to the generdized parts grouping problem.
The need for this method is dictated by maor distinctions in the traditional, manufacturing oriented,
and generdized, supply chain oriented, grouping problems. The mgor features of this method are:

(1) It builds a vector space modd to represent part operation sequence information. This
technique improves visudization and discovery of naurd part groups as high-dendty sets of
points in n-dimensona vector space. We bdieve that this is the firs modd of this type that
has been proposed in the GT literature;

(2) It groups acollection of partsfor agenera set of suppliers, not just asingle known supplier;



(3) It provides a desirable compromise between the ease of resource assgnment and the increase
in production throughput by teking advantage of interleaving various pats through a
common set of sequenced operations. This festure is due to the variation of the vector
perturbation parameter.

Results from the presented case example illugtrate the capability of this approach to generate part
groups with a 90% sequence utilization measure. This contrasts to the 66% vaue achieved with the
traditional approaches. This demondrates the ability to process more parts within a unidirectiona
flow line cdl.

This method was dso applied to three large sets of G130 and 16 arcraft part data. The results,
though preiminary, are very promisng. Our concluson is that the Vector Perturbation Approach is
well suited to address the generdized grouping problem, and can be used to enhance the efficiency
and utilization of most supply chain systems.
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