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ABSTRACT: The Vector Perturbation Approach is introduced for addressing the generalized parts 
grouping problem, identifying part families for a general set of suppliers, not just a single supplier. 
This method is driven by the need for flexible and lean supply chain systems. A vector space model 
is used to represent a set of operation sequences as opposed to the traditional matrix and integer 
programming models in Group Technology. Using this approach we find that we are able to generate 
part groups from 90% of the available parts, in which all the operation sequences are preserved. This 
contrasts with only 66% of the available parts grouped using the traditional methods. Furthermore, a 
vector representation of operation sequences provides an intuitive means for discovering the natural 
structure of the part data. From these results we conclude that this technique can dramatically 
improve the effectiveness of the entire supply chain. 
 
 

I. INTRODUCTION 
 
A key challenge to military readiness is the ability to maintain and quickly repair damaged aircraft. 
This challenge requires manufacturers and distributors of spare parts to be able to supply the military 
with the right part, in a short amount of time, for a reasonable price. Historically, this challenge has 
been addressed by developing and maintaining a very large spare parts inventory. 
 
A solution to these types of problems is for part manufacturers to deliver a needed part in a matter of 
hours. This approach completely bypasses the need for an inventory of spare parts and thus greatly 
reduces inventory costs, as advocated by a number of just-in-time methods. These methods advocate 
the building of efficient manufacturing cells by grouping parts based on how they are made, often 
referred to as Group Technology (GT).1,2  
 
The conventional application of GT is to create manufacturing cells for parts to be produced on a 
single manufacturing floor. A cell consists of a set of functionally dissimilar machines dedicated to 
the production of one or more families of similar parts. Grouping similar parts is considered as a part 
of the cell formation problem.3 Most of the methods of addressing this problem are rooted in 
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mathematical approaches4 whose objectives are to optimize a single manufacturing environment 
under a number of constraints specific to this environment. 
 
A new application of GT, driven by the need for flexible and “lean” supply chain management 
(SCM), has recently been introduced in the literature.5 In that paper, a framework for approaching 
the generalized parts grouping problem was proposed based on the use of the Autonomous 
Intelligent Agent Technology (AIA) in combination with the extensions to traditional Group 
Technology. In the generalized parts grouping, rather than grouping parts based on a known set of 
manufacturing capabilities, these groups are developed for a general set of part manufacturers. 
 
This paper presents the vector perturbation approach to the generalized parts grouping problem 
while further extending traditional GT approaches. The need for this method is dictated by major 
distinctions in the traditional, manufacturing oriented, and generalized, supply chain oriented, 
grouping problems. The fundamental distinction between these two problems is based on the 
differences in the objectives/constraints they seek to satisfy.  
 
Traditional Approach 
 
In traditional GT, the existing approaches can be distinguished as structural and operational. By 
structural we mean methods that group parts while building the manufacturing cells based on routing 
information alone. Some of these methods use this information in a limited sense by utilizing only a 
machine-part incidence matrix.6-8 McAuley’s8 approach is a classical example in this category. 
Methods in the second category, which we referred to as operational, build cells while incorporating 
operational information such as part production volume, cost, a processing time, etc.9,10 Since 
operational information is always manufacturer specific, methods in this category can not be directly 
applied to solve the generalized parts grouping problem found within most production supply chains. 
 
The structure and operational approaches described above have a common objective, i.e., they strive 
to increase production effectiveness of a single manufacturing environment. This is achieved by 
identifying part groups and building manufacturing cells in such a way that each part group can be 
fully processed in a cell. Examples of mathematical formulations of this objective previously used 
are to minimize the inter and intra cell moves,8 to maximize cell independence,6,7 and to minimize 
the accumulative material handling costs.11 Some production constraints used are the desirable 
number of cells, the maximum number of machines in each cell, or the maximum processing time.  
 
Generalized Approach 
 
In the generalized parts grouping problem, the objective is to group parts into families in order to 
optimize the efficiency of the entire supply chain rather than a single manufacturing floor. This 
process involves the following key stages: 

(1) Grouping parts based on how they are made; 
(2) Selecting a supplier for building each family of parts from a broad set of suppliers; 
(3) Arranging the selected manufacturing environment to efficiently build these part families. 

Any solution to this problem at a minimum is subject to the following constraints:  
• The supply chain must respond to the immediate need for a spare part (time constraints); 
• The cumulative inventories within the supply chain have to be minimized (waste constraints); 
• Parts from the supply chain must be affordable (cost constraints). 

 
Based on the above discussion, we conclude that 1) the traditional cell manufacturing problem and 
the generalized supply chain problem are quite different; 2) there is a need for the methods that 
provide a flexible solution to grouping parts from a broad set of suppliers rather than a single 
manufacturing floor and that consider the objectives/constraints specific to the supply chain 
operation in just-in-time environment.  
This paper presents a generalized parts grouping method that meets these requirements. The 
remainder of the paper is organized as follows. The next section provides details of the vector 



perturbation method that we developed to group parts based on operation sequences and discusses its 
advantages and limitations. Different measures of parts dissimilarity are introduced for further 
evaluation. We then illustrate the method numerically. Finally, conclusions are given based on the 
results from this study. 
 
 

II. METHOD DESCRIPTION 
 

This Vector Perturbation Approach extends the current literature in GT by representing the operation 
sequences required to manufacture parts as a vector space model. From this model we can then 
identify independent part families. We define the operation sequence of a part as the ordering of the 
manufacturing operations required to construct the part. We chose the operation sequence 
representation over the routing card representation due to the fact that routing cards describe the 
specific machinery at a given manufacturer. In the generalized parts grouping problem, we need to 
consider operations over the entire supply chain, as opposed to a given supplier. Therefore, we 
believe that the operation sequence is an appropriate abstraction for the machinery used throughout a 
given supply chain. 
 
In addition to this higher level of abstraction that operation sequences provide, we also need the 
capability to preserve the order of the operations. In the generalized grouping problem, part families 
must be as closely tailored to a supplier’s capabilities as possible. This problem is not solved by 
merely providing a supplier with a family of parts that can potentially be built using a supplier’s 
operations alone. The parts must flow through the supplier’s manufacturing cell in a proper 
sequence. Therefore the sequence of operations is a key input to the generalized grouping problem. 
 
This vector perturbation method contains the following essential steps: 

(1) Representing the ordered operations of a part in the form of d-dimensional part vectors; 
(2) Evaluating a relationship between each pair of part vectors using a dissimilarity function;  
(3) Applying an appropriate similarity coefficient based clustering algorithm to determine part 

families based on the dissimilarity matrix computed in step 2); 
(4) Finding a more optimal solution by changing the perturbation parameter δ. 

 
 
II.1. Data Representation 
 
Typically, to represent the operations required to build parts, a 2-dimensional matrix is used. There 
are a number of problems with this type of representation. Most notably, these are the loss of 
operation sequences information, the lack of support for visualizing the information, and the 
difficulty in discovering the natural structure of the data. To overcome these limitations we propose a 
new approach for representing part operation sequences. We begin with a set P of part operation 
sequences and a derived value d of distinct operations listed in all these sequences. We model each 
operation sequence as a vector υ in the d-dimensional space Rd. This allows for one coordinate for 
each of the d operations. The jth coordinate of a vector υ is a number that relates the jth operation 
with the given operation sequence. The value of the jth coordinate can be expressed mathematically 
as follows 
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− ωj is the weight assigned to each operation. This weight represents a non-operation based factor 
that may influence the grouping of the parts, for example, the cost of equipment, the unit 
operation time, its average workload, etc.; 

− δ is the perturbation parameter used to represent the importance of the sequencing of operations; 
− order( j ) is the number that defines the order in which the operation j occurs in the operation 

sequence. 
 
For example, consider a hypothetical set of operation sequences for two parts as shown in Table 1. 
There are four (d = 4) distinct operations, resulting in a 4-dimentitional space. The operational 
sequence vectors are illustrated in Table 2. 
 
 

TABLE 1. 
Routing Sequences for Two Parts. 

 
Part No. Routing sequence 
    P1  O2 – O1 – O4 

    P2  O3 – O4 – O1 – O2 
 
 

 
 

TABLE 2. 
Vectors Corresponding to Parts P1 and P2 

 
Vector No. Vector components 
υ1 (1 + 2⋅δ, 1  +   δ,    0,    1 + 3⋅δ) 
υ2 (1 + 3⋅δ, 1 + 4⋅δ, 1 + δ, 1 + 2⋅δ) 
 

II.2. Analysis of the Relations Using Dissimilarity Functions  
 

Now that we have represented the data, we need to analyze the relations between parts, i.e., the 
similarity, or dissimilarity between them. To do this, five different dissimilarity coefficients are 
introduced and compared to each other. 
 
(1) Euclidean square distance De(υi,υj) showing the most natural relations for vectors in the 

Euclidean space. It is defined by 
 
 
 
 
 
 

Notice that clusters defined by Euclidean distance will be invariant to translations or rotations of 
the part vectors. However, they will not be invariant to linear transformations or other 
transformations that distort the distance relationship. Thus, introducing weighting terms for the 
operations can result in a different grouping of the parts into clusters. 

(2) Dissimilarity coefficient Dc(υi,υj) computed as the contraction of the Euclidean distance 
between two part vectors by a factor proportional to the number of common non-zero vector 
components, or the number of common operations in the part operation sequences 

 
 
 
 
 
 

where ψ (nc(υi, υj)) is a function of the total number nc(υi, υj) of common non-zero vector 
components. For this analysis we set ψ (nc(υi, υj)) = 1 / (1 + nc(υi, υj)), to avoid division by 
zero. The Euclidean distance measurement is strongly influenced by the dissimilarities of the 
vector coordinates. This dissimilarity measure distinguishes two pairs of part vectors at the same 
Euclidean distance as being different if the number of common operations between their part 

∑
=

=

−=
dk

1k

2
jkikjie

)õ(õ)õ,õ(D
rr

(2.2) 

)õ,õ())õ,õ(ø(n)õ,õ( jiejicjic DD
rrrrrr

⋅= (2.
3) 

)õ,õ())õ,õ(ø(n)õ,õ( jiejicjic DD
rrrrrr

⋅=  (2.3) 



pairs is different. . The proposed dissimilarity coefficient weighs the Euclidean distance between 
vectors based on the similarities of the vectors. 

(3) City-block distance Db(υi,υj) (i.e., Manhattan distance) defined by 
 
 
 
 
 
 
(4) McAuley’s8 dissimilarity coefficient DM(υi,υj) defined by 
 
 
 
 
 
 

where nc(υi, υj) is the total number of common non-zero vector components as defined above 
and nt(υi,υj) is the total number of non-zero vector components of both vectors.  

(5) Dissimilarity coefficient Dr(υi,υj) defined by the ratio 
 
 
 
 
 
 

If two vectors are the same, i.e. De(υi,υj) = 0, then the dissimilarity coefficient Dr(υi,υj) is 
defined to be equal to 0, to avoid division by zero. Of particular note here is the observation that 
0 ≤ Dr(υi,υj) ≤ 1 and it is equal to 1 when there are no common non-zero components. Thus, 
the two parts are less dissimilar when the number of commons, nc, operations in their routing 
sequences is larger and the Euclidean square distance De(υi,υj) is smaller. It is also interesting 
to note here that if the perturbation parameter is ignored (in Equation (2.1) δ=0), the dissimilarity 
coefficient Dr(υi,υj) reduces to McAuley’s dissimilarity coefficient. The results for a grouping 
problem therefore, can be verified using this special case and compared with McAuley’s for 
various changes of the perturbation parameter. 

 
 
II.3. Advantages and Limitations of the Vector Perturbation Approach 
 
The proposed vector perturbation method for grouping the parts has several advantages over existing 
approaches, particularly, when it is evaluated in terms of the generalized grouping problem. 
 
The proposed approach is the first known method in the GT literature that builds a vector space 
model for a set of operation sequences. This model allows the representation of part operation 
sequences information and the ability to visualize the information and analyze the natural structure 
of the data. Additionally, one can apply geometric and linear algebra methods in analyzing part 
information within this type of model. 
 
Most of the existing clustering techniques are strongly dependent on the shape, size and density of 
the clusters. With our vector representation there is the potential to transform the n-dimensional 
space into forms well suited for the clustering techniques. A choice of a particular clustering 
algorithm may also depend on the similarity measure used to define the relations between parts. At 
the simplest level, the vector representation of operation sequences naturally suggests numerical 
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similarity metrics for parts, based on the Euclidean distance. However, many other related metrics 
(Mahalanobis distance, city-block distance, etc.) or nonmetric similarity functions (cosine measure, 
etc.) to relate two vectors can be introduced based on the nature of the data. 
 
The proposed method takes into account both the 1) commonality of operations and 2) the similarity 
in operation sequences. These are the two essential features by which the similarity of parts can be 
characterized in the generalized parts grouping problem. The variation of the vector perturbation 
parameter provides a desirable compromise between the ease of resource assignment and the 
increase in production throughput by taking advantage of interleaving various parts through a 
common set of sequenced operations. Moreover, in real world applications all the operations may be 
not equally important due to their difference in costs, unit processing time, etc. This new method 
allows model heterogeneity among operations by assigning various weights to different operations. 
 
Parts that are processed by the same operation more than once cause a special problem when 
unidirectional material flows in the manufacturing cells are assumed. So far, the proposed method 
assumes that the operation sequences do not contain backtracking operations. Research is underway 
to extend the method by making it “sensitive” to backtracking operations. 
 
 

III. CASE STUDY 
 
In this section, the proposed method is applied to the problem used by Burbidge1 and frequently 
cited in the Group Technology literature. A list of parts and their operation sequences are shown in 
Table 3. Each element in the operation sequence denotes an operation and not a machine as specified 
by Burbidge. Since the method does not currently address backtracking, we have adjusted the data as 
follows. If an operation appears more than once in a routing sequence, only one of these occurrences 
was left to avoid backtracking; the rest are eliminated (crossed out in Table 3). The objective is to 
group 43 parts into families based on the similarity of their operation sequences.  
 
First, the input data has to be analyzed as to whether it has any sequencing problems. In the selected 
example, there are many part pairs that may cause problems when assigned to the same family, 
assuming that this family is processed in a unidirectional flow cell. For example, if the parts P5=(7-4-
14-3) and P21=(3-14-7) are grouped together then any ordering of operations 3, 4, 7, and 14 within 
the production cell results in backtracking of material flow, and therefore, such pairs are considered 
as prohibited pairs. 
 
Using the Burbidge input data, the values of a dissimilarity matrix have been computed for each of 
the dissimilarity coefficients described in Section II.2. To illustrate the method we set the operation 
weight ω j =  1 in Equation (2.1). For example, the dissimilarity between parts P5 and P21 computed 
by McAuley’s is DM(υ5,υ21) = 1 – (3/4) = 1/4. The dissimilarity coefficient Dr(υ5,υ21) between 
the operation sequences of these parts is Dr(υ5,υ21) = 1 / (1 + 3 / (1+2⋅δ+12⋅δ2)). If we set the 
value of δ=0.2, then Dr(υ5,υ21) ≅ 0.38, which shows the effect of adding sequence information in 
determining part similarity. 
 
The next step in parts clustering is to group parts according to the dissimilarity coefficients that were 
calculated. In this paper, the hierarchical agglomerative clustering algorithm that utilizes Ward’s 
Minimum Variance criteria is used for parts grouping.12 Figure 1 is a Phyllips tree, or dendogram, 
representing the breakdown of how the 43 parts, (Table 3), were actually grouped based on the 
McAuley’s measure. The length of the branches shows how close one group of parts is to another. 
For all the dissimilarity matrices, there are five basic well-separated part groups. When the value of 
the perturbation parameter is small, the separation of the groups of parts is determined by their 
differences in requirements of operations. And only closer to the leaves, are the differences in the 
orders of operations more apparent, (see Table 5 and Table 6). 



TABLE 3. 
Operation Sequences for 43 parts and 16 operations Example Problem 

 
    Operation Sequence   

P1 5 9 6 7 5    
P2 1 8 5 8 7 15 13 1 
P3 7 12 10 7     
P4 8        
P5 3 14 4 3     
P6 5 13       
P7 2 5 15 2     
P8 7 4 5      
P9 3 10 4 7 3    
P10 8 1 15      
P11 7 11       
P12 7 5 9 7     
P13 6 5 9      
P14 3 5 4 5     
P15 4 7       
P16 4        
P17 2 13 5 2     
P18 8 15       
P19 3 5 7 4 5 14   
P20 7 10       
P21 3 7 4 14 3    
P22 4 11       
P23 3 5 4 7     
P24 7 10 12 11 8    
P25 6 9       
P26 9        
P27 10 11 7      
P28 1 8 7      
P29 3 4       
P30 10 11       
P31 7 9       
P32 1 8 5 15 8    
P33 4 14 5 4     
P34 2 5       
P35 13 2       
P36 2        
P37 0 1 8 7 5 15 8  
P38 1 8 7 15 8    
P39 5 9       
P40 8 1 5 8     
P41 4 8 14      
P42 0 1 8 5 1 15 0  
P43 4 5 7 14 5    

 

 
 

Figure  1. Dendogram for McAuley’s dissimilarity matrix DM 



To evaluate the parts families generated for different dissimilarity measures we used the simple 
matching measure of comparison.13 This measure is based on a 2 x 2 contingency table as shown in 
Table 4 in which all part pairs are classified for two partitions into four classes. Table 5 shows the 
comparison between the McAuley’s partition and each of the considered dissimilarity coefficient 
based partitions for different number of part families. Each entry in Table 5 is in a form of a / (b + c). 
When the number of groups increases, the number of different assignments, or misses, is getting 
larger and the number of the same assignments, or hits, is getting smaller. 
 
 

TABLE 4. 
Contingency Table for Paired Comparisons 

between Partitions 
 

Partition1/Partition2 1 0 
1 a b 
0 c d 

 
 
 

• (1,1) class – two parts are assigned to the 
same family in the two partitions 

• (0,0) class – two parts are assigned to 
different families in the two partitions 

• (1,0) class – two parts are in the same 
family in the first partition and in different 
families in the second partition 

• (0,1) class – same as (1,0) class but with 
the opposite assignment 

 
TABLE 5. 

Comparison of McAuley’s Part Families with the Part Families for Different Dissimilarity 
Coefficient Measures 

 
Dissimilarity Measure    Number of Groups    
 5 6 7 8 9 10 
City Block Distance 135/82 119/44 107/28 97/34 66/65 58/67 
Euclidean Distance 159/34 106/76 82/78 66/87 47/105 43/104 
Euclidean Contracted 181/0 120/42 88/66 74/71 58/79 49/82 
Dissimilarity Ratio 181/0 120/42 100/50 76/66 60/74 56/70 

 
 
To compare the efficiency of the proposed method, the sequence utilization measure14 has been used. 
This measurement is expressed as the ratio of the number of violated elements to the total number of 
prohibited elements. The results of this analysis for different dissimilarity measures and different 
number of groups are illustrated in Table 6. As one can see, the Euclidean distance based method 
performs the best and the McAuley’s performs the worst out of all considered dissimilarity 
measures.  
 

TABLE 6.  
Analysis of Sequence Utilization for Different Dissimilarity Measures 

 
Dissimilarity Measure   Number of Groups   
 5 6 7 8 9 10 
McAuley’s 0.56 0.62 0.64 0.65 0.66 0.66 
Euclidean Distance 0.59 0.73 0.85 0.87 0.88 0.90 
Euclidean Contracted 0.56 0.70 0.85 0.86 0.87 0.89 
City Block Distance 0.60 0.59 0.68 0.68 0.80 0.86 
Dissimilarity Ratio 0.56 0.70 0.71 0.86 0.87 0.89 

 
 
Grouping parts at various levels on the dendogram gives different part families. Table 7 shows a 7-
group solution of the example problem using McAuley’s and Euclidean distance dissimilarity 
measures. It can be noticed that the two solutions for the same problems are different – 82 hits vs. 78 
misses from Table 5 in the assignments of parts to part families. The sequence utilization measure is 
also improved by 21% when the Euclidean distance combined with the vector perturbation approach 
is used compared to the McAuley’s approach. 



TABLE 7.  
Part Families for a 7-group Solution Using McAuley’s and Euclidean’s Dissimilarity Measures 

 
 McAuley Euclidean Distance 

Family 1 {1, 12, 13, 25, 26, 31, 39} {1, 12, 13, 25, 26, 31, 39} 
Family 2 {2, 10, 28, 32, 37, 38, 40, 42} {4, 10, 18, 28, 38, 40} 
Family 3 {6, 7, 17, 34, 35, 36} {6, 7, 17, 34, 35, 36} 
Family 4 {4, 8, 9, 14, 15, 18, 19, 21, 23} {8, 14, 15, 16, 23, 29} 
Family 5 {33, 43} {5, 19, 21, 33, 41, 43} 
Family 6 {3, 11, 20, 24, 27, 30} {3, 9, 11, 20, 22, 24, 27, 30} 
Family 7 {5, 16, 22, 29, 41} {2, 32, 37, 42} 

 
 
The next question that comes up in the analysis of the vector perturbation approach is whether the 
proposed method is “sensitive” to the variations of the perturbation parameter and what are the 
suggested default values for this parameter. 
 
Viewing the problem geometrically, when the perturbation parameter is set δ = 0 and the operation 
weight is set ωj = 1 in Equation (2.1), each operation sequence is mapped in one of the vertices of the 
d-dimensional unit hypercube. We call these vertices the resource centers. In this case, the operation 
sequences (O1-O2-O3) and (O3-O2-O1) will be mapped to the same resource center. When sequencing 
is taken into account, the goal is to map each operation sequence into a point of Rd in the vicinity of 
its corresponding resource center. Thus, if L is the maximum routing length in the set of all operation 
sequences, then taking δ < (1 / L) will guarantee that the distance between any pair of points in the 
same neighborhood will be less than the distance between any pair of points from the different 
neighborhoods. In all the examples above, we set δdefault = (0.99 / L). Table 8 summarizes the 
results of 8-group clustering for different perturbations of the parameter δ. The results are the pair 
wise comparisons (in terms of hits and misses) of part families obtained using the McAuley’s and Dr 
dissimilarity measures with different values of δ. The last row in the table specifies the values of 
sequence utilization measure14 for each of the considered cases. 
 
 

TABLE 8.  
Sensitivity to the Variations of the Vector Perturbation Parameter 

 
 McAuley Dr (δδ  = 0.05) Dr (δδ default = 0.14) Dr (δδ  = 0.25) 

McAuley     
Dr (δδ  = 0.05) 92/42    
Dr (δδ default = 0.14) 76/66 93/24   
Dr (δδ  = 0.25) 85/51 102/9 92/21  
Sequence Utilization: 0.65 0.73 0.86 0.78 

 
 

IV. SUMMARY AND CONCLUSIONS 
 

This paper has presented a vector perturbation approach to the generalized parts grouping problem. 
The need for this method is dictated by major distinctions in the traditional, manufacturing oriented, 
and generalized, supply chain oriented, grouping problems. The major features of this method are: 

(1) It builds a vector space model to represent part operation sequence information. This 
technique improves visualization and discovery of natural part groups as high-density sets of 
points in n-dimensional vector space. We believe that this is the first model of this type that 
has been proposed in the GT literature; 

(2) It groups a collection of parts for a general set of suppliers, not just a single known supplier; 



(3) It provides a desirable compromise between the ease of resource assignment and the increase 
in production throughput by taking advantage of interleaving various parts through a 
common set of sequenced operations. This feature is due to the variation of the vector 
perturbation parameter. 

 
Results from the presented case example illustrate the capability of this approach to generate part 
groups with a 90% sequence utilization measure. This contrasts to the 66% value achieved with the 
traditional approaches. This demonstrates the ability to process more parts within a unidirectional 
flow line cell.  
 
This method was also applied to three large sets of C-130 and F-16 aircraft part data. The results, 
though preliminary, are very promising. Our conclusion is that the Vector Perturbation Approach is 
well suited to address the generalized grouping problem, and can be used to enhance the efficiency 
and utilization of most supply chain systems. 
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