Hidden crossings theory beyond single
electron systems

Predrag Krstic

Abstract. What are hidden crossings, in what atomic systems do they emerge? What
do we gain in styding and developing the underlying theory? Where, when and the
hidden crossings theory is applied? Meaning of the hidden crossings and techniques
for thei detection and application are discussed for multielectron systems. Particular
attention is paid to the slowly colliding H+H and HT+He systems.

INTRODUCTION

A unique feature of the Hidden Crossings (HC) theory [1] is that it provides
a relatively easy description of the physical processes where other theories have
difficulties. Thus, ionization in slow ion-atom collisions, at least at the level of cross
sections is simply and accurately described and calculated with the HC theory. On
the other hand, Molecular and Atomic Orbital Close Coupling (MOCC and AOCC,
respectively) methods, based on the expansion in discrete basis functions, require
large bases and quasi-discretization of the continuum to reach the results often
with questionable accuracy. Even the methods based on a direct solution [2] of the
time-dependent Schrodinger equation on numerical lattice (LTDSE) are ineffective
at low energies due to a large number of time steps needed. In these cases the
HC-based calculations are hundreds to thousands times more effective concerning
the CPU time, even if one counts the time needed to sfind the topology of the
hidden crossings for a considered collision system. Besides, the method provides
the treatment of all inelastic processes “on the same footings” and with the same
accuracy [3]. To illustrate, Fig. 1 shows comparisons of the HC results with the
“benchmarking”, LTDSE calculations for excitation and ionization for the low-
energy heavy particle collisions.

The HC approach is limited to the phenomena which are slowly varying on the
time scale of the considered quantum system, like are atomic systems in slowly
varying external fields or slow heavy-particle collisions. It is an asymptotic ap-
proach, exact in the adiabatic limit. For a collision at relative velocity v..; the
range of validity is, thus, defined by the adiabatic condition

Veoll < Vat <1>



where v, is the characteristiv velocity of the active electron. A significant part
of the phase of an ionizing electron wave function is built through the Rydberg
states where adiabaticity is lost and, thus, the electron angular spectra cannot be
accurately calculated with the standard HC approach. This drawback might be
corrected to a certain extent and probably removed by expansion of the (Z,e,Z5)
wavefunction in terms of the complex-energy two-center Sturmians [4].

-
[o]

S 10

§ SHe G
S 10" % 1 = 107 L - A
4 o] ~ 3
S B ¥
%) 3 ]
uw) O 8 10—18 | i
o o
O —— HC[3] 2 — HC
S 107" OLTDSE [2]1 £ 107 OLTDSE _
= ——-MOCC[4]1 § ---- CTMC :
u‘% OO Exp. [5] IS

i Ll Ll L 10_20 Ll Ll Ll L

10° 10" 10* 10° 10°  10'  10* 10°

Energy (keV) Energy (keV)

FIGURE 1. Comparison of the HC and LTDSE results for a) excitation H(1s)—H(2s) by proton
impact and b) ionization of He™ (1s) by antiproton impact [7,8].

The HC theory strongly relies on existence of well separated electronic part, H,
of the total Hamiltonian I of the system. The conditions for separation of fast
“internal” (electronic) and slow “external” (nuclear) motion (Born-Oppenheimer
approximation) rely on the large difference in masses between an electron and a
nucleus, i.e. on the smallness of the characteristic electron momentum in compari-
son to the nuclear one. This defines the lower bound of v.,; for the applicability of
the HC theory.

The hidden crossings are crossings of the complex eigenenergy surfaces of the
same symmetry at complex values of K. These emerge form the electronic adiabatic
problem

H({F}, B)®u({r}, B) = Ba(R)®u({r}, F) (2)

when solved for a fixed complex “parameter” R. Since the adiabatic quasi-molecular
terms of the same symmetry do not cross, the HC’s can appear only for complex
R, when the H,; is not Hermitian, and the Neuman-Wigner non-crossing rule is



not applicable. {77} is here a set of electronic coordinates, while the complex pa-
rameter R characterises the (slowly varying) perturbation of the problem, which
causes transitions: Internuclear distance (collisions), external field (electric or mag-
netic), envelope of a laser pulse (in Floquet space), ... The physical conditions for
appearance of a hidden crossing for a particular R are discussed in Section II,
on the example of a three-body (Z;,e,Zs) collision system. Multielectron Hidden
Crossings theory (MEHC), discussed in Section III, is conceptually straightforward
multi-body generalization of the three-body HC theory, but technically this is a
formidable problem which reduces to a multielectron molecular eigenvalue problem
in the plane of complex internuclear distance R.

I SINGLE-ELECTRON HC THEORY

Collisionaly induced inelastic transition cannot occur in the adiabatic limit,
Veo — 0 (with exception for the exothermic ones). As ., increases from zero, a
tunneling may take place at the internuclear distances Ry of the so called acciden-
tal (dynamic) quasi-resonances, known also as Landau-Zener or avoided crossings
of the adiabatic quasi-molecular terms. This is shown in Fig. 2a), for the example
of N"+H. At R ~ Rzz ~ 30 a.u. the small coupling between the states |7io>
and |6ho>, Hjy, is proportional to the small energy gap AFE)y between the terms
Er7i» and Egpny, causing a slow tunneling through the radial potential barrier be-
tween the two centers, (Fig. 2b)), with an exponentially small, velocity dependent
probability p ~ exp(—a/v..;). The tunneling lasts only as long as the quasireso-
nance, which implies a transition localized for particular values of K. The terms
which experience LZ avoided crossings cross for a complex internuclear distance
RIZ. These have very small imaginary part Im{R-?} ~ AF)}y, and are not gen-
erally considered as hidden crossings. Besides the avoided crossings, which for
single-electron-two-center systems occur only if 7y — Zy > 1, there is a physically
different type of localized transitions, which occur for internuclear distances where
the top of potential barrier touches the populated energy term [9]. A prominent
example is the case of the radial barrier between a two Coulomb centers (Fig. 4).
For 7y = Zy = 7 and the coordinate origin at 7 = 0, along the internuclear z-axis
the electronic potential energy is

A A
‘/e 7R = - - 3
B = =R T T R ®)
which maximizes to V** = —4% at z=0. As long as the barrier separates the two

centers at larger internuclear distances, the electronic wave function has atomic
character, being localized at one of the centers. V'*** decreases as the colliding
partners approach to each other. When the top of barrier taches the populated
electronic term of the state |0 >, the wave function is free to “diffuses” to the
other center and is now shared between the two centers, becoming the molecular
in character. The other eigenfunctions of the problem adapt to the new situation.
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FIGURE 2. a) Avoided (LZ) crossings of the molecular terms results in b) slow tunneling
through the radial potential barrier.

This sudden change of the wave function with R results in its large derivative 9/9R,
and thus in a peak in the nonadiabatic radial matrix element H,y ~< i|0/9R|0 >,
i=1,2,...., where i and 0 belong to the same symmetry group of radially coupled
adiabatic eigen-levels. A peak in the matrix element H; for Re{R,,} is associated
to its complex-conjugated poles [10] at R, and R} (Fig.5), to a root singularity
in the normalization coefficients of the relevant eigenfunctions and to a square
root branch point. The relevant eigenenergies coincide (cross) at complex R.., i.e.
AFEyp ~ /R — R.;, AE* «~ /R — R} . These branch points, shared between the
complex terms 7 and 0 form the so called Q-series of closely localized branch points.
The largest peak of all H,y and thus, the smallest imaginary part of R., = R, is
for adjacent terms. Collection of all R, obtained when the barrier touches various
levels of the system in course of changing R is called a Q-superseries. This promotes
terms to higher excited states and continuum in the receding phase of the collision.
In calculations of the system dynamics it is in most cases enough to consider only
contributions from superseries, neglecting the higher order transitions.

For the same example-system, dynamics of the electron in the united-atom limit
(UA) is described by atomic wavefunctions, generated by the potential VYA (r, R —
0) ~ —2Z/r 4+ £(£ 4+ 1) /r?. The emerging centrifugal barrier while moving toward
the R — 0 pulls the consecutive terms upward in a localized region around R « 0.
During that process the molecular character of the electronic wave functions is
changed to the atomic one while passing a narrow range of R, thus causing highly
localized peaks in matrix elements of 9/OR between the states of a fixed £. This

is further associated with the poles in the radial matrix elements for complex R((f})
as well as to the branch points between the relevant eigenenergies. These branch
points, localized for small R promote in consecution and pairwise all terms of a
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FIGURE 3. Hidden crossings occur when top of the potential barrier touches the populated
energy term, causing sudden change of the wave function. Shown is an example of the radial

barrier (Q-type HC).

fixed ¢ in the incoming phase of the collision and constitute a Coulomb-like S®)-
superseries, which is in many cases the most effective channel for ionization at low
energies.

While the S-series do not exist for the terms with zero angular momentum there
is an important exception from that rule: Collision of an antiparticle of charge
Z1 < 0 with a single electron ion of charge Zs [15]. For small R < r electronic
potential contains an electric dipole in addition to the unbalanced Coulomb charge,

Zi—IZVR-F i+ 2y C(f+1
(7, 2) 7"_1—|-2_|_(—|2-) (4)

Since the dipole term has the same structure as the centrifugal term, the S-series
emerges even for the £ = 0 state. This is the main mechanism for ionization of the
low-lying states of ions in collision of antiprotons, in a broad collision-energy range,
since there is no radial potential barrier to support the Q-superseries [8].
Knowledge on topology of the hidden crossings in the plane of complex R is
equivalent to knowing where the strong, localized couplings for a particular system
are. In addition, the LZ avoided crossings constitute a physically different category
of localized transitions which are treated separately. All these define the low-energy
dynamics of a collision system and an important issue is how to extract from them
the most detailed and accurate information on the system evolution. Thus one
can use the topology of the hidden crossings to estimate the nonadiabatic matrix
elements, which in the adiabatic limit takes the form [11,12,10]
1 Im{R.}
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for each particular hidden crossing R.. These matrix elements do not suffer from
the defects of the usual radial matrix elements between the adiabatic states (like
are incorrect R — oo limit, dependence on electron origin) and could be used in
the MOCC-like system of coupled equations to obtain the transition amplitudes
among the low laying states, with either classical (R = R(t)) or quantum internu-
clear motion. This approach leads to the correct transition amplitudes (including
their phases) as long as the adiabatic condition (1) is preserved within the cou-
pled states. A more appropriate treatment for obtaining ionization cross sections
is the ”quasi-elastic” approach [1,10], which relies on features of the adiabatic
Schrodinger equation when analytically extended in the plane of complex R. The
relevant Hamiltonian loses Hermiticity and has only one, though multvalued and
multiple connected complex eigenenergy surface F/(R), and the branch points (hid-
den crossings) are the only singularities. By deforming the evolution path of the
system through the complex R plane one evolves quasi-elastically. Various Riemann
(branch) surfaces F;(R) coincide with the eigenenergy terms for Re{R}, which en-
ables proper definition of the initial and boundary conditions of the problem. The
elastic evolution operator, in the adiabatic limit and for a classical R = R(t)
is o;(t) = exp{i [, F;[R(t)]dt}, where a path C connects initial and final states
through the complex time (i.e. complex R). Starting from F; at R — oo, the path
is promoted to a different Riemann surface whenever C' encircle a branch point . At
any R the path can make exit to the real axis, ending at a state E;(Re{R}). Thus,
to encircle a branch point is equivalent to an inelastic transition. The transition
amplitude between states |i > and |j > is

ai;(t) = eXP{i/

Cij

BIRO) = expli | B(R)R/on) )
Cij
where vg = dR/dt is the radial velocity. This yields the transition probabil-
ity in form of P,; = exp(—2A;;/v), where A;; is the Massey parameter, A;; =
Im{fcij E(R)dR/[vg/v]. In a good approximation A;; ~ AL;;Im{R,,}. Shape
of the path-curve C is arbitrary as long as it keeps a track of causality for real
times, and can be, for example, deformed to ionize a ground state level through
an S-superseries by either a set of pairwise and consecutive excitations or by a
path encircling the whole superseries. Similar quasi-elastic evolution of the system

through the complex R-plane can be realized for semiclassical (WKB) motion of
the nuclei [§].

II MULTI-ELECTRON HIDDEN CROSSINGS
THEORY

Occurrence of the hidden crossings is likely in any system for which the electronic
motion is influenced by a parametrically dependent potential barrier. The system
dynamics induced by slowly changing parameter can be described similarly as de-
scribed in the previous Section. Still, nonseparability of the problem Hamiltonina,



as is a multielectron case, may cause a lot of difficulties in searching for the hidden
crossings, even if one restricts to only low lying states.

The adiabatic problem of a two-center-two-electron system like is H+H is de-
scribed by the electronic Hamiltonian of the form

Ha({r}, R) = h(r1, B) + h(rh, B) + hia (71, 7%), (6)
H 1 1 1
h<7?l7R) = __v% - - = 72. = 1727 (7)
2 R I A
1
h 7?,7? =0 8
12(71,7%) Y (8)

where 7, are the electronic coordinates, {} = {r},7}, R the internuclear vector,
it is the electron reduced mass. If the electron correlation is neglected, the two
electrons evolve separately producing the identical single-electron hidden crossings
topologies. The electron correlation term, hiy, introduces novelty in the hidden
crossings, either by modifying the single-electron ones that emerge from h;, or by
inducing new series. If the electrons are not equivalent in the initial configuration,
one can expect separate promotive superseries for each of them. New types of
series associated to the double-excited quasi-molecular terms could be expected,
too. If the electron correlation is weak any significant couplings, associated to the
hidden crossings is more likely to describe single-electron excitation, while keeping
the second electron inactive.

An important feature of all matrix elements €;;(R) of an operator © analytically
extended into the complex plane of parameter R is their symmetry Q,;(R) = Q,;(R),
a consequence of the analyticity requirement to both Hamiltonian and the wave
function [13,14]. This can be fulfilled only with the definition

Qui(R) = / & (F, RO, (. R)dr ()

It has been shown that the variational principle is valid [13], for real and imaginary
parts of the eigenenergies, separately (“bi-variational principle”), for a complex,
nonhermitian but symmetric hamiltonian. Thus, the adiabatic eigenvalue problem
for a nonseparable systems like H+H or Ht+He can be solved for complex R by
expanding the wave function in a convenient truncated bases, and with application
of the bi-variational principle. This is enough to support generalized Hartree-Fock
and Configuration Interaction (CI) procedures [15-17].

An important step in construction of a complex solver is scaling of the electronic
radial coordinates r; by complex I, thus introducing hypergeometric coordinates
q;=r1;/R, and then rotating s back to the real axis. This scaling enables good
definitions and convergence of all analytical matrix elements for complex /2. The
scaled Gaussian primitives exp(aR?(¢— R/2)?) become nonintegrable functions in
q if the complex R is in the upper half of the first quadrant. This was handled [15]
to a certain extent by redefining the exponent o« — a as a complex, R-dependent



quantity, and ar = a when R is real. Validity of the redefinition must be checked
for each system and for various ranges of R. Unrestricted Hartree-Fock (UHF),
combined with the single-excited CI codes were developed for the complex R and
applied to the H+H and H*+He systems [15,17], using appropriate uncontracted
bases of gaussian primitives, optimized for Re{ R}. The branch points were detected
by ”triple coincidence” of crossings of the complex eigenenergies, of singularities in
the corresponding OF /JR and singularities in the relevant radial matrix elements

of 9/0R.

Single-electron ionization of H+H. a) S-superseries promotion (dashed arrow) to
the single-electron continuum edge (H"4+H(1s)) through the single-excited
electronic triplet terms (solid lines). b) MEHC (solid line); experiments: McClure
et al [19], Gealy et al [18]; MOCC: Shingal et al [20].

Fig. 4a) shows the term diagram of the single-excited triplet ungerade states
of the H+H system, n®%*. The ground level of H"+H system (single-electron
lonization edge) is chosen for zero of energy. A single excited superseries of hidden
crossings of the S-type was found about R = 1 a.u. (dashed-line arrow in Fig.
4a))and used to calculate the single-electron ionization cross section (Fig. 4b).
Excellent agreement with the experiment in the range of 50 ev - 4 keV is obtained.
This imply that the principal mechanism for the single-electron ionization in this
case is the interaction of an electron with the nucleus of the incoming atom. The
ionization is realized when the two clouds penetrate into each other.



Ionization of He by proton impact. a) Single excitet singlet electronic terms;
localizations of the hidden crossings transitions are indicated by arrows. b) The
MEHC results in comparison to various experimental and theoretical data.

Somewhat different is the mechanism for single ionization of the He ground state
by proton impact. [16,17].An electron first makes the transition from the ground
to the first excited singlet state (2!321) by the Q-transition at the branch point
Re{R., }=2.87 a.u.. Because of the large energy splitting of these two states (Fig.
5a)) the transition is weak at low collision energies and this is responsible for
suppression of both single and double ionization cross sections (Fig. 5b)). The
213" is the charge exchange state, the active electron is localized at proton at
large internuclear distances. During a further approach of the nuclei, the electron is
promoted to the continuum through the S-type series which starts at Re{R., }=0.76
a.u. and runs through only these excited states which are asymptotically localized
at hydrogen. This yields the single ionization cross section in good agreement with
the measurements of Shah et al [21], as well as with the coupled channel calculations
of Slim et al [22] and Chen et al [23]. Double ionization cannot be explained with
the sequential mechanism (Fig. 5b)). It requires a ladder type mechanism through
the double excited states.

IIT CONCLUSIONS

Hidden crossings are associated with the top(s) of potential barrier(s) and their
occurrence and positions in an arbitrary atomic system can be predicted by analysis
of the electronic adiabatic potentials. Application of hidden crossings to study
the system dynamics in response to a slowly changing perturbation is limited by
the near-adiabatic requirements. Multielectron hidden crossings theory has been



successfully applied to two-electron (H+H, H" +He, p+He) as well as to six-electron
(CT4+H) collision systems, to the processes which involve excitations of only one
electron (for example, single electron ionization). This was accomplished by the
performing Hartree-Fock and Single-Excited- Configuration Interaction calculations
in the plane of complex internuclear distance. Study of highly correlated processes,
with inclusion of the multiple electron excitations is underway.
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