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It is well established that the ductility of both polycrystalline and monocrystalline FeAl is

considerably reduced by environmental embrittlement.  This environmental effect is due to the

reaction between water vapor and aluminum, leading to the production of hydrogen.  Since this

process and the movement of hydrogen into the material are both time dependent, the

environmental embrittlement of FeAl shows a strain-rate dependence.  It has also been reported that

the yield strength in air depends on the strain rate (Pike and Liu, Scripta Mater., 38 (1998) 1475).

In this paper, the results of tensile tests on FeAl single crystals will be described in which

the effects of quenched-in vacancies, strain rate, compressive pre-straining at room temperature,

cathodic hydrogen-charging and specimen orientation on the fracture strain, fracture strength and

yield strength have been studied.  

It is shown that, independent of strain rate, fracture strains of up to 26% are possible in

single crystals tested in vacuum.  In contrast, in air, the ductility increases with increasing strain

rate from only a few percent at 1 x 10
-6

 s
-1

.  However, the yield strength is unaffected by strain

rate under both conditions.  Both quenched-in vacancies and prestraining increase the yield

strength.  Concomitantly, the ductility (but not the fracture strength) is reduced by both

prestraining and quenched-in vacancies, both in air and vacuum.  Cathodic charging has been

clearly shown to reduce the yield strength.  The mechanisms associated with each of these effects

will be discussed.
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