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Application of Covariance Data to Criticality Safety Data Validation

B. L. Broadhead, C. M. Hopper, and C. V. Parks
Oak Ridge National Laboratory, U.S.A.

Abstract

The use of cross-section covariance data has long been a key part of traditional sensitivity
and uncertainty analyses (S/U).  This paper presents the application of S/U methodologies to the
data validation tasks of a criticality safety computational study.  The S/U methods presented are
designed to provide a formal means of establishing the area (or range) of applicability for
criticality safety data validation studies.  The goal of this work is to develop parameters that can be
used to formally determine the “similarity” of a benchmark experiment (or a set of benchmark
experiments individually) and the application area that is to be validated.  These parameters are
termed D parameters, which represent the differences by energy group of S/U-generated sensitivity
profiles, and ck parameters, which are the correlation coefficients, each of which gives information
relative to the similarity between pairs of selected systems.  The application of a Generalized
Linear Least-Squares Methodology (GLLSM) tool to criticality safety validation tasks is also
described in this paper.  These methods and guidelines are also applied to a sample validation for
uranium systems with enrichments greater than 5 wt %.

1.  INTRODUCTION

Traditional approaches to the validation of criticality safety calculations use a statistical
approach where the calculated values of the system multiplication factor, keff, for a series of
“benchmark” critical experiments are trended against a physical system parameter, such as the
moderator-to-fissile material ratio, the fissile material concentration, etc.  Observed trends in these
systems are then used to estimate a bias for a given application system.  The underlying
assumptions in these types of analyses are that the critical experiments are “similar” to the given
application area, and, therefore, the resulting bias predictions are valid for the application area.  

The validation requirements concerning criticality safety in the United States are described
in ANSI/ANS-8.1-1998, which defines these area(s) of applicability.  However, the establishment
of these areas are vague in that no guidance is given with respect to determining what constitutes a
valid range, or under what conditions the range is breached.  The current work seeks first to
provide a formal means of quantifying similarity between systems, and to further develop methods
that can be used to validate systems that are outside the traditional areas of applicability (i.e.,
validate systems in which there are no known measurements of similar systems available).

A useful tool in establishing similarities between systems is the use of sensitivity
coefficients.  In this application, the full-sensitivity profiles are generated in the selected problem
neutron-energy-group structure for each material and reaction type (i.e., 235U fission, scatter, νd,  χ,
capture, etc.).  In a criticality safety validation study, typically some 30–50 critical benchmarks are
used.  Sensitivity profiles give a great deal of information about the particular system; however,
the amount of information is too large to be of general use (20 profiles for each system, with about
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40 values each, i.e., one for each energy group).  Therefore, a method of obtaining the differences
between the sensitivity profiles for pairs of systems was devised to reduce the amount of needed
information to only a few parameters, while maintaining the uniqueness of the information present
in the full-sensitivity profiles.  The most promising set of parameters are a family of “D” values as
defined below:

where S is the sensitivity of keff for the safety application, a, or experimental configuration, e, to νd,
or to the capture, or scattering cross sections (n, c, or s, respectively) for group i.  These
coefficients are useful in making a quick determination of the similarity between pairs of systems. 

An alternative approach to exploring the similarity of systems is to use uncertainty
analyses.  This procedure involves the propagation of estimated cross-section uncertainty
information to the calculated keff value of a given system via the sensitivity coefficients. 
Mathematically, this is accomplished by a quadratic product of the sensitivity profile vectors for
each system, material, and reaction type with the cross-section uncertainty matrices by material
and reaction type.  The result of this procedure is not only an estimate of the uncertainty in the
system, keff, for a given system, but also an estimate of the correlated uncertainty between systems. 
This parameter, denoted as ck, has not only the desirability of a single quantity relating the two
systems, but the similarity of the systems is measured in terms of uncertainty, not just sensitivity.

A final approach to the traditional trending analysis for determination of biases is the use of
the Generalized Linear Least-Squares Methodology (GLLSM).  Physically, the GLLSM is
designed to “force agreement” between the measured and calculated values of keff for the entire set
of criticals used in the data validation process.  The inputs needed for such an analysis are almost
identical to the concepts presented thus far; the sensitivity coefficients, the cross-section
uncertainties, the actual calculated and measured keff values, with the addition of an estimate of the
uncertainty in the measured keff values.  Mathematically, the GLLSM represents a combination of
measurements.  These measurements include the experimental values of keff for each critical
benchmark and the calculated value of keff obtained via functional analysis of the cross-section
measurements.  The “data changes” that result from the application of the GLLSM can then be
used to predict the biases for any similar application where the area of application corresponds to
an interpolation or extrapolation scenario.  

This paper describes an illustrative application of both the S/U and GLLSM procedures to
the validation of criticality safety studies for facilities processing commercial reactor fuels with
uranium enrichments greater than 5 wt %.  In the past, these processing facilities have been limited
to enrichments at or below 5 wt %.  Hence, much of the critical experiment data correspond to
these lower enrichments.  The use of S/U and GLLSM methods in validation studies was
demonstrated by performing a validation of a hypothetical set of application scenarios, which
consist of 14 systems, each having U(11)O2 fuel with H/X values varying from 0 to 1000.  The
11-wt % enrichment was chosen so that critical systems that exist over the entire range of
moderations, including dry, could be studied.  The data validation included both the traditional
trending analyses, trending analysis with the D and ck parameters, and finally the full GLLSM
approach.  Advantages and disadvantages of each approach were explored, and guidance for the
general use of these techniques was developed.



2. SENSITIVITY COEFFICIENT METHODS

The techniques used in this work to generate sensitivity information for the various critical
benchmarks is based on the widely used perturbation theory approach.1–4  The full derivation of the
general procedure will not be given here; however, for the specific theory and code development
for the generation of keff sensitivities, the reader is referred to the accompanying paper.5

The keff sensitivity, as described above, has been implemented by modifying a version of
the FORSS6 (Fantastic Oak Ridge Sensitivity System) package.  The FORSS system was
developed in the late 1970s, primarily for use in the development of fast reactor systems.  This
project has reactivated the individual FORSS modules, with the goal of putting portions of the
original system into the SCALE7 system.  A one-dimensional (1-D) sensitivity sequence, SEN1,8

was produced for use in this project and for subsequent general use.  The capacity to generate 2-D
sensitivities is also available via the SEN2 module.  More complete information on SEN1 and
SEN2, the progress to date on 3-D Monte Carlo methods, and some results of using the SEN1 and
SEN2 capabilities are the subject of a companion paper.5

3. UNCERTAINTY ANALYSIS THEORY

The determination of uncertainties in the calculated values of the system multiplication
factor is accomplished by two steps:   the estimation/processing of uncertainties in the underlying
cross-section data and the propagation of those uncertainties to the system keff value.  The
techniques for processing cross-section uncertainty data are well-known,9,10 and will not be
discussed here.

Once cross-section uncertainty information  for all materials and reaction processes that are
important to the systems of concern are available, it is then possible to estimate the uncertainty in
the system multiplication factor due to these data uncertainties.  If we denote the matrices of
uncertainty information for all of the cross sections as Cαα and the sensitivity matrices relating
changes in each constituent material and process to the system keff as Sk, the uncertainty matrix for
the system keff values, Ckk is given as:

Ckk = Sk Cαα Sk
T .

The Sk matrix is I × N, where I is the number of critical systems being considered, and N is
the number of nuclear data parameters in the problem.  Typically, N is the number of
material/reaction processes times  the number of energy groups.  The Cαα matrix is an N × N
matrix, with the resulting Ckk matrix I × I.  The Ckk matrix consists of variance values for each of
the critical systems under consideration (the diagonal elements), as well as the “covariance”
between systems (the off-diagonal elements).  These off-diagonal elements represent the shared or
common variance, hence the term covariance, between the various systems.  For presentation,
these off-diagonal elements are typically divided by the square root of the corresponding diagonal
elements (i.e., the respective standard deviations) to generate a correlation coefficient matrix. 

These ck values are felt to be most appropriate for correlation with error trends in a
criticality safety validation analysis because they are essentially the sensitivities to the individual
cross sections weighted by their uncertainties.  Thus, the ck values represent the systems similarity
with respect to materials with the highest sensitivity/uncertainty combination.  



4.  GENERALIZED LINEAR-LEAST-SQUARES METHODOLOGY

The final procedure utilized in this work is based on the generalized linear-least-squares
method (GLLSM) introduced by Gandini,11 Dragt et al.,12  and Barhen, Wagschal, and Yeivin.13,14 
The GLLSM has been referred to as a data adjustment procedure, a data consistency analysis, and
even a data evaluation technique.  The most appropriate description of this particular application
would be a generalized trending analysis tool.  Physically, the GLLSM is designed to force
agreement between the measured and calculated values of keff for the entire set of criticals used in
the data validation process.  The resulting “data changes” that result from the application of the
GLLSM can then be used to predict the biases for any similar application where the area of
application corresponds to an interpolation or extrapolation scenario.

The derivation of the GLLSM equations in this work follows the general notation from
Ref. 15.  The vector m L (mi), i = 1, 2, ... I represents a series of keff measurements on critical
benchmark experiments that are to be used in the validation of a dataset for criticality safety
computations.  This vector m has a corresponding symmetric I × I uncertainty matrix associated
with it which we denote as Cmm L cov(mi,mj) L <δmiδmj>. Further, we denote the vector k L (ki) as
the corresponding series of calculated values of keff for each of these experiments.  The vector α L
(αn), n = 1, 2, ... N, with its corresponding symmetric N × N uncertainty matrix Cαα L cov(αnαm) L
<δαnδαm>, represents the differential data used in the calculations (i.e., nuclear data, such as
fission, capture, and scattering cross sections, the fission spectrum and neutrons per fission
quantities) and, additionally, the material densities used in the problem description.  This
procedure also allows for the possibility of correlations between the integral and differential
quantities, which may be present at times in the analysis.  These correlations are denoted by the
N × I covariance matrix Cαm

 
L <δαnδmi>.

The sensitivities of the calculated keff to the α parameters are given as Sk L �ki/�αn, with Sk
being an I × N matrix.  Representing perturbation of the α parameters as linear changes in the
calculated keff value, yields the following:

k(α�) = k(α + δα) = k(α) + δk � k(α) + Skδα, (1)

with the corresponding uncertainty matrix of the calculated values of

Ckk L <δkiδkj> = Sk<δαnδαm>Sk
T = Sk Cαα Sk

T . (2)

If we denote the deviations of the measured responses from their corresponding calculated
values by the vector d L (di) = k(α) - m, then the uncertainty matrix for the deviation vector d,
denoted by Cdd, is the following:

Cdd = Ckk + Cmm - Sk Cαm  - Cmα Sk
T ,

      = Sk Cαα Sk
T + Cmm - Sk Cαm - Cmα Sk

T . (3)

Denoting x = α� - α, and y = m�- m = k(α�) - m, we can rewrite Eq. (1) as 



y = d + Sk x. (4)

The measured keff values mi and the measured (or evaluated from measurements) parameter
values αn both have their corresponding uncertainties.  The best evaluated parameters αn� and the
best evaluated keff values mi� will be those values that are consistent with each other, namely mi� =
ki(α�n), and are consistent with their estimated values and uncertainties (i.e., they do not deviate too
much from their current best estimates mi and αn, respectively).

The GLLSM procedure involves minimizing the quadratic loss function

(5)Q(x,y) � (y,x)T Cmm Cmα
Cαm Cαα

�1

(y,x) ,

where (y,x)T L (y1, y2, ..., yI, x1, x2, ..., xN), subject to the constraint expressed by Eq. (4).  Adopting
the procedure of Refs. 14–16, the above conditional minimum formulation is equivalent to
unconditionally minimizing the function R(x,y), where

R(x,y) = Q(x,y) + 2λT(Skx - y) , (6)

and 2λ is an I-dimensional vector of Lagrange multipliers.  Thus x and y satisfy the equations

�R(x,y)/�x = �R(x,y)/�y = 0. (7)

Solving the resulting equations for x and y, we obtain

α� = α + (Cαm - Cαα Sk
T)Cdd

-1d , and

m� = m + (Cmm - Cmα Sk
T) Cdd

-1d , (8)

where Cdd
-1 is obtained by taking the inverse of Eq. (3) and is a matrix of dimension I × I.

This could of course suggest that any criticality application that is similar to the
benchmarks used should be calculated using the modified cross sections and thus have a reduced
uncertainty.  However, even if we want to stick to “conventional” criticality estimates using
“established” cross sections and trend curves, the GLLSM approach can be beneficial, as will be
demonstrated in the next section.

In summary, the GLLSM procedure, as applied to the validation of cross-section libraries
for criticality safety applications, is designed to predict the data changes, x, such that the
differences between measured and calculated keff values (i.e., the quantity, y) is minimized.  These
original keff differences give rise to the trends observed in the trending analyses.  Removal of these
trends and identification of the data responsible for them is the key to the application of GLLSM
techniques to criticality safety data validation.



4.1  APPLICATION OF GLLSM TO DATA VALIDATION

The solution of Eq. (8) allows us to evaluate the x and y quantities in Eq. (4).  Of particular
interest is the quantity d which has been defined as (k - m).  This quantity is the calculated-versus-
measured discrepancy in keff  as determined from the as-specified experimental benchmark
description and given cross sections.  Rarely do the actual criticality safety scenarios match exactly
with one of the experimental benchmarks.  Thus, the actual quantity of interest is an estimate of
the quantity d for the criticality safety scenario of interest, denoted the “application.” 

The systematic application of GLLSM to criticality scenarios described above amounts to a
formal procedure for evaluation of the quantity d for the applications of interest.  Since the
application is assumed to be similar but not exactly like one of the experimental benchmarks, the
key to the procedure is that we can rewrite Eq. (4) for the application as:

ka(α�) - ma� = [ka(α) - ma�] + Sa(α� - α) , (9)

where Sa are the calculated sensitivities for the application.  The GLLSM theory predicts that if a
sufficient number of experiments are similar to the application of interest, the calculated value of
keff, using the “best” cross sections, α’, will indeed approach the value ma�, and thus, Eq. (9) yields
the predicted value of the application bias da = ka(α) - ma�, which is obtained when using the given
cross sections α as

da � -Sa(α� - α) , (10)

where α� - α was obtained in Eq. (8) using similar benchmark criticality measurements.

5.  APPLICATION OF METHODOLOGY TO ENRICHMENTS ABOVE 5 WT %

This current report presents an illustrative application of both the S/U and GLLSM
procedures to an area of current interest.  The application being studied in this report is the
validation of criticality safety studies for facilities processing uranium fuels with enrichments
greater than 5 wt %.  In the past, these processing facilities have been limited to enrichments at or
below 5 wt %.  Hence, much of the critical experiment data correspond to these lower
enrichments.  As a part of this study, a number of critical experiments in the 5–20-wt % range
performed in Russia were identified.  A number of these experiments were obtained and
documented as a result of this work.16

As with any criticality data validation, the goal is to estimate the bias trends for ranges over
which criticality safety calculational studies are to be performed.  The use of S/U and GLLSM
methods in validation studies was demonstrated by performing a validation of a hypothetical set of
application scenarios, which consists of 14 systems, each having U(11)O2 fuel with H/X values
varying from 0 to 1000.  The validation effort included both the traditional trending analyses,
trending analysis with the D and ck parameters, and finally the full GLLSM approach.  Advantages
and disadvantages of each approach were explored, and guidance for general use of these
techniques was developed.



Fig. 1.  Trend plot for keff-versus-energy of average lethargy causing
fission (EALF).

5.1  TRADITIONAL TRENDING ANALYSIS

In order to clearly show the relationship between the GLLSM techniques and the more
traditional techniques for criticality safety validation, a traditional trending analysis using a
validation set of 68 benchmark experiments17 is presented.  In Fig. 1, keff is trended versus the
energy of average lethargy causing fission (EALF).  The prediction from this analysis would be a
nearly constant positive bias of about 0.3%.  The standard deviations on these bias trends would
vary from about 1% for low energies to about 2% at high energies.  Trend plots were also
generated for H/X and enrichment parameters.  The H/X trend plot shows a slight trend, with the
predicted ∆k bias near zero for high H/X values and about + 0.005 for low H/X values.  The trend
with enrichment is similar, but not enough data are present for the intermediate enrichments to
confirm the trend.

It was noted that the largest variations (± 2%) about the trend lines were seen for fast
systems (i.e., the right-hand portion of the EALF trend plot and the lower portion of the H/X trend
plot).  Upon examination, it was observed for H/X = 0 systems that the predicted keff values less
than unity were from the HEUMET set of criticals, while the systems with predicted eigenvalues
greater than unity were from the Big-10 and ZPR sets.  The effects of the high-versus-low
enrichments are believed to be responsible for this variation; however, no definite cause has been
identified.



As a result of the trending analysis, a prediction of the ∆k bias and its uncertainty can be
obtained for each of the U(11)O2 systems.  Predictions using the USLSTATS18 procedure for
U(11)O2 systems with H/X values of 0, 3, 40, and 500 are given in Table 1.

Table 1.  Comparison of predicted ∆k bias and its standard deviationa for various
procedures

Procedure

H/X = 0 System H/X = 3 System H/X = 40 System H/X = 500 System

Bias
(%)

Std. dev.
in biased
keff  (%)

Bias
(%)

Std. dev.
in biased
keff  (%)

Bias
(%)

Std. dev.
in biased
keff  (%)

Bias
(%)

Std. dev. 
in biased
keff  (%)

EALF 0.32 0.74 0.45 0.74 0.46 0.74 0.46 0.74

H/X 0.49 0.77 0.49 0.77 0.47 0.77 0.31 0.77

Dsum - - 1.26 0.76 0.66 0.78 0.28 0.78

ck 1.28 0.73 1.40 0.69 0.69 0.76 0.39 0.78

GLLSM 2.56 0.38 1.30 0.33 0.77 0.40 0.63 0.37
aFor all but GLLSM, the standard deviations correspond to the “pooled standard deviation” as specified in
Ref. 18 because this definition was judged to best match that provided by GLLSM.

5.2  TRENDING ANALYSIS USING D VALUES

This section will discuss trending analyses using the same set of 68 benchmarks as the
traditional analyses shown above; however, the trending parameters are now the D coefficients,
described earlier.  Even though it is possible to perform the trending on each of the D coefficients
independently, it was decided to trend keff versus the sum of these coefficients (i.e., Dsum = Dc + Dn
+ Ds).  This method reduces the number of trends plots to be examined.  

The trend plot of keff versus Dsum is given in Fig. 2 for the U(11)O2 H/X = 3 system.  These
plots are analyzed in quite a different method from the traditional approach.  A Dsum value of zero
corresponds to the U(11)O2 H/X = 3 system.  The trend line must therefore be extrapolated to zero
in order to estimate the ∆k bias.  A Dsum value of 1.2 or less has been shown to indicate similar
systems.17  Therefore, the slope of the trend line is important, as well as how many systems are in
the region of Dsum less than 1.2.  From this plot it is clear that perhaps only one other system could
be considered similar to the U(11)O2 H/X = 3 system (i.e., Dsum less than 1.2).  Hence, the
predicted bias will have a large degree of uncertainty associated with it.  The trend plot for the
U(11)O2 H/X = 40 system was also generated.  Here the coverage near a Dsum value of zero is
much better than that shown in Fig. 2.  In this case, there are at least 8 systems with Dsum values of
1.2 or less.  The trend plot for the last system (i.e., U(11)O2 H/X = 500) gives conclusions that are
very similar to those for the H/X = 40 example.  There are a large number of systems within a Dsum
value of 1.2, with a resulting good prediction of the ∆k bias for this system.



Fig. 2.  Trend plot for keff-versus-Dsum value for the U(11)O2 H/X = 3 system.

These trending analysis results are generated using the same software that was used in the
traditional trending approach previously [see Ref. 18].  Therefore, the estimates of the ∆k bias and
its uncertainty are available for these analyses.  These bias predictions and their uncertainties are
given in Table 1.

5.3 TRENDING ANALYSIS USING CK VALUES

The trending analyses using the ck values follows very closely to the analyses using the
D coefficients discussed in the previous section.  Here the trend curves are interpreted as an
extrapolation to a ck value of unity, which corresponds to the particular application system of
interest.  A determination of system similarity is a ck value of 0.8 or higher.17  The slope of the
trend curve is again important; however, the items of primary importance are the number of
systems with a ck value greater than 0.8 and the value of the predicted ∆k bias at a ck value of
unity.

The keff trend plot for ck of a U(11)O2 H/X = 0 system is shown in Fig. 3.  This trend plot is
interesting when compared with the traditional trend plot shown in Fig. 1.  The four data points in
the upper-right-hand portion of both plots correspond to the same four systems (three ZPR and
Big-10 systems).  In Fig. 1, the predicted ∆k bias is about 0.4% because the overprediction of keff
for these four systems is counteracted by the underprediction of the HEUMET systems which all
have very similar values of EALF.  However, the trend seen for keff in Fig. 3 is caused by the lack
of similarity between the U(11)O2 H/X = 0 and HEUMET systems.  These HEUMET systems can



Fig. 3.  Trend plot for keff-versus-ck value for the U(11)O2 H/X = 0 system.

be seen in Fig. 3 with a ck value of about 0.5–0.6, indicating only minor correlations with the
U(11)O2 H/X = 0 system.  This example shows the potential improvement from the use of a
trending analysis with these new parameters, since trends can be observed as a function of systems
that are expressly determined to be similar.  It is clear from the preceding analyses that sometimes
the traditional parameters indicate that systems should be similar, but are not.  In this particular
case, the predicted bias is much larger than that predicted by the standard techniques.

The trend plots for the remaining U(11)O2 systems with H/X values of 3, 40, and 500 were
also studied using ck values.  For the systems with H/X values of 3 and 40, the predicted biases are
higher than those predicted by the standard techniques.  The specific reasons for these differences
were not explored in depth as with the H/X of 0 cases, but are believed to be caused by the
separation of effects that tended to cancel each other in the traditional approach.  The ∆k bias
predicted for the H/X = 500 system are in line with those of the standard techniques since a large
number of experiments are considered to be similar, and no cancellation of effects is seen.

These trending analysis results are generated using the same software that was used
previously.  Estimates of the ∆k bias and its uncertainty from this trending approach are given in
Table 1.



6.  SUMMARY

In the preceding sections, results from a number of approaches to criticality safety data
validation were presented.  The GLLSM results shown in Table 1 were taken directly from
Ref. 17.  Quite interestingly, they give very different answers for the low-H/X problems chosen for
study.  The primary reason for these differences seems to be the inclusion of systems that may
“look” very similar from the standpoint of certain parameters, but are in fact very different with
respect to other parameters.  In particular, according to both the H/X and EALF parameters, both
the HEUMET and ZPR/Big-10 problems are similar.  However, with respect to the sensitivities
and uncertainties, they appear to be quite different.  Cancellation of effects due to systems that
“appear” to be similar causes the traditional trending approaches to underpredict the actual bias
for low-moderation systems with intermediate enrichments.  This underprediction is evident in
Table 1, where the results are presented in summary form.  The predicted bias from these
applications are all positive (overpredict keff).   Therefore, the variation in results is not a concern
for these applications.  However, a similar situation can be easily postulated where a predicted
positive bias is actually a negative bias.  With the inclusion of strict confidence levels along with
an additional margin of subcriticality, the cumulative effect of these factors should still be
conservative.  However, prudent application of trending procedures is very important in criticality
safety validation exercises.

The new criticality safety data validation procedures discussed in this paper should be
useful for a wide variety of application areas.  The advantage of these procedures is that the
determination of similar systems is automatic because the systems are trended with the D and ck
values.  Also, the inclusion of a wide variety of benchmarks in the validation set is possible, since
the trending parameters will selectively fit only systems that are similar to the particular
application area.  Further guidance on the use of these new techniques is given in Ref. 17.  
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