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Abstract It is well known that the NMR method for protein structure determination applies to 
small proteins and that its effectiveness decreases very rapidly as the molecular weight increases 
beyond about 30 kD. We have recently developed a method for protein structure determination that 
can fully utilize partial NMR data as calculation constraints. The core of the method is a thread- 
ing algorithm that guarantees to find a globally optimal alignment between a query sequence and 
a template structure, under distance constraints specified by NMR/NOE data. Our preliminary 
tests have demonstrated that a small number of NMR/NOE distance restraints can significantly 
improve threading performance in both fold recognition and threading-alignment accuracy, and can 
possibly extend threading’s scope of applicability from structural homologs to structural analogs. 
An accurate backbone structure generated by NMR-constrained threading can then provide a sig- 
nificant amount of structural information, equivalent to that provided by the NMR method with 
many NMR/NOE restraints; and hence can greatly reduce the amount of NMR data typically re- 
quired for accurate structure determination. Our preliminary study suggests that a small number 
of NMR/NOE restraints may suffice to determine adequately the all-atom structure when those 
restraints are incorporated in a procedure combining threading, modeling of loops and sidechains, 
and molecular dynamics simulation. Potentially, this new technique can expand NMR’s capability 
to larger proteins. 

Keywords: protein structure determination, NMR, protein threading, fold recognition, energy 
minimization. 
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1 Introduction 

The NMR method for protein structure determination is based on (i) a network of distance re- 
straints between spatially close hydrogen atoms, derived from nuclear Overhauser effects (NOES), 
and (ii) restraints, calculated from scalar coupling constants, on the dihedral angles defined by the 
positions of atoms separated by three covalent bonds. The NOE restraints are essential to deter- 
mine the secondary and tertiary structure of a protein, as they relate hydrogen atoms separated 
by less than about 5A in amino acid residues that may not be adjacent in the protein sequence. 
An NMR structure is typically determined through molecular dynamics simulation/energy mini- 
mization under the constraint? specified by NMR restraints (Braun and Go, 1985, Levy et al., 
1989, Briinger, 1992, Karimi-Nejad et al., 1998). It typically requires about 15-25 NOE restraints 
per residue to obtain an accurate (mean) structure (equivalent to a 2-3A Xray structure). 

One problem with the NMR method is that it applies only to “small” proteins. Of the 1558 
NMR structures in PDB (release of May 1999) (B ernstein et al., 1977), only 25 are larger than 200 
amino acids and the largest one has 269 residues (about 30 kD). This limitation is mainly caused 
by spectral data crowding and line broadening for larger proteins, which result in reduction in the 
fraction of spectral peaks that can be identified and assigned. 

The goals of our current research are (i) to develop computational methods to fully utilize partial 
NMR data for protein structure calculation, and (ii) to expand the scope of the NMR method to 
larger proteins through the application of structural information obtained by a threading method. 
Our approach consists of two main steps: (a) NMR-constrained threading, and (b) threading- 
supported NMR method. In step (a), we construct a backbone structure of a query protein by 
using a threading method constrained by the NMR data. In step (b), we build a full-atom (or all 
heavy-atom) model of the query protein using molecular dynamics/energy minimization under the 
constraints of NMR data and the backbone structure obtained in step (a). 

In the current study, we are focusing on the NOE restraints, and have formulated the NMR- 
constrained threading problem as to find the globally optimal threading under the residue-residue 
distance constraints specified by NOE data. This constrained threading problem is rigorously solved 
by a generalized version of our previously-published threading algorithm (Xu et al., 1998). By 
applying this algorithm, we have demonstrated that a small number of NOE restraints can improve 
threading performance significantly in both fold-recognition and threading-alignment accuracy. In 
our preliminary tests, we were able to obtain backbone structures with an rmsd of 3-5A in most 
cases by using l-2 NOE restraints per residue. 

While a 3-5A backbone structure may be accurate enough for some functional inferences, it also 
provides valuable constraints for the full-atom NMR structure determination, and helps to reduce 
the number of NOE’s typically required for a NMR structure. Also, it helps to avoid entrapment 
in local minima in the NMR energy minimization procedure (as may occur when starting from a 
random backbone structure), and hence improve both calculation accuracy and efficiency. 

We are currently exploring various NMR techniques to obtain as many NOES as possible for 
large proteins, and investigating the potential of this new technique in helping to expand the scope 
of the NMR method to (significantly) larger proteins. 

“In this paper, a constraint is used to refer to optimization algorithms and a restraint to NMR data. 
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2 NMR-Constrained Threading 

2.1 An algorithm for NMR-constrained threading 

Problem formulation 
An NMR-constrained threading problem can be defined as to find the optimalb alignment between 

a query sequence and a template structure, which does not violate any distance constraints specified 
by NOES. Or more specifically, it is to find an alignment ((si,?i), . . . . . (Sk, &)) between a query 
sequence s = sr . . . s, and a template structure t = t r . ..t. to minimize the following functionC: 

CIG<~J%(%,&) + C~J~)~PAIRS~~) E~(%,%,zj,$> -- 
w 

subject to: if an NOE exists between Si and Sj then distance (&,$) 5 D. 

where Y$ (similarly &) is either an element of s (or t) or an alignment gap; max{n, m} 5 k 5 n + m; 
E,(x, y) is the singleton fitness term, measuring how well residue x fits the environment of structural 
position y if neither 2 nor y is a gap; otherwise it is a gap penalty; ,?$(xr, yl,x2,y2) is the pair 
contact term, measuring how preferable to have residues xi and x2 in nearby structural positions 
yr and ~2; PAIRS(t) denotes all the pairs of template positions between which contact potentials 
may need to be considered (in our current implementation, we use a distance cutoff, Sk, between 
the Cp atoms to define this); D is a cutoff distance, and its default value in our program is SA. 

In our current implementation, we assume that alignment gaps appear only in loop regions, and 
consider pair contacts only between cored residues. Also we consider only NOES between residues 
that are aligned to core elements of the template. 

Our threading algorithm 
We have previously developed a threading algorithm which guarantees to find an optimal thread- 

ing as defined in (1) (without the constraints) (Xu et al., 1998), and have implemented the algorithm 
as a computer program, called PROSPECT (Xu and Xu, 1999). We now give a brief review on how 
PROSPECT deals with pair contacts, which provides the basic algorithmic framework for handling 
NOE restraints. 

The threading algorithm employs a divide-and-conquer strategy for solving the optimal thread- 
ing problem. It first pre-processes the template structure by repeatedly dividing (bi-partitioning) 
it into sub-structures until each sub-substructure contains one core secondary structure (see Fig- 
ure 1). The basic operation of the algorithm is to calculate the optimal threading score between 
a sub-structure with links (to the rest of the structure) and a sub-sequence, under the condition 
that the core secondary structure at the external end of each link is already aligned. This oper- 
ation is implemented (recursively) by finding the optimal threading score between even smaller 
sub-structures and sub-sequences, and combining them optimally. We use Figure 2 (a) to illustrate 
how to calculate the optimal threading score between s[lcl, k2] and t[i, j] with links {o1,02,03,04}. 
We have proved (Xu et al., 1998) that the optimal alignment between s[kl, k2] and t[i, j] can be 

‘Throughout this paper, the optimal threading means the globally optimal threading. 
‘Our actual alignment function uses an affine function to penalize alignment gaps. This simplified version is used 

here to simplify the description of the algorithm. 
‘A core secondary structure is an a-helix or a /?-strand. 
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Figure 1: (a) A template with six core secondary structures and connecting loops. A link between two 
cores represents that there exists at least one pair contact between the two cores. (b) A cut dividing 
the template into three parts: two sub-templates inside the left and right dotted boxes, respectively, 
and the connecting loop. (c) and (d) Further partition of the template. 

constructed by appending the optimal alignments between (i) t[i,p] and s[I~l, ,%3], (ii) t[q, j] and 
s[lc4,lc2], and (iii) t[p+l,q-l] ands[lc3+1,lc4-I], f or some k3, k4 E [Icl, k2] and some alignment 
of the core linked by 05. The optimal alignments (i) and (ii) can be calculated recursively using 
the same operation on their sub-structures and sub-sequences; and the optimal alignment (iii) can 
be calculated using a Smith-Waterman type sequence alignment program (note that no pair con- 
tacts are considered between loop elements). To determine which of these optimal alignments give 
the optimal alignment between t[i, j] and s[kl, k2], we need to go through all possible values of 
k3,k4 E [&k2] and all possible alignments of the core linked by 05, and choose the (combined) 
optimal one. For more details of the algorithm, we refer the reader to (Xu et al., 1998). 

Our threading algorithm applies this basic operation, starting with the whole query sequence 
and whole template structure, and continuing until each sub-structure contains one core secondary 
structure. Pair contact potentials are calculated when links are considered. Since no alignment 
gaps are allowed within a core, the contact potential between any pair of residues aligned to nearby 
structural positions can be calculated based on the starting alignment positions of the corresponding 
cores. 

Dealing with NOE restraints 
Based on the above discussion, we can rigorously prove that if no core alignment with links 

violates any NOE restraints then the optimal alignment between the whole template and the whole 
query sequence will not violate any NOE restraints. Our NMR-constrained threading algorithm 
uses the algorithmic framework outlined above with one addition that checks for any NOE violations 
when doing a core alignment. 

We use Figure 2(b) to explain how to conduct such a check when doing a core alignment. Let 
c be a core with links {o1,02,03}, and these links connect to cores cl,c2, and c3, respectively. 
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sub-structure t[i, jl 

sequence. k3 k4 

(4 (b) 

Figure 2: (a) A schematic of the basic operation of the divide-and-conquer algorithm. (b) Core 
alignments. 

For each possible alignment of these cores {cl, ~2, c, c3}, we check if any NOES are violated. That 
is, we check whether, for any NOE that relates two residues aligned to some of these cores, the 
corresponding distance is more than D (see the objective function (1)). If a violation is found, 
this particular alignment will not be further considered when building larger alignments in our 
divide-and-conquer algorithm. 

One way to implement this is to go through the list of all NOES each time we examine a new 
arrangement of core alignments. But this simple strategy may not be computationally feasible when 
there are hundreds of NOES or more. The running time of our threading algorithm is essentially 
determined by the number of alignments we have to consider. To examine hundreds to thousands of 
NOES for each such alignment may increase the running time of the algorithm by that many times. 
Our solution to this problem is to examine only the relevant NOES when examining a particular 
arrangement of core alignments. 

While examining NOES may increase the computational time, the NOES can also help to reduce 
the search space size and hence the computational time, as they will rule out alignments violating 
NOES without explicitly examining them. The total effect on computational time of using the 
NOES is a rather complicated issue, and will not be addressed further in this abstract. We now 
present an algorithm for finding all relevant NOES, given a core and its links. 

We can formulate this problem as follows. Let N = {(II, Q), . . . . (Zp, Y-~)} be the list of NOE 
restraints with Zi and ri being the left and right positions (in the query sequence) of the ith NOE. 
Let A = {(c,‘,c~), . . . . (ca, c,“)} be a list of left and right aligned positions of corese cl, . . . . 8. The 
problem is to find all (Zi, ri) such that 4 2 Zi 5 c+! and cf 5 ri < c:, for some j, Ic E [l, 41. To do 
this fast, we pre-process the NOE restraint list N to facilitate fast searches. We use a segment tree 

data structure (Preparata and Shamos, 1985) to achieve this. 
A segment tree is defined on a list of consecutive integers [l,p] (from 1 to p). A segment tree 

consists of plog(p) standard intervals of [l,p], e.g., an interval could be [5,p - 31. A key property 
of these specially chosen intervals is that any arbitrary interval [a, b] C [l,p] can be represented as 
the union of at most log(p) non-overlapping standard intervals. 

‘4 is typically a small number (5 6) as a core is typically “in contact” with (at most) 4 - 5 other cores. 
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First we sort all NOE restraints in the increasing order of their left positions, i.e., {Zi}‘s, and 
represent this sorted list as a segment tree data structure. For each standard interval, we sort its 
NOES by their right positions, i.e., {ri}. We use the following procedure to find all relevant NOES 
for a given arrangement, ,A, of core alignments. 

Procedure SEARCHNOE (JV, -A) 
1. for 1 2 a 5 q do 
2. find left and right boundaries, I and r, of JV’S sublist whose left positions are within [cp, c:] 

of A; 
3. 
4. 
5. 

retrieve the ‘u standard intervals of [Z, r]; 
for each of the ‘u standard intervals, J do 

find left and right boundaries of J’s sublist whose right positions are 
within [c,“, $1, for some b E [a, q] 

6. “output” all NOES within the boundarv. 

Note that the algorithm spends O(1) time on each relevant NOE, and in addition it spends 
O(log2(p)) time to search the segment tree and O(q) time to go through all the involved cores. So 
the total time spent is O(q + e + log2Cp)), compared to O(q + p) time using the straightforward 
method, where e denotes the number of relevant NOES for a given arrangement of core alignments. 

2.2 A preliminary study on NMR-constrained threading 

NMR-constrained threading uses an additional scoring term ENMR to reward the use of NOES and 
to penalize deviations from the NOE-specified distance within the cutoff distance D. We use two 
types of distance restraints: (a) NOE restraints between backbone hydrogens, and (b) estimated 
CD distance restraints based on NOES involving sidechains. An estimated CD distance restraint is 
used only when it is at most 7A. ENMR(z, y) will be appliedf only when an NOE’s two ends are 
aligned to structural positions z and y and satisfy the Cp distance cutoff. 

-150, if distance between x and y’s backbone hydrogens 

-&MRh Y) = 
5 3.7.& and an NOE aligned to x, y’s hydrogens; 

-300, if Cp-distance, Dcb(x, y), between x and y 5 7& (2) 

300 x (%(x,Y) - 7)‘, if 7A < D,p,(x,y) 5 EL&. 

Using this function, we have conducted preliminary analyses on (i) how NOES affect the 
threading-alignment accuracy; and (ii) how NOES affect the accuracy of fold recognition by our 
NMR-constrained threading algorithm. For this study, we selected from the FSSP database (Holm 
and Sander, 1996) 17 sequences as the query sequences and 667 proteins as the template structures. 
The query sequences and templates are selected randomly within the following constraints: (1) the 
query sequences have NOE data in the PDB database; (2) the query sequences should evenly rep- 
resent three classes of proteins: (2a) all-o, (2b) all-p, and (2~) Q and p mixed; and (3) each query 
sequence has an native-like structure in the template set. 

Table 1 summarizes how the number of NOES affects the performance of our algorithm. In 
this study, NOES are selected randomly (and uniformly) from the corresponding PDB files. The 

~ENMR(X, y) may be used twice if both their hydrogen distance and Co distance satisfy the conditions of (2). 
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alignment accuracy is the highest accuracy over ten runs, and the fold recognition accuracy is based 
on a single run 9. When using 2 NOES per residue in this test, the threading-alignment accuracy 
(the number of residues aligned within a 4-residue shift from the correct positions versus the total 
number of alignable residues) improved from 70% to 92.7%. 

Table 1. Threading accuracy versus number of NOE restraints. 

class query nres temp iden rmsd RMSD (A)/rank vs. NOE/a.a. 
(a.a.) (%I (4 cl ) 0.5 1 1.0 1 1.5 1 2.0 ( 2.5 1 3.0 

lbbn 133 lcntl 8 2.6 16.2/29 t 6.6/- 1 6.6/l 1 6.6/- 1 5.3/l I 5.3/- I 5.3/1 

a: 

P 

alB 

lit1 130 3inkC 12 2.2 13.;/7 4.3j- 4.211 4.2j- 3.6j3 3.6/- 3.6/3 
lner 74 llmb3 14 2.4 3.8157 3.8/- 3.8157 3.8/- 3.8/49 3.8/- 3.8139 
li16 166 lbgc 15 2.1 3.0/l 3.0/- 3.0/l 3.0/- 3.0/l 3.01. 3.0/l 

locd 104 W 28 2.0 3.411 3.4/- 3.411 3.4/- 3.411 3.4/- 3.411 

lafi 1 72 1 2acy I 7 1 2.8 I 6.8/376 1 5.5/- 1 5.6126 1 5.5/- 1 3.813 I 3.8/- I 3.8/2 
3trx 1 105 1 la8v 1 12 1 2.7 1 4.111 I 3.11.. I 3.10 I 3.1/- I 3.2/l I 3.01. I 3.011 I 

1 likm I 69 I 1dokB I 13 I 2.1 I 
I 

2.li2 I 
I 

Z.li- I 
I 

2.lj2 I 
-I I- 

2-l/- 2.111 2.1/- 2.111 
-r--d , -~- , 

-- 
I 24 I I:; - - -, - - - -, - -, - _ , -.6/- 3.6/6 3.6/- 3.6/4 

lcrp I 166 I 1byuB 1 1 1 2.611 ) 2.6/- 2.611 2.6/- 2.611 2.6/- 2.611 
lfht 1 116 1 2ula I 

1 1 
34 I 2.1 1 4.5/l ( 4.5/- I 4.511 I 4.5/- 4.511 4.5/- 2.111 

“Query” and Yemp” represent the PDB codes of the query and template proteins, respectively. “Nres” is the number of alignable 

residues between the query and template. “Iden” denotes the sequence identity between the query and template sequences. 

“Rmsd” is the C,-RMSD between the structurally equivalent residues of the query and template structures. “RMSD/rank vs. 

NOE” are the Ca-RMSD between the experimental structure and the predicted structure (alignable portions), and the rank of 

the correct template structure among 667 templates. 0, 0.5, 1.0, represent the averaged number of NOES used per residue. 

“-” indicates that no fold recognition test is conducted. 

We have also used simulated data to test our program on a number of large proteins to show 
that it is applicable to large proteins. We now outline one such test. The query protein is lklna 
(an X-ray structure of DNA polymerase I with 605 residues), and the template is lt7pa (T7 DNA 
polymerase with 698 residues). Without using any NOE restraint, PROSPECT aligned 145 residues 
correctly (within $-residue shift to the correct positions) among the 405 structurally alignable ones. 
We then generated all the hydrogen atoms based on the coordinates of the heavy atoms using 
X-plor (Briinger, 1992), and constructed distance restraints for all hydrogen pairs within 4.0 A. 
Then we randomly and uniformly selected 1.0 distance restraint per residue. Using these simulated 
restraints, our constrained threading program aligned 219 residues correctly. 

g\Ve only performed a single run for this abstract due to the tight submission deadline. More runs will be performed 

before the publication of this work. The small sampling size (single run) partially explains the performance fluctuation 

in our fold recognition test. 
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1.0 2.0 3.0 4.0 
NOE (restraints/residue) 

Figure 3: The average RMSD of all heavy atoms between the model and the X-ray structure (2igd) 
over ten runs versus the number of NOE restraints per residue used. Each solid dot represents the 
structure accuracy for the corresponding number of NOES used. 

3 Threading-Supported NMR Method 

We have conducted a preliminary study on how an approximate backbone structure predicted by 
NMR-constrained threading can help reduce the number of NOES required for accurate structure 
determination. We now outline our study result on the third IGG-binding domain of protein G 
(with 61 amino acids). 

This protein has both an NMR structure (2igh) and a high-resolution (l.lA) X-ray crystallo- 
graphic structure (2igd). The RMSD of all heavy atoms between 2igh and 2igd is 3.6A. 2ptl is the 
template structure. The 2ptl and 2igh sequences have 17% identity; and the C,-RMSD is 4.O.A 
between their aligned portions. Our threading program finds the alignment between the two cor- 
rectly. We then applied MODELLER (Sali and Blundell, 1993) to generate an all-atom structure 
of 2igh based on the structure of 2ptl and NOE restraints. The NOES used in this test are selected 
randomly and uniformly from the whole set of NOES. Ten runs are performed and the averaged 
structure accuracy is plotted in Figure 3. The structure is generally becoming more accurate as 
the number of NOES increases. The small fluctuations in the averaged RMSD are presumably due 
to the small sampling size (ten) for averaging. 

The above examples show that NMR-constrained threading, followed by modeling of side chains 
and possibly loops, gives an approximate representation of the true target structure. We are 
investigating a method for improving the accuracy of the determined structure by minimizing an 
objective function consisting of a linear combination of the conformational energy (the CHARMM22 
potential (MacKerrell, Jr., et al., 1998)) and a pseudo-energy of violation of NMR restraints. 
Currently we implement this with simulated annealing by molecular dynamics, using the CNS 
program (Briinger et al., 1998). In this method, numerous calculations are performed, taking the 
approximate structure determined above as the starting point, but with different random atomic 
velocities. We have found that almost every single such calculation performed in our preliminary 
investigation results in a reduced rms difference between the model and the true structure. 
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4 Discussion 

To fully take advantage of the capability of this new technique, we have considered how to obtain 
as many NOES as possible using various NMR techniques. Our ultimate goal is to expand the scope 
of the NMR method to significantly larger proteins. Currently we are working on a 46 kD enzyme 
PGK (yeast phosphoglycerate kinase) for its structure determination. We use PGK as an example 
to briefly explain how we will extract NOE data from this large protein. 

We will first conduct multidimensional NMR experiments using uniformly 13C/15N-labeled 
enzyme. We expect to make assignments for a limited number of residues. Distance restraints 
will be derived from r5N and r3C edited rH-rH NOE experiments. Particular attention will be 
directed to observe NOES involving protons of the protein backbone. We believe that this should 
yield a limited number of distance restraints. If the uniformly labeled PGK fails to provide sufficient 
number of distance restraints for computation, we will then use selectively isotope-labeled PGK 
to obtain additional distance restraints by isotope filtered NOE experiments. We have developed 
procedures for specific labeling of this enzyme at designated residues such as histidines or tyrosines 
(Pappu and Serpersu, 1994). In addition, we plan to supplement the distance restraints with longer 
distances determined by paramagnetic probe-T1 method (Mildvan and Gupta, 1978). Earlier, we 
were able to determine distances up to 14A using paramagnetic CrATP in selectively isotope labeled 
PGK (Pappu and Serpersu, 1994). 

Our preliminary study has strongly suggested that a small number of NOES can help extend 
the scope of threading to structural analogs. As in the cases of lafi-2acy, 3phy-lbv6, and lbla-lhce 
(all are analogous pairs with low sequence identities; see Table l), our program was able to achieve 
high performance on both fold recognition and threading alignment. 

To summarize, we have demonstrated that (1) a small number of NOES can significantly improve 
the threading performance, and (2) the use of threading can greatly reduce the requirement of NOES 
for an accurate NMR structure determination. We expect this approach to be extremely useful 
in cases where experimental procedures can provide only incomplete NMR data. It should also 
be useful even when structure determination by NMR methods is feasible, by allowing substantial 
reductions in the number of labeling experiments and the NMR-data collection time - i.e., by 
achieving equivalent results more rapidly. 
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