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ABSTRACT

Laser-based ultrasonic (LBU) measurement shows great promise for on-line monitoring of weld quality in tailor-welded
blanks. Tailor-welded blanks are steel blanks made from plates of differing thickness and/or properties butt-welded together;
they are used in automobile manufacturing to produce body, frame, and closure panels. LBU uses a pulsed laser to generate
the ultrasound and a continuous wave (CW) laser interferometer to detect the ultrasound at the point of interrogation to
perform ultrasonic inspection. LBU enables in-process measurements since there is no sensor contact or near-contact with the
workpiece.

The authors are using laser-generated plate (Lamb) waves to propagate from one plate into the weld nugget as a means of
detecting defects. This paper reports the results of the investigation of a number of inspection architectures based on
processing of signals from selected plate waves, which are either reflected from or transmitted through the weld zone.
Bayesian parameter estimation and wavelet analysis (both continuous and discrete) have shown that the LBU time-series
signal is readily separable into components that provide distinguishing features which describe weld quality. The authors
anticipate that, in an on-line industrial application, these measurements can be implemented just downstream from the weld
cell. Then the weld quality data can be fed back to control critical weld parameters or alert the operator of a problem
requiring maintenance. Internal weld defects and deviations from the desired surface profile can then be corrected before
defective parts are produced.
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1. INTRODUCTION

The automotive industry is continually re-engineering its manufacturing processes to effect cost savings, enhance quality,
reduce weight, and improve safety. One new process with all these attributes is associated with the fabrication of sheet metal
panels for auto body manufacture. Different areas of the body have varying requirements for strength and corrosion
resistance. Older manufacturing techniques either used single panels of sheet metal with stiffeners and protective coatings, or
multiple panels with the proper characteristics which were attached separately to the body frame. In a new design-for-
manufacturing approach, manufacturers are now producing large sheet metal panels or blanks made from smaller,
individually engineered panels that are butt-welded together using a CO2 or Nd:YAG laser welding process. With this
approach, panels with differing thickness, metallurgy, or surface treatment can be joined to provide the desired attribute only
in positions where it is required. Compared to conventional methods, the advantages of these tailor-welded sheet metal
blanks are:

• less tooling and better integration of parts,
• forming with a single set of dies,
• reduction in manufacturing steps and in part count,
• superior dimensional control,
• reduction in overall weight,
• improved crash energy management,
• corrosion resistance, higher strength only where required,
• lower net cost, and
• better fit during assembly, resulting in less body noise.
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In the United States, the production of tailor-welded blanks for 1997 is estimated to be 8 million blanks worth approximately
$25 million and made from 110,000 tons of sheet steel. The corresponding measure of welds produced is on the order of 10
miles per day. This production rate is expected to increase by a factor of 10 by the turn of the century.

In the blank welding process, the adjacent edges of the two panels to be welded are held at a fixed gap or in contact and the
panels are then advanced under the stationary laser fixture. The most critical weld condition that must be controlled is the
integrity and shape of the weld nugget formed between adjacent base metal surfaces. The desired transition from one surface
to the other is smooth and flat, as shown in Figure 1. Either a concave or a convex surface is a sign of a lower strength weld.
Typically, a concave surface can arise from poor fit-up or seam tracking, incomplete weld penetration or excessive weld
penetration. Additionally, any crack or lack of fusion is a weld defect.

Normal butt weld Poor interface Crack, lack of fusion

Figure 1. Schematic drawing of normal laser butt weld and poor weld with concave surfaces.

On-line monitoring of weld quality is a crucial unsolved problem in the manufacture of tailor-welded blanks. The goal is to
be able to detect the full range of defects that may be present. At the current time, process monitors (e.g., weld speed, laser
current) have been implemented, and control of these parameters to maintain the desired weld quality has been attempted.
However, these open-loop controls are not sufficiently effective. As a further step in monitoring the weld process, a number
of acoustic, optical, and ultrasonic sensors have been studied. Acoustic emission from the weld process (measured with an
external microphone) was found to be noisy and not a full measure of weld quality. Optical sensors based on measurement of
the spectral emission from the weld plasma or fusion zone have been investigated. Some correlation with weld quality has
been observed, but the discrimination is not strong. Finally, ultrasonic inspection using electromechanical acoustic
transducers (EMAT) has been studied, and has been shown to be unable to detect all the flaws.

It is clear the need remains to implement a sensor that could directly measure the nugget integrity and surface profile, and
thus determine the strength of the weld. One approach is to measure the deflection angle of a laser beam reflected from the
nugget surface. Such an approach has been attempted, but poor surface quality has prevented reliable measurement of the
surface profile. In addition, both sides of the blank would have to be interrogated. In the absence of any reliable automated
sensor, welded blanks in the factory are now inspected by visual means on a statistical basis. Destructive sectioning with
micrographic examination is sometimes used to augment the visual inspection. If defective welds are found then the output
from the most or the entire shift must be inspected and the welder must be recalibrated. Clearly, this approach leads to added
cost in energy, materials, and labor. As an alternative to this reactive welder maintenance approach, it would be desirable to
develop a sensor that would monitor the desired weld property directly and allow proactive intervention to correct the weld
process in real-time or to alert the operator that maintenance is required.

2. LASER ULTRASONICS

A technology that shows great promise for on-line measurement of weld quality in tailor-welded blanks is laser-based
ultrasound (LBU). LBU is a technique for performing ultrasonic inspection using a pulsed laser to generate the ultrasound
and a separate continuous wave (CW) laser interferometer to detect the ultrasound at the point of interrogation.1 There are
several significant advantages for the application of LBU. No sensor contact (or near-contact) with the workpiece is required,
thereby allowing in-process measurements in the harsh welder environment (i.e., high temperatures, turbulent atmospheric
environment, vibrating parts with rapid lateral motion). Both free-space and fiber-based delivery of optical energy can be
implemented.

The authors are investigating the use of laser-generated plate (Lamb) waves propagating from one plate into the weld nugget
as a means of determining the surface profile. The investigation is considering a number of inspection architectures based on
processing signals from selected plate waves, which are either reflected from, or transmitted through the weld zone. One goal
is to identify the simplest generation technique, wave mode, wave propagation geometry, feature extraction process, and





completely characterized by four parameters—the frequency and phase of the sinusoid and the peak location and width of the
window.]

In this example, suppose each of the Gabor functions is produced by a different physical feature and that we can tell
something about the feature (for example, its location in space) by examining the parameters of the Gabor function associated
with that specific feature. The problem is that we must disentangle the underlying Gabor functions given the overlapped
signal. As shown in Figure 3, the signal is the sum of a low level of Gaussian noise and four Gabor functions with normalized
frequencies of 0.025, 0.05, 0.025, and 0.05, and window peaks at time delays of 600, 1400, 1400, and 600 respectively. The
components are not conveniently separable in either the time or frequency domains.

Figure 3. Signal overlapped in time and frequency.

Suppose we have prior knowledge from our understanding of the underlying physical process that the signal should contain
one or more Gabor functions, but we have no prior knowledge of the parameters such as frequency or the time of the window
peak. By the methods of Bayesian parameter estimation, we can use the Gabor function as a model, and guess a frequency
and a time.7 We can project the signal shown in Figure 3 onto the model, and compute the log likelihood that the Gabor
function with the guessed parameters fits the data. If we repeatedly guess sets of parameter values, and plot the resulting log
likelihoods against the guessed parameter values, we obtain the plot shown in Figure 4.

Another way of saying this is that Figure 4 is the projection into log likelihood space of the signal shown in Figure 3. When
we examine this composite signal in log likelihood space, we see four well-separated components, and expect that we should
be able to recover each component, one by one. The two parameters are ω, the oscillation frequency (0-0.06) and τ, the time
of occurrence (0-2000) of the event. The vertical dimension is the log-likelihood that the observed data contains a Gabor
function with the given pair of the parameter values.

Figure 4. Likelihood of fit of signal to Gabor function.



Given the signal shown in Figure 3, the most likely Gabor function that fits the signal, is the one whose parameters lead to
the greatest log likelihood. Using a global optimizing algorithm, with the objective function being the log likelihood as a
function of the time and frequency parameters, we can readily find the optimal combination of parameters. [Note that local
optimization algorithms such as gradient descent are vulnerable to being trapped in local optima.] As indicated by the peak in
Figure 4, the optimum value of the objective function occurs at a time of 605.4 and a frequency of 0.0248.

The most likely Gabor function in the signal shown in Figure 3 is plotted in the left-hand plot in Figure 5. This is the Gabor
function whose parameters are found at the global optimum in Figure 4. When this estimated signal is subtracted from the
signal in Figure 3, the residual in the right-hand plot of Figure 5 is obtained. Note that the most likely Gabor function has
been separated from the signal without disturbing the other information in the signal.
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Figure 5. Most likely signal and residual.

Since we have reason to believe that the signal should contain several Gabor functions plus noise, we can apply precisely the
same methods to the residual and obtain the next most likely signal and its residual with the next likeliest Gabor function
removed. In Figure 6 we see the results of repeating this process until the residual is reduced to noise. The second through
fourth likeliest Gabor functions have times of 1397.9, 612.2, and 1400.9 and frequencies of 0.0251, 0.050, and 0.050
respectively. The residual after removing the four likeliest Gabor functions is noise and cumulative rounding error.

Figure 6. Other components of overlapped signal.

The point of the foregoing discussion is to demonstrate that overlapping signals can be separated without disturbing each
other. Bayesian parameter estimation provides the optimal estimates of the models underlying the signal, however, it is
computationally costly. For the purposes of on-line, real-time monitoring, the goal is to find a method that is almost as good
as Bayesian, but much faster.

In laser ultrasonics, the signals of interest are oscillating bursts. This suggests that wavelet analysis might produce acceptable
performance for an on-line instrument. The wavelet basis function is an oscillating burst and the discrete wavelet transform is
implemented as a bank of computationally inexpensive finite impulse response (FIR) digital filters.

The idea behind wavelet analysis is that the signal can be considered as the weighted sum of overlapping wavelet functions.8

In fact, any signal of finite bandwidth and finite duration can be completely characterized as a weighted sum of a finite
number of scaled and shifted versions of the underlying wavelet. The concept is similar to Fourier analysis, in which the time
series signal can be considered a weighted sum of sinusoids at various frequencies, with the transform coefficients being the
weights. The practical meaning of the wavelet transform of a signal is that each coefficient of the transform is the weight, or
relative amount of information the wavelet at that particular value of scale and shift contributes to the overall signal.



For the results reported in the next section, the wavelet analysis was performed with the Daubechies 10-coefficient least
asymmetric discrete wavelet.9 Discrete wavelets are not expressible in closed form. Plots of the wavelet and its corresponding
scaling function were computed with Daubechies cascade algorithm, and are shown in Figure 7.
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Figure 7. Wavelet and scaling functions for 10-coefficient least asymmetric wavelet.

Suppose that a time-domain input consists of a list of 960 evenly-spaced samples of a band-limited signal. The discrete
wavelet analysis results in a list of 960 wavelet-domain coefficients output in response to each 960-element time series input
signal. As sinusoids at different frequencies are orthogonal to each other, so also are scaled and translated versions of these
wavelet functions orthogonal to each other. This means that Parseval's theorem holds for discrete wavelet transform; the
amount of energy in the signal in the wavelet domain is exactly the same as the amount of energy in the signal in time
domain. Energy is regarded as proportional to the information in the signal.

For a transient signal, such as an oscillating burst, it is expected that most of the energy in the signal will be concentrated in
relatively few of the wavelet coefficients, with all the others having values very close to zero. The energy contributed by each
coefficient is the square of the coefficient. The fraction of the total signal energy contributed by each coefficient is the energy
of the coefficient divided by the total energy of the signal (the sum of the squares of all the samples of either the time series
or all the wavelet coefficients). Sorting the wavelet coefficients from greatest to smallest, the cumulative energy of each
coefficient is the fraction of total signal energy contributed by that coefficient, plus the fractions of signal energy contributed
by all the larger coefficients. For a typical data set collected in this research, the largest coefficient (out of 960) contains over
30% of the total energy of the signal, and that the ten largest contain over 98% of the total signal energy.

In many cases, once the signature of interest is separated from everything else in the sensor signal, the detection of flaws in
the workpiece is straightforward. Typically, the workpiece is scanned across a physical range by the LBU apparatus.
Continuity of the mathematical properties of the signature across scans suggests an unflawed workpiece. The appearance of
an abrupt discontinuity, such as a dramatic localized change in peak of window location (often suggesting a localized change
in time of flight of an ultrasonic echo) suggests the presence of a flaw.

Consistent interpretation of weld signatures must be model-based, where the model is in some reasonable sense a description
of the underlying physical reality. The various bursts that appear in the sensor output have physical causes, and in ultrasonics,
the physics of the causes is typically well understood. Signal processing by the methods described in this section exploit this
knowledge to wring the maximum of new and relevant information from the sensor output data, and provide an indication of
confidence in the results. This is in contrast with the widely popular paradigm of signal processing in which an empirical
model is surmised without respect to the underlying process. The empirical approach works for some data sets, but give no
indication of when it might break down for the next unknown trial.

4. RESULTS

A typical result of LBU inspection of a tailor-welded blank is shown in Figure 8. Each plot is the output voltage of a LBU
photo-detector as a function of time, as the LBU system makes 30 successive scans across a workpiece with a flawed weld. It
would be very difficult to detect the flaw simply from a visual inspection of these raw data.
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From the data for each of the 30 scans, the most likely model (or dominant component) was computed using Bayesian
parameter estimation. For each scan, the waveform of the most probable model is a chirped Gaussian-windowed sinusoid.
The most probable is taken to be the dominant component of the signal. These are plotted in Figure 9. This dominant
component appears to be a biasing effect characterizing the experimental setup. As shown in Table 1, this component
contains approximately 95% of the signal energy for each scan.

The second likeliest component for the data of each of the 30 scans is plotted in Figure 10. For each scan, the first residual is
computed by subtracting the estimated data for the likeliest component from the original data for the scan. The most probable
model of the residual computed by Bayesian parameter estimation is taken as the second likeliest component of the original
signal. For each scan, the waveform of the second likeliest component is a non-chirped exponentially rising sinusoid. This
appears to be a reflection of an exponentially decaying sinusoidal component off the back of the workpiece. As shown in
Table 1, the second likeliest component contains approximately 2–3% of the signal energy for each scan.

The third likeliest component for the data of each of the 30 scans is plotted in Figure 11. For each scan, the second residual is
computed by subtracting the estimated data for the second likeliest component from the first residual for the scan. The most
probable model of the second residual computed by Bayesian parameter estimation is taken as the third likeliest component
of the original signal. For each scan, the waveform of the third likeliest component is the sum of several Gaussian pulses.
This appears to be a reflection off the weld. As shown in Table 1, the third likeliest component typically contains less than
1% of the signal energy for each scan.

Figure 11 reveals some interesting information about the workpiece. For the first 21 scans, the third likeliest component is
located consistently (except for scans 14 and 15) in the neighborhood of time = 500. This is consistent with a visually
detectable pinhole flaw in the weld in the vicinity of scan 14. The inconsistent location of the third likeliest component in
scans 22 through 30 suggests other flaws in the workpiece that are not revealed by visual inspection.

The Bayesian parameter estimation algorithm has comparatively high computational complexity. For an on-line, real-time
system, it is desirable to find an algorithm that gives performance that is almost as good as Bayesian, but with substantially
lower computational cost. For example, discrete wavelet processing is almost as good as Bayesian for detecting short bursts
and is fast enough to be implemented on a presently available digital signal-processing chip. For a given setup, the real-time
algorithm might be wavelet-based and the Bayesian analysis might be performed only occasionally, to verify calibration or
other guidance on how to exploit the wavelet output.

For these data, the tendency of the signal energy to concentrate in relatively few wavelet basis functions is shown in Table 2.
Discrete wavelet transforms were computed of each of the 30 scans, using the 10-coefficient Daubechies least-asymmetric
wavelet. For the first scan, the 8 largest wavelet coefficients contain 97% of the signal energy. The reason for asking which
wavelet coefficients contain 97% of the signal energy is that the Bayesian analysis suggests that 97% of the signal energy is
concentrated in the two likeliest components of the signal, and that these two components do not contain information about
the weld. If we can find a cheap method of identifying this part of the signal, we can discard it with reasonable expectation
that we are not discarding very much of the useful information in the signal. For the same scan, the 52 largest wavelet
coefficients contain 99.99% of the signal energy. As shown in Table 1, other scans show a similar, but not identical energy
distribution.

This energy distribution is consistent with what was gleaned from the Bayesian analysis and provides a convenient way to
parse the signal to eliminate irrelevant information. The largest 7 or 8 wavelet coefficients contain the 97% of the signal
energy that does not include information about the weld. The largest 60 (or thereabouts) wavelet coefficients contain in
excess of 99.99% of the total signal energy. This suggests that we can zero out the other 900 smallest and the 7 or 8 largest
wavelet coefficients in each signal with practically no loss of information.10 The information we seek resides in the part of the
signal that remains.

Figure 12a was constructed as follows. The wavelet transform was computed for each signal. In wavelet space, the largest
coefficients containing the first 99.99% of the signal energies were retained and the others zeroed out. Then each zeroed-out
set was inverse wavelet transformed to recover the approximate time series. Then each time series was subtracted from the
corresponding original time series. The resulting residuals are plotted as a density plot. The vertical axis corresponds to the
30 spatial locations on the workpiece. The horizontal axis corresponds to time. The gray level is strength. The residuals are
mostly (but not entirely) noise.



Figure 8. Successive scans across a flawed weld.



Figure 9. Likeliest component of each scan.

Figure 10. Second likeliest component of each scan.



Figure 11. Third likeliest component of each scan.

Table 1. Percentage of energy in three likeliest components of each scan.

Scan 1st 2nd 3rd Scan 1st 2nd 3rd Scan 1st 2nd 3rd
1 94.6 3.4 0.2 11 95.1 3. 0.2 21 96. 2.3 0.2
2 94.8 3.2 0.2 12 95.4 2.7 0.2 22 96.3 1.9 0.2
3 94.5 3.5 0.2 13 96.2 2.1 0.1 23 96.1 2. 0.1
4 94.9 3.2 0.2 14 95.6 2.5 0.1 24 95.8 2. 0.6
5 94.7 3.4 0.2 15 96.4 2.1 0.1 25 95.6 2. 0.9
6 95.3 2.8 0.1 16 95.7 2.5 0.2 26 96.4 2. 0.2
7 95.3 2.8 0.1 17 96.6 2. 0.1 27 95.8 2.3 1.6
8 95.3 2.8 0.1 18 96. 2.3 0.1 28 94.9 2.7 0.3
9 95.2 3.1 0.2 19 96.3 2.1 0.2 29 95.4 2.3 1.7
10 95.1 3.1 0.2 20 96.3 2.1 0.2 30 95.7 2.3 1.6



Table 2. Percentage of energy in largest wavelet basis functions of each scan.

Scan 97% 99.99%
1 8 52
2 8 58
3 8 53
4 7 56
5 8 62
6 7 49
7 7 49
8 7 49
9 7 56
10 7 53

Scan 97% 99.99%
11 7 60
12 7 68
13 7 62
14 8 54
15 7 63
16 7 53
17 7 54
18 7 51
19 7 62
20 7 58

Scan 97% 99.99%
21 7 61
22 7 57
23 7 66
24 8 51
25 8 62
26 8 69
27 8 60
28 8 61
29 8 57
30 8 65

In wavelet space, the 8 largest coefficients (containing 95–96% of the signal energies) were retained, and the others zeroed
out. Then each zeroed-out set was inverse wavelet transformed to recover the approximate time series. Then each time series
was subtracted from the corresponding original time series. The resulting 4–5% residuals are contour-plotted below in Figure
12b.

In the same wavelet space, the 9 largest coefficients (containing 96–97% of the signal energies) were retained and the others
zeroed out. Then each zeroed-out set was inverse wavelet transformed to recover the approximate time series. Then each time
series was subtracted from the corresponding original time series. The resulting 3-4% residuals are contour-plotted in Figure
12c. Note there is a little difference between Figures 12b and 12c.

The reasonable place to search for features of weld defects is in the region of the signal between the bias (biggest eight
coefficients of each signal, or thereabouts) and the noise (smallest 900 coefficients of each signal). In Figure 12d, 97.6% of
the signal energy is assumed to be attributed to biasing effects. This bias is subtracted from the signal approximation
constructed from the wavelet coefficients constituting of 97.8% of the signal energy. This difference constitutes 1.2% of the
original signal energy and has a fairly dramatic global minimum whose contour is plotted in Figure 12d. This shows up in
scan 14 and time 750. This corresponds to the change in the third likeliest component of the signal as revealed by Bayesian
analysis and to the pinhole defect in the weld in the workpiece.

Figure 12. Separation of signal energies by wavelets.

5. CONCLUSIONS AND FURTHER RESEARCH

In conclusion, we have demonstrated the capability to detect localized weld defects using a computationally efficient
processing approach. This paper reports the initial results of our experiments and analysis of data for LBU inspection of
tailor-welded blanks. In the ongoing research we will identify the connection between the Bayesian-derived models and the
underlying physical processes. We will also investigate the comparative reliability and computational cost of wavelet and
Bayesian feature extraction methods.

12a.  12b.    12c.      12d.



In future work we will seek to classify individual defects, including those encountered in the welding process. We will also
devise a practical implementation of the signal-processing algorithm in real-time. The ultimate goal of this research is to
construct a prototype of an on-line LBU weld inspection device for tailor-welded blanks.

This work could lead to spin-offs for other on-line inspection in other processes. Additional follow-on research might include
the examination of other types of continuous seam joints for distinguishing features. In addition, the Lamb-wave modeling
and feature extraction would be directly applicable to inspection of other products fabricated from thin metal sheet.
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