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Topics that will be addressed in this
presentation include . . .

• Applications of cryogenic current leads:
– To supply power to a low temperature device and make the

transition from room temperature to low temperature.

• Analysis of current leads:

– 1-D energy balance

– Conductor properties (Copper)

• Conduction cooled vs. forced flow / vapor cooled.

• Optimization of cryogenic current leads:

– McFee approach (conduction cooled)

– Minimization of refrigeration load (Forced Flow /
Vapor Cooled)
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Current leads are used to power
superconducting magnets
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Designs will be needed for
superconducting power applications.

• Superconducting
transmission line
terminations

• Transformers

• Fault current limiters
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In most cases a 1-D energy balance
is sufficient to analyze a current lead.

• Energy balance for the conductor:

• Energy balance for the fluid (cooled):

• Heat transfer coefficients - empirical
correlations.

• Helium & conductor properties -  database.
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Copper properties vary with
temperature and RRR.

K

KRRR
4

273

ρ
ρ

=

• Residual Resistivity Ratio, RRR,
depends on condition of material.

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1 10 100 1000

Temperature (K)

E
le

ct
ri

ca
l R

es
is

ti
vi

ty
 (

O
h

m
-m

)

RRR=20

RRR=40

RRR=100

RRR=1000

Ideal

100

1000

10000

100000

1 10

Temperature (

T
h

er
m

al
 C

o
n

d
u

ct
iv

it
y 

(W
/M

/K
)



J. A. Demko(ORNL)  for CSA Short Course July 1999

Optimization by McFee method is a good
starting place for conduction cooled leads.

• An analytical solution for the optimum shape
factor, IL/A, and minimum heat transfer [QL]min.
(Minimize Carnot Refrigeration)
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Optimized temperature profiles are similar.

• Numerical solution for same IL/A.

• No heat load from warm end (X=L).
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Design parameters for a lead going from 300K to
4K vary with copper RRR using McFee’s method.
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Heat loads can be determined from McFee
analysis for different lead configurations.
Using a I=1kA lead as the basis.
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Heat loads from McFee analysis illustrate
potential benefits of heat stationing and
use of HTS leads for I=1kA.
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Fault current heating of conductor can be
estimated by adiabatic energy equation.

• Adiabatic integral for
copper conductor.

• Energy Equation:

• At initial T, read
integral.

• Calculate current
integral, add to value at
initial T.

• Find limiting (adiabatic)
temperature.
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Vapor/forced cooled leads are more
complicated than conduction cooled.

• Analysis includes solution of helium energy
balance.

• Heat transfer surface area considerations
– Seek large surface perimeter  to cross sectional area

– Examples of commonly used surface area designs
• Helical or spiral fin (> 10 cm2/cm3)

• Thin foils

• Braided conductor (> 100 cm2/cm3)

• Models can be validated by comparing with
experimental data.
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Operational performance of many lead
designs are similar.

• References:

• Ben-Zvi, B. V. Elkonin, J. S. Sokolowski, and D. Sellmann, "Current Leads for HERA," Nuclear instruments and Methods in
Physics Research, A276, 1989

•  K. Maehata, S. Kawasaki, K. Ishibashi, Y. Wakuta, H. Kawamata, and T. Shintomi, " Operational Performance of Spiral Fin
Current Leads," Cryogenics, V33, No.7, 1993

• American Magnetics Inc., Oak Ridge, Tennessee, Catalog.

• V.D.Bartenev and Y.A.Shishov. “Force-cooled current leads for the force-cooled superconducting magnets of the Nuclotron”,
Cryogenics 31:985 (1991).

I
(A)

Q (@I=0)
(W)

Q/I
(W/kA)

m
(g/s)

m/I
(g/s/kA)

Hera 6500 20.8a 3.2+/-0.3 a 0.34 0.052
KEK 7000

10000
7.47
10.4

1.07
1.04

0.387
0.506

0.055
0.049

AMI
(1.4 lit/hr/kA)

6600 0.321 0.049

JINR/LHE 4000
6000 (6 kA)
         (7 kA)
         (9 kA)

4.0 (2.5)
6.0 (4.0)
6.72 (3.5)
7.02 (6.0)

1.0
1.0
1.12
1.17

0.2
0.3
0.316
0.351

0.05
0.05
0.053
0.059

a. Values shown are for combined heat leak and boil-off
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Model validation is accomplished by
comparing it with experiments.

• 6.6 kA test lead description
– Heat exchanger - Spiral fin design.

– Forced flow cooling with 4 bar (supercritical) helium.

– Core diameter = 1.59 cm

– Length = 83.5 cm

– Nb-Ti LTS extends into first 30 cm of lead.

• Current ramp up at 6 A/s, hold at 5000 A, down at -4 A/s.

• Flow controlled off of top end temperature (set at 253 K).

• Temperature sensors, voltage taps along lead.

• Model uses finite difference derivative approximations
and the numerical method of lines.
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Current lead test apparatus at
University of Wisconsin - Madison

• HTS lead test rig picture courtesy of Professor John Pfotenhauer, University of Wisconsin-
Madison
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Time dependent analysis of  6.6 kA
forced flow superconducting magnet
lead test.
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• Flow control model
agrees well with data
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Transient response at different axial
locations can be simulated well.

• Temperatures vary with
current and mass flow

• Voltages along lead
vary with current and
mass flow
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Simulated loss of cooling situation shows
long time constant at top but short response
time at cold end.
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Optimization can be  performed on
basis of minimum Carnot refrigeration.
• The Carnot work contains both refrigeration

and re-liquefaction terms:

• Generally, at much less than the design
operating current, (i.e. I=0 A) there is a
distinct minimum.

• For operation near the design operating
current, the minimum Carnot work is at the
lowest safe flowrate.
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Description of the10 kA lead design in
this optimization discussion.
• Carnot work minimized over range of diameters for a

given length.
– Mass flow constraint

– Heat load constraint

• Lead description
– Heat exchanger - Spiral fin design.

– Forced flow cooling with 4 bar (supercritical) helium.

– Core diameter =  2.2 cm

– Length =  129.4 cm

– Nb-Ti LTS extends into first 15 cm of lead.

• For given dimensions, there is a set of optimal
operating conditions.

• Reference:  Q. S. Shu, J. A. Demko, R. Domam, D. Finan, T. Peterson, I, Syromyatnikov, and A, Zolotov, IEEE Transactions on
Applied Superconductivity, Vol. 3, No. 1, 1993, pp408-412.
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10 kA lead design showing installation
into He dewar.

– Figure inserted manually from reference
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Optimizing operation of 10kA force flow
cooled superconducting magnet lead.

• Voltage drop calculated
across lead decreases
with mass flow.

• Calculated Carnot power
has a minimum value for
each operating current.
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Optimized operation of 10kA forced flow
cooled superconducting magnet lead.

• Optimal steady state cooling flow can be determined
from Carnot power.
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Summary

• Current leads can be designed for different
operating modes.
– Conduction cooled

– Forced flow / vapor cooled.

• Thermal optimizations have different
approaches.
– Conduction cooled: McFee method.

– Forced/vapor cooled minimizing Carnot power.

• There is a thermally optimized operating line.
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