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ABSTRACT

The use of thick-walled composite cylinders in structural applications has seen tremendous
growth over the last decade.  Applications include pressure vessels, flywheels, drive shafts,
spoolable tubing, and production risers.  In these applications, the geometry of a composite
cylinder is axisymmetric but in many cases the applied loads are non-axisymmetric and more
rigorous analytical tools are required for an accurate stress analysis.  A closed-form solution is
presented for determining the layer-by-layer stresses, strains, and displacements and first-ply
failure in laminated composite cylinders subjected to non-axisymmetric loads.  The applied
loads include internal and external pressure, axial force, torque, axial bending moment,
uniform temperature change, rotational velocity, and interference fits.  The formulation is
based on the theory of anisotropic elasticity and a state of generalized plane deformation
along the axis of the composite cylinder.  Parametric design trade studies can be easily and
quickly computed using this closed-form solution.  A computer program that was developed
for performing the numerical calculations is described and results from specific case studies
are presented.
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1. INTRODUCTION

In the design and analysis of laminated composite cylinders, axisymmetric loads and
axisymmetric geometries are often assumed for developing closed-form analytic solutions.  In
addition, the cylinder is assumed to have an infinite length such that the stresses are not only
independent of the circumferential coordinate but also independent of the axial coordinate.
Solutions have been formulated based on both the theory of anisotropic elasticity (1,2) and the
laminated shell theory (3,4).  The laminated shell theory provides an accurate solution for
thin-walled cylinders, whereas elasticity solutions are required for an accurate determination
of the three-dimensional stress states that exist in thick-walled cylinders.  In both of these
analytical approaches, further simplifications are obtained by restricting the composite
cylinder to be orthotropic.
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There are a limited number of closed-form solutions for the case of axisymmetric cylinder
geometries with non-axisymmetric loads.  Kollar and Springer (5) considered a laminated
cylinder, or cylindrical segment, subjected to hygrothermal and mechanical loads that varied
in the radial and circumferential, but not in the axial direction.  The theory of elasticity was
used to derive the solution for stresses, strains, and displacements in the cylinder without any
restrictions on ply angle and lamination sequence.  The length of the cylinder was assumed to
be large compared to the wall thickness and inner and outer radii such that end effects could
be neglected.  The only restriction on the applied mechanical loads was that they had to be in
equilibrium.  Pagano (6) presented a general solution for a cylindrically anisotropic cylinder
subjected to surface tractions that could be expressed by a Fourier series.  The surface
tractions had to be independent of the axial coordinate and consistent with overall equilibrium
of the cylinder.  On the end faces of the cylinder, the surface tractions were prescribed as
statically equivalent force and moment resultants.

2. ANALYTICAL FORMULATION

2.1 Single Layer Solution  The work of Pagano (6), as suggested by the author, was
developed in a form that could be extended to analyze a laminated composite cylinder having
anisotropic layers.  This single layer solution is the foundation for the current work and the
underlying assumptions and basic equations are briefly described in this section.  A circular
cylinder having an inner radius, r1, and an outer radius, r2, is considered where the stress field
is independent of the axial coordinate.  Traction boundary conditions are applied on the
surfaces r = r1, r2, and on the end planes, independent of the axial coordinate, x, and expressed
in the form of a Fourier series.  The constitutive equations for a material having a single plane
of symmetry (xθ) with respect to a cylindrical coordinate system (x, θ, r) are written as:

(1)

The equilibrium equations in cylindrical coordinates are written as:

(2)

where the components of stress are functions of the θ and r coordinates and the comma
denotes differentiation.  The Fr body force term is included and for rotational velocity is
written as ρω2r.  The components of displacement are u, v, and w in the radial,
circumferential, and axial directions, respectively, and are functions of x, θ, and r.  The strain-
displacement relationships are written as:
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and

(6b)

A solution to Eqn. (5) is sought subject to a set of boundary conditions that are expressed in
terms of a Fourier series.  Due to the rotational symmetry, the boundary conditions at the
inner and outer radii are expressed in the following form:

(7)

In Eqn. (7), the constants pin, qin, and tin for n=0,1 are not all independent as a result of global
equilibrium for the cylinder.  Direct integration of the equilibrium equations results in the
following relationships between the constants in Eqn. (7).

(8)

where σ* are the applied stress components corresponding to n = 1.

The remaining set of boundary conditions consists of the resultant axial force (Fx), torque (T),
and moment (M) acting on any cross section of the cylinder.

(9)

A general solution for U, V, and W is given by:

(10)
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Where φi(r,θ) (i=1,2,3) correspond to the particular solution and the remaining terms are for
the homogeneous solution when Pi = T1 = 0.  By substituting Eqn. (10) into Eqn. (5) the
homogeneous solution is given by:

(11)

and

(12)

The determinant of the [K] matrix is set to zero and the result is a characteristic equation that
is cubic in kns

2.  The roots to this cubic equation provide the solution for the six constants, kns,
for each value of n in the Fourier series.  Special cases to the solution of Eqn. (11) occur for
values of n equal to 0 and 1, where repeated roots are found for kns = 0, 0.  For n = 0:

(13a)

and

(13b)

For the case of n = 1:

(14)

The particular solution in Eqn. (10) is found by direct substitution into Eqn. (5) and is:
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(15)

where

(16)

and a3, a4, and a5 are found by solving the following set of three simultaneous linear
equations.

(17)

Finally, due to the form of the prescribed boundary conditions in Eqn. (7) b2 = 0 and
neglecting rigid body motions results in:

(18)

The solution for a single layer, as describe by the above equations, is applicable for all fiber
orientations with some minor changes to the equations for orthotropic (C16 = C26 = C36 = C45

= 0) and transversely-isotropic (C12 = C13, C22 = C33, C55 = C66, C44 = ½(C22 – C23) layers.
Taking the highest index in the Fourier series to be M, the actual solution to the problem
contains 6M + 6 unknowns and there are 6M + 6 independent equations.  The unknown
constants are b1, b3, b4, A03, A04, Aij  (j = 2,3,…,6), B06, D01, and Ans (s = 1,2,…,6, 2 ≤ n ≤ M).
Some of the details have been omitted for brevity here but can be found in the original work
of Pagano (6).

2.2 Laminate Solution  For a laminated cylinder, the solution described in Section. 2.1 is
applied to each layer and interfacial continuity is invoked between neighboring layers.  The
boundary conditions at the inner and outer radii of the cylinder are applied to the inner radius
of the first layer and the outer radius of the last layer, respectively.  Let R1 and R2 be the
cylinder inner and outer radii, respectively, r1

(k) and r2
(k) be the inner and outer radii of the kth

layer, and tk be the thickness of the kth layer.  For N layers there are N-1 interfaces and by
using the following notation:

(19)

the continuity equations for k = 1,2,…N-1 are written as:
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(20)

where δk is a prescribed interference between layers.  The resultant force and moment given
by Eqn. (9) are modified to be a summation over all the layers and are rewritten as:

(21)

Recall that each layer has 6M + 6 unknown constants and therefore, the solution to the
problem of a cylinder having N layers has 6N(M + 1) unknown constants.  There are 6M + 6
independent equations from the boundary conditions and 6(N – 1)(M + 1) from the continuity
equations for a total of 6N(M+1) equations.

The solution procedure is divided into three separate parts that depend on the number of terms
in the Fourier series.  For n = 0 in the Fourier series there are 4N simultaneous equations that
are used to solve for the 4N unknowns of b3

(k), b4
(k), A03

(k), and A04
(k).  There are 4(N – 1)

equations from continuity of radial stress and continuity of the three displacement
components.  The remaining 4 equations are from the radial stress boundary conditions at the
inner and outer radii of the cylinder (p10 and p20) and from the resultant axial force and torque
conditions.  The 2N unknowns of D01

(k) and B06
(k) are solved from continuity of the two shear

stress components (2N – 2 equations) and the two boundary conditions for shear stress at the
inner radius of the cylinder (q10 and t10).  For n = 1, there are 6N unknowns with 6(N – 1)
equations from continuity of the three stress and three displacement components and 6
equations from the boundary conditions corresponding to the terms of p11, p21, q11, t11, and t21,
and the resultant moment.  The unknowns are b1

(k), A12
(k), and A1s

(k) (s = 3,4,5,6).  Finally, for
each n = 2,3,,,M a 6N X 6N system of equations is solved for the 6N(M – 1) unknowns of
Ans

(k) (s = 1,2,…,6).  There are 6(N – 1)(M – 1) equations from the 6 continuity equations and
there are 6(M – 1) equations from the boundary conditions terms of p1n, p2n, q1n, q2n, t1n, and
t2n.

A FORTRAN program has been developed for performing the calculations described in the
above solution procedure.  The program is general in the sense that monoclinic, orthotropic,
and transversely-isotropic layers can be analyzed, and multiple material systems are
acceptable.  The layer-by-layer stresses, strains, and displacements are calculated in both the
global cylindrical coordinate system and in the layer principal material directions.  Failure
criteria for determining first-ply failure are implemented in the program based on using
Hashin’s criteria (7) and the Tsai-Wu criterion (8).
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3. DESIGN CASES

3.1 Antenna Mast  Composite materials may be used to reduce the weight and life-cycle
costs, as well as minimize deflections, of antenna masts.  The masts are often subjected to
wind conditions that subject the mast to non-axisymmetric loads.  The wind velocity causes
an external pressure that is well estimated by:

(22)

where Vf30 is the velocity measured at 30 feet above ground in open country for the fastest
mile of wind, i.e., the mean wind velocity over time that corresponds to a movement of air 1
mile (9).  At the top of the cylinder, the pressure distribution is given by:

(23)

where H is the height of the cylinder, zg ,the gradient height above which the wind velocity is
practically constant, and α depend on the terrain.  For open country zg equals 274.4 meters
and α equals 1/7.  The constants An are given in Table 1.

Table 1. Constants for circumferential distribution of wind velocity
Angle from

windward meridian
n An

0 0 -0.2636
15 1 0.3419
30 2 0.5418
45 3 0.3872
60 4 0.0525
75 5 -0.0771
90 6 -0.0039
105 7 0.0341

Consider the case of a quasi-isotropic graphite/epoxy cylinder 10 meters in height subjected to
a Vf30 wind velocity of 40 km/hr.  The prescribed boundary conditions are written as:

(24)

where

(25)

Carpet plots in the rθ-plane of the mast are shown in Figs. 1-4 for the radial displacement,
radial stress, hoop stress, and xθ-shear stress, respectively.  The results in Fig. 1 indicate that
the maximum radial displacement occurs at the circumferential coordinates of 0-, 90-, and
180-degrees.  Also, these results show that the tube undergoes radial expansion at 0 and 180-
degrees, whereas at 90-degress the tube experiences radial contraction.  Figs. 2-4 show the
radial stress to be a continuous function but the hoop and shear stresses have discontinuities at
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the layer interfaces.  This is a direct result of the continuity conditions given by Eqn. (20).  In
addition, the shear stress results, as expected, are zero in the 0-degree and 90-degree plies.

Figure 1. Radial displacement contour for composite mast subjected to wind loads.

Figure 2. Radial stress contour for composite mast subjected to wind loads.



Figure 3. Hoop stress contour for composite mast subjected to wind loads.

Figure 4. Shear stress contour for composite mast subjected to wind loads.

3.2 Spoolable Tubing  In oilfield applications, spoolable composite tubing offers advantages
over traditional tubing materials in terms of reduced weight and improved fatigue life.  The
many different loading scenarios that can arise include bending strains, axial forces, internal
and external pressure, and elevated temperatures.  Wrapping the tubing around spool
diameters that are typically around 2 meters in diameter induces the bending strain (10) and



the bending of the tubing results in a non-axisymmetric stress distribution.  To analyze the
spooling load scenario, an applied resultant end moment is used.

For typical tube outer diameters of 38 mm (10) on a 2-meter spool diameter the bending
strain, ε0, is equal to 1.86%.  This is calculated by dividing the distance from the neutral axis
by the radius of curvature.  The applied moment necessary to produce this bending strain is a
function of the tube geometry and lamination sequence and is given by:

(26)

where Exk and Ik are the kth layer axial stiffness and layer moment of inertia (11).

Consider a graphite/epoxy (±15°) angle-ply laminated tube having a 38-mm outer diameter
and a 6-mm wall thickness.  The applied end moment is calculated to be 3,392 N-m.  The
principal stress in the fiber direction is plotted in Fig. 5 at the inner and outer radii of the tube
as a function of the circumferential coordinate.  The results illustrate the bending of the tube
associated with spooling where the stresses are of equal magnitude but of opposite sign
symmetrically about the 90-degree circumferential coordinate.

Figure 5. Principal stress distribution in the fiber direction for spooled load case.

4. CONCLUSIONS

A closed-form solution has been presented for design and analysis of an axisymmetric
laminated cylinder subjected to non-axisymmetric loads.  The solution is based on the theory
of anisotropic elasticity and an assumed generalized plane deformation state of stress.  The
prescribed boundary conditions are expressed in terms of a Fourier series and are independent
of the axial coordinate.  Using zero terms in the Fourier series expansion treats the special
case of axisymmetric loads.  The solution is general in that monoclinic, orthotropic, and
transversely-isotropic layers are considered in the formulation and multiple material systems
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may be used.  The prescribed loadings include axial force, moment, torque, internal and
external pressure, uniform temperature change, and rotational velocity with interference fits.
A FORTRAN code was developed for performing the necessary calculations and the code can
be executed from a desktop computer.  This permits a computationally efficient method for
conducting numerous design trade studies.  The utilization of the code was demonstrated by
two design cases for composite laminated cylinders subjected to non-axisymmetric loads.
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