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Abstract—
Wave induced flows can produce radially sheared

velocity profiles that can in turn stabilize drift wave
turbulence and improve plasma confinement. A
second-order kinetic theory is developed in one-
dimensional slab geometry to treat radio frequency
(RF)-driven plasma flows. The Vlasov equation is
solved to second order in the RF electric field. Mo-
ments of the second-order distribution function give
time-averaged expressions for the heating rate, the
wave kinetic flux, and the RF force exerted on the
plasma. On the collisional or transport time scale,
the RF force in the poloidal direction is balanced
by neoclassical viscosity, and the force in the radial
direction is balanced direction by ambipolar electric
fields. Comparison is made with previous theories
which have relied on incompressible fluid approx-
imations. Very substantial differences are seen in
situations involving the Ion Bernstein Wave, a com-
pressional wave.

I. Introduction

Use of RF power in fusion devices has progressed
from the relatively simple purpose of bulk plasma heat-
ing, to driving steady state currents, and now to more
sophisticated profile control applications. Recent inter-
est has developed in using power in the ion cyclotron
range of frequencies (ICRF) to drive plasma flows,
particularly poloidal flows with radial velocity shear.
This interest stems from several calculations [1], [2],
[3] and some experiments [4], [5], indicating that such
sheared velocity can act to stabilize micro-turbulence
and thereby improve plasma confinement. Previous cal-
culations have relied on two key assumptions: (1) that
the fluctuating velocity field associated with the RF
waves is incompressible, and (2) that the RF pressure
can be approximated entirely by the Reynolds stress.
While these assumptions are valid for fluid turbulence,
and may be valid for the low frequency drift wave modes
associated with the increased plasma transport, they
are questionable for the high frequency RF waves driv-
ing the sheared flow. This is particularly true for one
of the most promising modes, the ion Bernstein wave
(IBW), which is dominantly a compressional electro-
static wave. In this paper we describe the results of
a more general theory which eliminates these two as-

sumptions. To accomplish this, it is necessary to de-
velop a kinetic theory in which the perturbed distribu-
tion function is expanded to second order in the RF
wave fields. A comparison is then made between three
levels of approximation: the usual incompressible fluid
theory taking the RF pressure as the Reynolds stress
alone, the fluid theory including compressibility, and
the full kinetic theory including the second-order ki-
netic pressure tensor.

II. Kinetic Theory of Plasma Flow

Plasma flows can be calculated from the first velocity
moment of the kinetic equation, the momentum balance
equation,

∂

∂t
(nsmsus)+∇·Ps = nsqs(E+us×B)+〈vC(fs)〉 (1)

where s labels the particle species, ns =
∫
d3vfs is the

density, nsus =
∫
d3vvfs is the particle flux, Ps =∫

d3vvvfs is the pressure tensor, and 〈vC(fs)〉 is the
collisional transfer of momentum due to friction or vis-
cosity. It is convenient to transform to the center of
mass frame [V =

∑
s
msnsus/ρm, where ρm =

∑
s
msns

is the total mass density]. In this case, the pressure
tensor can be expressed as P = ρmV V + π, where
the first term on the right is the Reynolds stress, and
π =

∑
s
ms

∫
d3v(v − V )(v − V )fs is the thermal pres-

sure in the center of mass system. We now introduce a
perturbing RF wave with frequency ω and electric and
magnetic fields, E1(r, t) and B1(r, t) ∝ exp[(k · r−ωt)].
Equation (1) is expanded in powers of the perturbed
RF fields, second-order terms retained, and a time av-
erage is taken over the fast RF scale. The tokamak is
modeled as a 1-D slab where (x, y, z) refer to radial,
poloidal, and toroidal directions, respectively. In true
tokamak geometry, we would deal with flux-surface av-
eraged quantities, the collisional term representing flux-
surface averaged neoclassical flow damping. For the
present slab model, this is just taken to be a drag term
−µρmV , where µ is the neoclassical viscosity[2]. Then
in steady state, the poloidal flow velocity is found from
the equation



−µρmV2 =
〈
ρ(1)
q E1 + J1 ×B1

〉
t
−∇ ·

(
ρ(0)
m 〈V1V1〉t

)
− ∇ · π2 + J2 ×B0 , (2)

where subscripts 1,2 refer to order in the perturbed
fields, and 〈 〉t represents the time average. The first
term on the right is the electromagnetic force. In steady
state, the radial component of J2 must vanish by am-
bipolarity so the poloidal component of the last term
of Eq. (2) also vanishes. The simplified models are ob-
tained by assuming incompressible waves, ∇ · V1 = 0,
and neglecting the thermal pressure ∇ · π2 = 0 in
Eq. (2).

To proceed, it is necessary to calculate V1 which re-
quires the usual first-order perturbed distribution func-
tion, f1, and to calculate π2, which requires the time-
averaged perturbed distribution f2 evaluated to second
order in the RF fields. The second-order, time-averaged
Vlasov equation can be written in terms of f1 as [6]

∂f2

∂t
+ v · ∇f2 + q

m (E0 + v ×B0) · ∇vf2

= −
〈
q
m (E1 + v ×B1) · ∇vf1

〉
. (3)

A detailed solution of this equation is presented in
Ref. [7] with no assumption of smallness of the gyro-
radius relative to wavelength. The wave electric field
itself is obtained from the ORION1D code [8], a full
wave solution of Maxwells equations in slab geometry

∇×∇×E1− ω2

c2

(
E1 + i

ωε0

∑
s

J1s

)
= iωµ0Jext , (4)

where the plasma current, J1s, is expanded to third
order in gyro-radius, and Jext is the external current
due to the antenna. This formulation includes the IBW
up to third cyclotron harmonic.

III. Comparison of the models

To make a concrete comparison of the three models
considered, we adopt parameters representative of the
Alcator C-Mod tokamak: major radius R0 = 0.67 m,
minor radius a = 0.20 m, magnetic field B0 = 4.0 T on
axis. The antenna is located just outside the plasma at
R = 0.88 m, and is characterized by toroidal wave num-
ber kz = 10 m−1 and a poloidal wave number ky = 0
(i.e. no net input of poloidal momentum). The plasma
profiles are parabolic with central density and temper-
atures: no = 1.5 × 1020, Te0 = 2.5 keV, and Ti0 = 1.5
keV. Figure 1 shows the poloidal flow velocity for fast
waves launched into a 3He plasma with a 10% minority
hydrogen (H). The frequency (f = 50 MHz) is near the
fundamental of the minority H and the power absorbed
is 1MW. First, to simplify the comparison, we consider
a case in which the parallel wave number is artificially
increased (kz = 26 m−1), eliminating the conversion to
IBW. Shown are: (a) the incompressible fluid model,
(b) the fluid model but including the compressibility of

V1, and (c) the kinetic model with non-zero pressure
contribution. The long dashed line shows the contribu-
tion from electromagnetic force, the short dashed line
is the pressure (Reynolds stress + kinetic) which al-
ways tends to cancel with the EM term, and the solid
line is the total flow velocity. The effect of compress-
ibility on the fluid model, Fig. 1(b), is to reduce the
magnitude of the Reynolds stress, slightly increasing
the total flow. Including the kinetic pressure increases
the pressure contribution by 20-30%, a relatively mod-
est change, but sufficient to reverse the net flow direc-
tion compared to the fluid models. The magnitude of
the flow in the three models is similar. A very differ-
ent picture emerges in situations such that the IBW
is important. Figure (2) shows a case of direct IBW
launch into deuterium (D) plasma with a 2% minority
of 3He. The magnetic field is taken as 3.26 T to put
the second harmonic D resonance in front of the an-
tenna. The incompressible model, Fig. (2a), shows a
very large, positive flow velocity. Adding compressibil-
ity to the fluid model, Fig. (2b), results in a reduction
in the peak flow velocity of about a factor of 30. The
kinetic model, Fig. (2c), gives a further reduction of
about a factor of 100. Thus the peak flow velocity pre-
dicted by the kinetic theory is more than three orders
of magnitude smaller than that given by the usual in-
compressible fluid model.

IV. Discussion

The kinetic model tends to predict smaller values
of driven poloidal flow than does the incompressible
fluid model; in some cases substantially smaller values.
However, we find that in many cases the velocity shear
driven by achievable power levels is sufficient to impact
turbulence. For stabilization of turbulent modes, the
important issue is the magnitude of the radial shear in
the E ×B velocity, ωE×B

ωE×B =
(RBP )2

B

∂

∂ψ

(
Eψ
RBP

)
. (5)

Using the theory of Biglari, Diamond, and Terry for
shear stabilization of drift wave turbulence, [9] we find,
for example, that typical edge conditions in Alcator C-
mod requires shearing rates ωE×B ≥ ω∗

e ≈ 2 × 105s−1.
This is obtained with power at the one-megawatt level
for the case shown in Fig. (2).

In addition to the RF driven poloidal flow, the ki-
netic model predicts a steady flow driven in the x (or
radial) direction. For practical parameters such as we
have been considering, we find Vx2 ∼ 1 m/sec, which
is comparable to the radial diffusion velocity in toka-
maks. Thus, to maintain ambipolarity, an additional
radial electric field must appear and radial transport
must be modified. This effect may also have a signifi-
cant effect on plasma confinement.

A further benefit of the present theory is that ex-
pressions are obtained for the local power deposition
and the wave kinetic flux which are valid to all orders
in k⊥ρ. In fact, this calculation is the first to obtain
the local heating and kinetic flux directly from the dis-
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Fig. 1. Poloidal flow velocity for fast waves absorbed near the
two ion hybrid resonance with 10% H in He3, f = 50 MHz,
B(0) = 4.0 T, and kz = 26m−1: (a) incompressible fluid, (b)
compressible fluid, and (c) kinetic model.

tribution function, f2. In this way, purely local Joule
heating and wave energy flux are explicitly calculated
and are distinguished from energy transport due to net
particle transport. Previous theories required a specific
definition of local heating, then a grouping of terms in
terms in the expression for J ·E into power deposition
versus kinetic flux, a process subject to some ambiguity.
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Fig. 2. Poloidal flow velocity for directly launched IBW absorbed
by electron LD and TTMP with 2% He in D, f = 44 MHz,
B(0) = 3.26 T, and kz = 10m−1: (a) incompressible fluid,
(b) compressible fluid, and (c) kinetic model.


