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ABSTRACT 

A Two-Modulator Generalized Ellipsometer (2-MGE) has been extremely useful in characterizing optical 
properties of uniaxial bulk materials, thin films and diffraction gratings. The instrument consists of two polarizer- 
photoelastic modulator pain, one operating as the polarization state generator and the other as the polarization state 
detector. Each photoelastic modulator operates at a different remnant frequency (such as 50 kHz and 60 kHz), 
making it possible to measure eight elements of the reduced sample Mueller matrix simultaneously. In certain 
configurations, light reflection from non-depolarizing anisotropic samples can be completely characterized by a 
single measurement, and the entire reduced Jones matrix can be determined, including the cmss polarization 
coefficients. The calibration of the instrument involves the measurement of the azimuthal angle of the polarizer 
with respect to the modulator, the modulation amplitude, and the modulator strain for each polarizer photoelastic 
modulator pair, where the last tw are functions of wavelengths. In addition, it is essential to calibrate the azimuthal 
angles of the polarization state generator and the polarization state detector with respect to the plane of incidence in 
the ellipsomehy configuration that is used in the measurements. Because two modulators operating at different 
frequencies are used, these calibrations are actually easier and more accurate than for one modulator ellipsometers. 
In this paper, we will discuss these calibrations and the resultant accuracy limitations of the 2-MGE. 

Keywords: Ellipsometry, generalized ellipsometry, uniaxial materials, cross polarization, photoelastic 
modulator 

1. INTRODUCTION 

The two modulator generalized ellipsometer (2-MGE)’ is an especially powerful instrument in that it can 
completely measure the polarization-dependent optical properties of many reflective or transmissive samples. The 
instrument consists of tw polarizer-photoelastic modulator (PEM) pairs, where the 2 PEM’s are operating at 
different resonant frequencies (-50 kHz and -60 kHz in OUT case). For non-depolarizing samples that can be 
described with a Mueller-Jones matrix, the complete Mueller matrix can be determined with a single nieasmement 
of the 2-MGE. If all 16 elements are required, then four separate measurements at different azimuthal orientations 
of the polarization state generator (PSG) and the polarization state detector (PSD) must be made. 

This instrument has been successfully used to measure the optical functions of a variety of uniaxial crystal~,~” 
including rutile (TiOz), zinc oxide (ZnO), bismuth triicdide (BiI& and a series of rare earth phosphates. Some of 
these samples were so small (<lmm*) that the conventional optical path had to be modified with focussing lenses. 
These lenses are strained, so the ellipsometric measurements had to be corrected for their strain-induced 
birefringence of the lenses.’ 

As with any ellipsometer. accurate measurements require accurate calibrations. Since the accuracies desired of 
the ellipsometric parameters are typically iO.OO-0.003, the azimuthal angles must be determined to -&OlS’ and 
other parameters must be determined m O.l-0.3%. Fortunately, many of these calibrations are actually EASIER with 
the 2-MGE than for other instruments using photoelastic modulators. As we will show in this paper, certain errors 
often are solely responsible for a particular ellipsometric parameter being different from zero. Hence, the error can 
then be unambiguously eliminated by just nulling the appropriate ellipsometric parameter. 
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2. PHOTOELASTIC MODULATOR 

The basic principle of photoelastic modulation is that a light beam passes through an optical element that is 
mechanically stressed by the acoustic wave generated by an oscillating piezoelectric transducer. The oscillating 
stress (typically at 20-80 kHz) generates a” oscillating optical anisotropy by the photoelastic effect, creating a wave 
plate with a time-dependent retardation. The retardation of the PEM is normally expressed as8 

6= A sin (ox + 6) +&, (1) 

where A is the amplitude of the modulation, 2iw is the frequency of the modulator, @ is the phase of the modulator. 
and 6, is the static retardation of the PEM. It is normally assumed that the static retardation ca” be expressed as a 
linear correction (as done in E 

$ 
l), which implies that the static strain in the PEM is collinear with one of the major 

oscillating axes of the PEM. ” If this assumption cannot be made, then the analysis becomes extremely 
complicated since the directions of the major axes of the PEM vary through the oscillation cycle of the optical 
element.. 

Typically, the modulation amplitude A is controlled by a modulator voltage V,, which is given by* 

where d is the wavelength of light and K is a constant relating V, to the maximum value of the oscillating strain of 
the optical element. The oscillating optical element is characterized by its thickness d, its strain-optic coefficient, 
Q(a), and its refractive index IL@). The wavelength-dependent parameters Q and n can be parameterized using a 
standard Cauchy expansion, as shown in the second part of Eq. 2a. 

It is common, though not universal, to set V,,, to a voltage such that A = 2.4048. Eq. 2a can be warranged to 
give 

The modulator voltage required to keep A constant is nearly linear with wavelength with a small dispersive 
correction. 

Similarly, the static strain of the PEM can be expressed as 

where PO is the static strain of the modulators. If Eqs. 2b and 2c are multiplied, then 

For any particular modulator, the product of the voltage required to keep A constant and the static strain will he a 
constant. 

By employing a polarizer before the PEM, dynamically elliptically polarized light is generated, with the 
ellipticity changing. at the frequency of the PEM. A convenient way of representing the polarization state of the 
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light beam after it has passed through the PEM is by its Stokes vector. The Stokes vector is a 4-vector, defined 
by”- 

(3) 

where I,is the intensity of the light beam, and I,, Id5, I,, and IAs are the light intensities for linearly polarized light at 
O”, 45”, 90”, and -45” respectively with respect to the plane of incidence. & and IJC are the intensities of right- and 
left-circularly polarized light, respectively. All elements of the Stokes vector are intensities and therefore are real. 
The total light intensity 

I,~(Q”+U’+v’,‘“, (4) 

where the equality holds only if the light beam is totally polarized. 

The Stokes vector for unpolarized light passing through a polarizer-PEM pair is given by 

(3 

Cm = cos (20,); S, = sin (20,) (W 

Cb = cos (26); Sb = sin (20b) (6b) 

The angle 0, is the azimuthal angle of the modulator with respect to the plane of incidence and the angle 0, is the 
azimuthal angle of the polarizer with respect to the PEM. The quantities X6 and Us are the time-dependent basis 
functions, given by 

Xs = sin (8) = sin (A sin (wt + 6) + S.), (7=) 

= sin (A sin (cot + 0)) + G,cos (A sin (at + 4)) = X + 8, Y 

YS = cos (6) = cos (A sin (tot + +) + 8,). (7b) 

= cos (A sin (tot + $)) - 8, sin (A sin (at + $)) = Y + 8, X 

The last expansion that separates out the static strain-induced retardation assumes that the static strain is small with 
respect to 1. 

The characterization of any polarizer-PEM pair requires four separate calibrations. The azimuthal orientation of 
the optical elements is described by two angles 0, and 0, (see Eqs. 5 and 6). The PEM is described by two 
wavelength-dependent parameters A(i) and S&I). 
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3. TWO-MODULATOR GENERALIZED ELLIPSOMETER 

The intensity of the light beam through the 2.MGE is given by 

Intensity = SIT M So, (8) 

where SO is the Stokes vector for the polarization state generator (PSG), given by Eq. 5 and SIT is the transposed 
Stokes vector for the polarization state detector (PSD). The Mueller matrix M is a 4X4 real matrix and represents 
the light interaction with all elements between the PSG and the PSD. The light intensity can be expressed as a dc 
term plus 8 constant terms multiplied by 8 basis functions’ 

The 0 and 1 subscripts of X and Y refer to the PSG and the PSD, respectively. The strain-induced retardation can be 
separated out, giving 

(1 00000 0 00 
0 1 6, 000 0 00 
o-s, 1 0 0 0 0 0 0 
0 0 0 1 6, 0 0 0 0 

IntensiQ=(l X, Y, X, Y, X,X, X,y YOX, YOl;: 0 0 o-s,1 0 0 0 0 
0 0 0 0 0 1 6, 6, 0 
0 0 0 0 0 4, 1 0 6, 
0 0 0 0 0 4, 0 1 6, 
000000 4, -6, 1 

(9b) 

The 8 constant terms I,, I, etc. are usually normalized by the I& term (to eliminate fluctuations of the incident 
light intensity, and to eliminate the dependence of the sample reflectivity), so the time-dependence of the intensity is 
determined by 8 parameters. 

The basis functions for any polarization modulation ellipsometer, including the 2-MGE, are the functions X and 
Y, shown in Eq. 7. These basis functions are related to the common Fourier basis functions using an iniinite series 
including integer Bessel functions: 

X =sin(Asin(wt+~))=CJ,j_,(A)sin(( 2j-l)(wr+@)) (lo=) 
,=1 

Y =cos(Asin(wr+@)) =J,(A)+2CJ,j(A)~o~(2j(WI+~)) 
j=, 

For many ellipsometric applications, A is chosen to he 2.4048 radians, where &(A) = 0, J,(A) = 0.5192, J*(A) = 
0.4318, .&(A) = 0.1990, Jq(A) = 0.0647, &(A) = 0.0164, &,(A) = 0.0034, etc. At this value for A, the Fourier 
expansion of the X and Y basis functions have no dc terms and the series converges very rapidly. The J,(A) and 
J*(A) are also within 15% of their maximum values for A = 2.4048.. 

Because the basis functions of PEM’s are so closely related to Fourier basis functions, lock-in amplifiers have 
often be used to measure the coefficients Ix, and Iy if only a single PEM is used, where Ix is proportional to the lf 
signal, and 1~ is proportional to the 2f signal. However, this solution becomes untractable when more than one PEM 
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is used, since one would have to have at least eight lock-in amplifiers to analyze the time-dependent intensity given 
in Eq. 9. Furthermore. the PEM’s are resonant devices, and their frequency and phase are set by the physical 
dimensions and temperature of the optical element. Therefore, any data analysis will require a precise knowledge of 
the instantaneous phase of both of the PEM’s. The technique that we have used to deconvolute the time-dependent 
intensity incorporates a trigger circuit that initializes a waveform digitization when the phase of each PEM is at a 
known value.’ 

The first four basis functions of the 2.MGE are easily determined from the expressions given in Eqs. 10, but the, 
last four are product functions, and therefore include sum and difference Fourier functions in the Bessel function 
expansions. The result is that many Fourier components are created with a significant amplitude (see Table I of ref. 
1); for two PEM’s operating at 50 and 60 kHz, the time-dependent intensity includes 31 Fourier components at 
frequencies less than 240 kHz, all with a significant amplitude. 

Information concerning the values of the individual elements of the sample Mueller matrix is included in the 
measured values of the eight coefficients of the time-dependent basis functions. The elements of the sample Mueller 
matrix can, in turn, be related to the ellipsometric parameters of the sample. The particular elements of the sample 
Mueller matrix will depend upon the azimuthal orientations of the PSG and the PSD. Schematicallv. the measured 
elements of the sample Mueller matrix can be represented by: 

(1 lab) 

where the sign is not included in the representation. If an element of the sample Mueller matrix has a tilled-in dot 
(a) then that particular element cannot be measured in the given configuration. If an element of the sample Mueller 
matrix can be measured, then the appropriate normalized constant term is shown. 

For a simple isotropic sample where there are no windows, the sample Mueller matrix is given by 

M: 

1 -N 0 0 
-N 1 0 0 

0 0 cs 
0 0 -s c 

where the N, S, and C parameters are given by 

N = cos (2~) 

S = sin (2~) sin A,, 

(12a) 
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C = sin (2~) cos A 

These parameters are related to the traditional ellipsometty parameters wand A by 

(12d) 

(12e) 

where rpp and r,., are the complex reflection coefficients for light polarized in the plane of incidence or perpendicular 
to the plane of incidence, respectively. Therefore, the sample Mueller matrix for an isotropic sample can be 
completely characterized if t?,, = ?445”; B,,,, = 0”. 90” or if 0, = o”, 90”; t&, =*45”, where several of the measured 
parameters will be zero. 

3.1 Straight-through configuration 

When the 2.MGE is placed in the straight-through configuration, the sample is just free space, where the 
Mueller matrix is the identity matrix (N = S = 0; C = 1). If the azimuthal angles of each of the polarizers are set 
close to ?45”, the eight constant prefactors of F,qs. 9 are given by 

1x0 = 0, (13*) 

Ire = PO, [Jd.%)cos(2 em) 2 sin0 e.)td Wb) 

Ix1 = 0, (13c) 

&I = PO, MAO) cos (2 0,) + 2 sin (2 0,) ~1 Wd) 

hn = -p01. (13e) 

Lx0Y1 = -pop,, ks + s, cos (2 em)], (130 

k?xl = -PO, 6 + 6, cos (2 edi, (13g) 

IyDYl = PO1 cos (2 em), (13h) 

where PO1 = sin (2 0,) sin (2 &) = +I and the static strain-induced retardation has been incorporated into the 8 
coefficients. The angle 0, is the angle of the PSG with respect to the PSD, and &and .$ are the errors of & and 
t?,, from k45”. The quantities JdAo) and J&A,) are the O* order integer Bessel functions at angles A0 and A,, where 
it is assumed that Ao and A, are set near 2.4048 radians, where Jo(Ao) and &(A,) are small. Note that all elements 
except I,,, and Iyoy, are close to zero. 

When the 2-MGE is set such that the PEM’s are aligned OT perpendicular to each other, then O,=o” or 90” and 
sin(20,) = 0 and cos(2@,,) = +I. In this situation, IYO and Iv, are proportional to &(A,) and &(A,), respectively. 
Since 

JdAi) = - 0.5196 (2.4048 -AJ, (14) 

the measurement of 1~ and IyI [and therefore &(A,) and &(A,)] is a direct and very sensitive method for measuring 
the deviation ofAi from 2.4048. Such sensitivity is not available from single PEM ellipsometers. 

Similarly, if the two PEM’s are aligned at k445” with respect to each other, then sin(20,) = 21 and cos(20,) = 0. 
In this case, IYD and I”, are proportional to ~b, and EM, respectively, which are the errors of t?., and 0, from ti5”. 
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Therefore, the k45” alignment can be used to set &and S,,, to precisely %45”. Again, this sensitivity is not available 
with one-modulator systems, where one has to first establish the 0” and/or the 90” positions of the polarizer with 
respect to the PEM and then rely on the precision of the rotator to get the I& to i445”. In addition; ZxOr, = *6, and 
I~ew = &, which allows for the precise measurement of the static strain-induced retardation as a function of 
wavelength. 

All of these calibrations do not depend upon getting the PEM’s precisely aligned or set at k4t45” with respect to 
each other, since errors in 0, do not enter in first order. Residual errors in .9, are always multiplied by another small 
number, so the product is always small to second order. 

3.2 Ellipsometry Configuration 

In the ellipsometry configuration with an isotropic sample and without windows 

I, = - [Nsin(2 t&)- CJdA,)], 

‘VI = - IN sin (2 e,,) - C JdAo)] , 

(15=) 

(15b) 

where it is assumed that 0, = t$,, = 45”. If Jo(Ao) = J&A,) = 0, then these two parameters can be used to set the 
azimuthal angles of the PBMs l3,,,, and l?,, precisely with respect to the plane of incidence. This calibration is not 
possible if the sample is anisotropic, since the anisotropy may also contribute to Iyo and 1~1. Clearly, the most 
accurate calibrations of t$,, and tI,, OCCUR when N is large. 

During any ellipsometry configuration measurement of a 2-MGE, it is possible to monitor the value of the 
Bessel angle A by monitoring the higher harmonics. For example, if the coefficient 1~0 were large, then the value of 
AO could be measured by determining both the 2% and the 4% components. If the intensities of these two 
components are ‘(24,) and Z(4o& respectively, then 

(1W 

0* 

f A = A, + SA = A, + (6.416 Rx- 
f 

0.9609 ). (16b) 
400 

In Eqs. 16, the quaqtities fzm and fdwo are the electronic gains at the frequencies Zy, and the 4ab components, 
respectively. Similar expressions can be developed for any of the frequency components that are reasonably large. 
While this technique can always be used, care must be taken to also monitor the errors in both the measured 
parameters and in the the quantitiesfzm and&. 

Obviously, this technique could also be used with the 1” and 3” harmonics (to measure the Ix0 and the Ix, 
components). but this requires that the associated element of the sample Mueller matrix be large. With one- 
modulator ellipsometers, these harmonics can be used to also measure A whenever ISI is large, but two-modulator 
ellipsometers require the rnld and the ml, components to be large, which rarely happens. 





Wavdengih (“In, Wavelength (nm) 

Fig. 1. The values of J”,(A) obtained from a Fig. 2. The values of the applied voltage to each 
straight-through configuration measurement where modulator required to obtain a modulator amplitude 
the azimuthal angular difference between the PSG A of 2.4048, determined from the experimentally 
and the PSD is 0” or 90”. determined values of J,(A) shown in Fig. 1. 

In the &,I = 245” configurations, the errors in the polarizer azimuthal angles are measured, as is the static suain- 
induced retardation. The errors in the polarizer azimuthal angles 9, do not depend upon wavelength, so the results 
can be averaged over all data points taken. This results in a measurement of the error in 9bi that is accurate to &.Ol- 
0.02”. The strain-induced retardation is also measured in this configuration and is shown in Fig. 3 for both 
modulators, where the fitted line requires three Cauchy coefficients to get a reduced x2 - 1. 

Figure 4 shows a plot of typical windows parameters obtained for two fused silica lenses. The W parameter is 
obtained in the straight-through configuration, while the Se and the St parameters are obtained in the ellipsometry 
configuration where the sample is an isotropic material such as crystalline silicon. Although the corrections are 
small, they are easily measurable, and very accurate measurements require that these corrections be applied. 

OM ,....,....,. ..,..,,,,...,.... 

Fig. 3. The static strain-induced retardation for the 
two modulators used in the 2.MGE. 

Fig. 4. Typical strain-induced retardation 
parameters for lenses used in 2-MGE measurements 
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Silicon Data 

21: 

Energy (eV) 

Fig. 5 Sample Rho data for silicon taken at an angle of incidence of 65.26”. 

Sample data for silicon is shown in Figure 5. Any residual systematic errors in these calibrations tend to show 
up in the cross polarization elements, so a good test is to perform the measurements on an isotropic material such as 
silicon, where it is known that the cross-polarization reflection coefficients are zero. As can be seen, the cross- 
polarization terms are extremely small, and are less than 10.0011 over the central part of the spectrum. (Reduced light 
in the UV and IR tends to increase the error in these parts of the spectrum.). Therefore, this measurement shows that 
the 2-MGE is capable of measuring the cross-polarization reflection coefficients very accurately and that calibration 
errors can essentially be eliminated from the measurement. 
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