Multitasking TORT Under UNICOS: Parallel Performance Models and
Measurements

D. A. Barnett
Lockheed Martin Corporation
PO Box 1072
Schenectady, NY 12301

Y. Y. Azmy
Oak Ridge National Laboratory
PO Box 2008, MS 6363
Oak Ridge, TN 37831

yya@ornl.gov
Abstract
The existing parallel algorithms in the TORT discrete ordinates were updated to function in a UNI-
COS environment. A performance model for the parallel overhead was derived for the existing algo-
rithms. The largest contributors to the parallel overhead were identified and a new algorithm was
developed. A parallel overhead model was also derived for the new algorithm. The results of the com-
parison of parallel performance models were compared to applications of the code to two TORT stan-
dard test problems and a large production problem. The parallel performance models agree well with
the measured parallel overhead.

1 Introduction

TORT is a three-dimensional, neutral particle transport code which is widely used in the nuclear in-
dustry (Rhoades, 1997). A large TORT problem typically involves several million spatial cells, sev-
eral hundred directions and tens of energy groups. While TORT is optimized to solve large problems,
a large TORT problem can easily consume the majority of a machine’s resources, including memory,
CPU cycles and disk space. Memory is usually the scarcest resource, and while TORT employs so-
phisticated memory management techniques, it will always work best with as much memory as it can
allocate. In such a situation, it is essential that TORT also make maximum use of multiple processors
so that a large job can minimize the time it resides on the system.

Version 2 of TORT included two different multitasking implementations (Rhoades, 1989). These
were based on multitasking libraries which were specific to the CRAY CTSS operating system that
were later converted to UNICOS. However, both of the extant methods had shortcomings which it
was necessary to overcome in order to create an efficient parallel version of the code for UNICOS.
UNICOS is a time-sharing operating system in which fairness is the watchword. Every process with
equal priority gets an equal share of CPU cycles: A process is allowed to run for a period of time called

a quantum (1/60 s) then that process is suspended and a different process is given the CPU. The op-
erating system also looks for every opportunity to shift CPU resources from processes which are idle
to processes which are active. In general, this means that multitasking programs which synchronize
in a period shorter than the quantum incur a substantial penalty.

To create an efficient multitasking program in such an environment requires attention to two particu-
lar attributes of the code: minimization of synchronization points and minimization of redundant op-
erations. The former attribute tries to insure that a process will run at least until its quantum expires.
The latter attribute insures that a process will accomplish the most useful work in that period. This
paper describes how these two objectives were implemented in TORT and how a parallel performance
model was used to measure the degree to which we have succeeded in achieving them.

2 CRAY Macrotasking
Version 2 of TORT used direct calls into the parallel processing library under CTSS to start and stop



tasks and to lock global arrays when multiple tasks accessed them directly; it also used a CRAY FOR-
TRAN-specific concept of TASK COMMON to give each task its own private version of a COM-
MON block. Collectively, this approach to multiprocessing was referred to as macrotasking since
parallelism was obtained at the subroutine level and under the direct control of the programmer. While
these calls are no longer the recommended way to write multiprocessing code, they are still available
under UNICOS.

The multiprocessing paradigm of macrotasking is a shared memory model. The shared memory mod-
el makes it simple to distribute information among tasks, but tasks must serialize writes into globally
shared memory locations. Macrotasking provides both lock and barrier routines to assure this syn-
chronization.

To aid the performance of parallel programs in a time-sharing system, the UNICOS macrotasking
synchronization routines do not immediately block (and thereby yield the CPU) when a task enters a
lock or a barrier which is not satisfied. Instead, the library routines may repeatedly test the synchro-
nization hardware in a tight loop for a certain period of time; this is cgiedvaiting The interesting

aspect of the spin waiting under UNICOS is that the amount of CPU time devoted to it is determined
automatically by the system itself. Under a heavy system load, a task will spin wait for a short period;
under a light load, a task may spin wait longer. The system documentation (CRI, 1996) calis this
totuning In our initial experience with macrotasking, this led to the counter-intuitive behavior that
runs made on a heavily loaded system actually reported using less CPU time than the same run made
on a lightly loaded system.

It is possible to defeat this behavior by setting the spin wait hold time to a fixed value fizalted

tuning) via the library command tsktune. In order to measure consistent CPU times in the performance
model developed here, it was necessary to set hold time to zero. However, even though turning off
autotuning generally results in the least CPU time for a program, it does not result in the least wall-
clock time. The purpose of spin waiting is to keep tasks synchronized without having to yield the
CPU; since context switches are expensive operations, the best performance is obtained when they
are minimized.

3 Original Multitasking Algorithms

In Cartesian geometry, the loss term of the transport equation does not couple the angular flux be-
tween any of the discrete directions. Therefore, the sweep of distinct directions along an X row can
be performed in parallel. This forms the basis for the parallel algorithms used in TORT. Version 2 of
TORT contained two different parallel algorithms: octant parallel (OP) and row parallel (RP). In the
OP method, two tasks were started for each row visited by the sweeping algorithm: One swept the row
solving all the discrete directions in the octantiiqr> 0 (where is the direction cosine of the or-
dinate in the X direction), the other task swept in the other direction solving gll thé directions.
The obvious limitation of this algorithm to a factor of two speed-up was reasonable at the time it was
implemented since the target platform, a CRAY X-MP, had only two processors. A more subtle lim-
itation was that the problem was limited to either vacuum or periodic boundary conditions in X; other
boundary conditions would have required the use of boundary values calculated from the previous it-
eration which, in general, retards convergence. OP also provided the first glimpse as to how important
it would be to maximize the amount of computation performed between synchronizations. Since the
OP method started a new task for each row, it was essential that the amount of work each task per-
formed was much larger than the task start-up time (Rhoades, 1989).

The RP method attempted a finer grained parallelism. Here, a new task was started for each direction
in a single octant. This allowed for a higher degree of parallelism and it eliminated the constraint on
boundary conditions since all tasks rendezvoused at the end of the row sweep and therefore the most



recently calculated exiting angular flux information was always available. The drawbacks to RP as
implemented in version 2 of TORT were that it was also hand-coded explicitly for two processors and,
because it started a new task for each direction, there was less work for each task to accomplish before
task termination at the end of the row.

4 Parallel Performance Model of the Direction Parallel Method

For version 3 of TORT, the multitasking code was revived for use under the CRAY UNICOS oper-
ating system. In addition to adapting the code to UNICOS macrotasking, significant work was done
to improve the RP method. To distinguish the improvements made to the old RP method, the new al-
gorithm was dubbed Direction Parallel, which, while still in the spirit of RP, shares very little code
with the original method (Azmy, 1996). The initial implementation of Direction Parallel (DP1) fea-
tured two significant alterations of the RP algorithm:

1. The call to start a new task was moved out of the loop over angles so that only as many tasks which
are requested in the input are started at the beginning of each row sweep.

2. Rather than statically assigning a specific task to each angle, each task is allowed to grab an angle
to solve from a queue. This is referred tagsamic scheduling

The idea behind dynamic scheduling is to reduce the amount of synchronization time required while
increasing the amount of useful computations each task may perform. Thus, as each task reaches the
end of a row sweep along one discrete ordinate, it checks if there is any remaining discrete ordinates
in the queue and if there are, it takes the next angle and performs the row sweep for that angle. As
long as retrieving an angle from the queue does not block, the task will continue to run until the end
of the quantum.

When a multitasked program is executed in parallel on a time-sharing system, the maximum wall
clock speed-up that can be achieved is largely controlled by the other work on the system. The best
that can be hoped for is that, when there are free processors, all of the tasks started by TORT will be
in a state to execute. This is called the READY state in UNICOS. When a process’ quantum expires
or it blocks in a system call, the next available process in the READY queue is assigned to the pro-
cessor and its execution proceeds. Therefore, the goal in optimizing a multitasked program is to insure
that tasks have as much to do as possible and that redundant work is minimized. Such non-useful
work, i.e., operations not performed in the sequential code, or multiply performed in the parallel code,
is referred to asverhead

In order to quantify the overhead behavior in DP1, a parallel performance model was constructed.
Typically, a parallel performance model will describe how much elapsed time a process will require
as the number of participating processors is varied. In an ideal system, this function would follow Am-
dahl’'s law. In the context of UNICOS time-sharing operation, however, it is not useful to make esti-
mates of elapsed time since the code’s performance will primarily depend on the load on the system,
something which is not under the control of the programmer. The only aspect of the code’s perfor-
mance which is under the control of the programmer is the overhead. The goal, then, of this parallel
performance model is to identify which areas of overhead contribute the most to preventing a code
from realizing its maximum potential parallel speed-up.

In DP1, the sources of overhead are characterized as follows:

1. Creation of slave tasks: Slave tasks are created once for each left-right and right-left row sweep,
thus the total extra time TORT spends creating tasks is:

TiasNCpU) = T g X itnfl xkmx jmx Qx (ncpu-1), (1)



wherert, ., is the CPU time required to start a new task| is the number of iterations per-
formed (i.e., complete sweeps through all space and angfas), Is the number of phanes, IS
number of rows in a plan€ is number of quadrants (which is always equal to fourgand

is number of tasks requested in the TORT input. TORT's parent task participates in all calcula-
tions so onlyncpu—1 additional tasks are started.

2. Lock/unlock flux moments array: At the end of each direction’s row sweep, each task accumulates
its angular flux’s contribution into the cell flux angular moments. Since the flux moments array is
a global array, this accumulation must be performed under a lock (i.e., sequential mode). The
overhead computed for this step is the cost of calling the lock and unlock functions. The total time
TORT spends in the lock routines is:

Tlock = Tlockxitnfl xkmx ij Nlockxmm/vato’ (2)
wheret,,., Is the total CPU time to perform a single lock and unlNigk,, is the number of
times the lock/unlock is performed per row sweep @mqg, . , is the number of directions in the

guadrature set for which the quadrature weight is not equal to zero.

3. Memory management: Even though each slave task can see all of the process address space, a
small amount of information related to memory pointers and common block information private
to each task is manipulated as each task starts. The total time TORT spends performing these
memory management operations is:

TmemonfNCPU = TpemoryX itNfl xkmx jmx Qx ncpy (3)

wheret .o, Is the total CPU time per memory operation.

4. Redundancy in the loop over angles: in the adaptation of RP to DP1, the dynamic scheduling of
angles was implemented by retaining the old sequential loop over angles which each task executes
in full. However, if the current angle index is not equal to that selected by the task from the dy-
namic scheduling queue, the task simply skips the row sweep for that angle. There are a few op-
erations which must be performed even if the angle is not processed; these operations are related
to updating certain pointers which reference per angle information. Because some of this time is
distributed over the parallel tasks, the timing parameters were measured in two separate runs, one
where the time of all tasks was measured by serializing the tasks and another run where only one
task did all the work. The difference between the two measurements is the overhead. The total
time TORT spends in this code section is:

Tredunan(nCpu) = ((ncpu- 1)Tnot-own+ 1-own_.l-vector) xitnfl xkmx jmx mm (4)
wheret,,,, isthe CPU time spent in a loop when the task owns the angle.ang, is the CPU
time spent in the loop when the task does not own the ang|g,, is the CPU time for one task

to do all the work in vector mode, andm  is the total number of directions in the quadrature set.

5. Hold time: As mentioned before, the UNICOS libraries which implement the macrotasking direc-
tives can cause a process which has entered a synchronization point (such as a lock) to spin wait.
Because the exact amount of time a task will spin wait is determined dynamically by the system,
there is no way to quantify this CPU time penalty. For the purposes of the parallel performance
model, this capability was disabled in TORT by calling the function tsktune with hold time set to
zero (CRI, 1996).

To verify the modelr, o, and,,,, were measured with a separate program which performed the
operations in a tight loop; the valuestgfe mory Town Tnotown  » @0Lktor came from a special ver-
sion of TORT which was instrumented to measure the various time values. The total parallel overhead



performance model is the sum of the first four of these contributions:

TDPl(nCpu) = Ttask(nCpu) + Tlock+ Tmemor)(nCpu) +Tredundan(nCpu) :

(5)

Two of the TORT test problems were solved in both parallel and serial modes on a CRAY Y/MP with
eight processors. The measured values of the timing parameters are given in Table 1.

Table 1. Timing Parameters for DP1 (seconds)

Ttask

TIock

Tmemory

Tnot-own

TOWH

TVECIOI’

1x 107

2.8%x 10°

2x10°

1x 107

7.4% 10°

8.1x 10°

The first TORT test problem solved was the fifth sample job from the TORT verification suite (TP5).

Its parameters are given in Table 2. Figure 1 shows a comparisonDfga{ncpu)

Table 2. Test Problem 5 Model Parameters

, and the actual

itnfl km jm mm Nock (MM, 20
20 18 12 66 3 52
B -
35 | Fixed Tuning
30 [T~ ="~ Memory

————  Lock
25 oo Task

Angle

20
15 |
10 |

Figure 1. DP1: TP5 CPU Overhead (Sequential Time = 36.257 )

measured overhead using an modified version of TORT 3.1 (with hold time set to zero). Figures 1 and
2 show the cumulative contribution of each component of the overhead, so the distance between each
curve represents that component’s contribution to the overhead.

The parallel overhead performance model was also verified for the sixth TORT test problem (TP6).
The TP6 model parameters are given in Table 3. The comparison of the model to the measured over-

Table 3. Test Problem 6 Model Parameters

Nock [MMy 20
3 48

km
33

itnfl
1/

mm
60

jm
27

head is shown in Figure 2. It can be seen that the model agrees very well with the measured overhead
in both test cases. It is also evident that the task starting and the angle loop redundancy are the chief
contributors to the overhead.



120

100 + ° Fixed Tuning
***** Memory

80 ¢

60 |

20 |

© ncpu

Figure 2. DP1: TP6 CPU Overhead (Sequential Time = 423.143 s)

In addition to verifying the parallel performance model, the performance measurements for DP1 also
showed that there was a significant amount of parallelization overhead. For an eight task run with
TP6, a 641 second TORT run consisted of over 130 seconds of overhead, an additional 31% over the
sequential CPU time. The performance model indicated that the largest sources of overhead came
from the task starting and the angle loop redundancy; the task starting because the time to start a task
is quite large and the angle redundancy because of the high frequency (namely, once per angle) at
which it is incurred.

5 The Improved Direction Parallel Method

For version 3.1 of TORT, the parallel algorithm was modified to address the issues uncovered by the
performance model testing of DP1. The second version of the Direction Parallel algorithm (DP2) dif-
fers in the following ways from DP1:

1. The starting of the slave tasks is hoisted out of the row loop up to the initialization code; that is,
the slave tasks are created only once at the beginning of the run. Rather than starting and stopping
them repeatedly, task synchronization is handled through the use of barriers.

2. Rather than locking the summation operation of the flux moments array, each task now has its own
private moments array where it accumulates its partial contributions. The master task is responsi-
ble for summing the individual contributions into the global array in sequential mode.

3. The loop over angles was reorganized to reduce the amount of redundancy, though some redun-
dancy remains due to TORT'’s use of zero-weight directions to separate groups of directions with
common polar angles, i.@levels

A new parallel overhead performance model was constructed to describe DP2. It includes the follow-
ing attributes (not all of which contribute significantly to the overhead):

1. Creation of the slave tasks: The slave tasks are now created only once per run. The CPU time for
creating a task is in the millisecond range so this source of overhead is excluded from the model.

2. Hold time: As described above, this source of overhead is not quantifiable so it is excluded from
the model. When the measurements are made on TORT timing, hold time is set to zero.

3. Serial accumulation of the task contribution to the flux moments: In the serial version of the code,
the row sweeping routine itself adds the angular flux contributions to the global flux moments ar-
ray. Because each slave task computes its own partial moments array, the master task must take
an extra step to sum the partial moments together. This source of overhead is:



TaccundNCpU) = T, oym* itnfl xkmx jmx Qx ncpy (6)

wheret,..,m is the time required to perform a single row’s accumulation. Unlike the other sourc-
es of overhead, the amount of time spent in this operation depends on the length of the row and
the size of the scattering source expansion, . When this parameter is measured, a problem spe-

cific value oft .., iS obtained (see Table 4).

Memory management: This is unchanged from the DP1 model, see (3).

Barrier Assignment: In DP2, synchronization among the participating tasks is accomplished via
barriers. There is a total of five barriers, two of which are used only if the left boundary condition

is reflective. The barriers asssignedonly once at the beginning of a run (assignment merely
means that memory is allocated to store the data structure which represents the barrier). The over-
head for assigning one barrier is on the order qislence it is excluded from the performance
model.

Barrier synchronization overhead: The overhead from barrier synchronization occurs when tasks
spend time waiting at the barrier for the remaining participants to arrive. As discussed before, this
is minimized by setting hold time to zero, but there are still CPU cycles expended in detecting
when the barrier wait count is satisfied. A simple test code was written to measure the barrier over-
head as a function of the number of participating tas&su . The test code demonstrated a weak-
ly quadratic behavior imcpu , possibly as a result of contention for the barrier memory itself.

Without a left reflective boundary condition, there are four barriers used in TORT and they are
synchronized at the same rate as serial accumulation and memory management:

Tparrier(NCPU) = 4 X Ty, o/ (NCPU) X itnfl x kmx jmx Qx ncpu (7)

wheret, . ie,(NCPU) is the time required to synchronize at a single barrier. As mentioned above,
this is not a constant value, but depends on the number of participating CPUSs.

Angle loop redundancy: In this version of TORT, the only angle loop redundancy is a call to the
system routine iselfsch to get the next angle from the queue and the test to determine if this task
should perform a row sweep along this angle. While the actual time to call iselfsch is quite small,
it occurs at a rate aicpu timesxm . Thus, with many tasks and a large direction set, this may
be a significant contributor to the overhead. Measuring the global counter overhead presented two
problems:

a. lItis quite small, to the extent that it was necessary to take into the account the cost of
calling the timing routine itself in order to get an accurate result.

b. The resulting value for the global counter overhead increased lineangpoi< 10 ,
then behaved randomly for largecpu . Furthermore, the value obtained would have
greatly overpredicted the total overhead. We hypothesize that this unexpected behav-
ior is due to contention for the lock associated with the global counter. By performing
the measurement adelfschwithin a lock, the measured overhead was largely con-
stant, about 1.4s. Contention is unavoidable in a production environment, so this val-
ue must be viewed as a lower bound.

The total self-scheduling overhead is:
TearfscNCPU P) = 2 X T gppsepX P X ItNfI xkmXx jmx mmx ncpu (8)

wherep = 1 implies the lower bound on this time penalty in the absence of contention. Conten-
tion will generally result in faster increase in this component with increasipg in a generally



unpredictable way. Hence, in subsequent figures, a range for this component is plotted, from
p=1top = 2.

The total performance model for DP2 is then the sum of these components:
TDPZ(nCpu p) = Tmemon;nCpu) + Taccum(nCpu) + Tbarrier(nCpu) +Tse|fscr(nCpu' P). (9)

6 Application of the DP2 Parallel Performance Model

The parallel overhead performance model (9) for DP2 was evaluated for several versions of TORT’s
test problems on a 32 processor CRAY J90. Again, the code was instrumented to measure the timing
parameters; the values are given in Table 4.

Table 4. Timing Parameters for DP2 (times in seconds)

Taccum Tmemory Tbarrier(nCpu) Tselfsch
TP5-320: 1.15% 10 | 5.535x 10° [6.751x 10°ncpu 1.4% 10°

~6 2
TP6-720: 4.01% 10 +1.121x 10 ncpd

LM1: 7.662x 10°

The first problem is TP5 modified to have a 320 angle quadrature= 320 . The comparison of
the model to the measured sequential code is shown in Figure 3. In this Figure, the contribution of
S
— Autotuning
400 + ° Fixed Tuning
Loop Range
T Barrier
—— Accumulate
300 [ Memory
200 |
100 | . ’/_/_,_/"//
A e e e T T ncpu
5 10 15 20 25 30

Figure 3. DP2: TP5-320 CPU Overhead (Sequential Time=349.443 s)

each component of the overhead is plotted cumulatively, so the area between the curves denotes each
source’s contribution to the total. The broad gray band represents (9); it is represented as a range of
values due td ¢ s sc{NCpu p) , witp  varying from 1 to 2. The dots show the measured values of
the overhead for hold time equal to zero (fixed tuning). The Figure also shows what happens when
the system is allowed to choose the spin wait time dynamically; this is the top line in the Figure - Au-
totuning. In this case, the overhead penalty increases more rapidly, implying faster deterioration in
parallel efficiency, but potentially higher wall-clock speed-up.

A modification of Test Problem 6 was also used to verify the parallel overhead model. In this case,
the quadrature was increased to 720 ordinates,= 720 . The comparison of measured to modeled
overhead is shown in Figure 4.

A larger problem (LM1, with approximately 2.5 million cells, 320 angles, and 1 energy group) was



S
—— Autotuning
3000 ° Fixed Tuning
Loop Range
-—-  Barrier
2500 —_ Accumulate
----- Memory
2000 |
1500 |
1000 |
500 | g T
e e T T ncpu
5 10 15 20 25 30

Figure 4. DP2: TP6-720 CPU Overhead (Sequential Time = 8453.5 s)

also used to compare measured parallel performance against the model. The parameters for this prob-
lem are given in Table 5 and its measured performance and model components are shown in Figure 5.

Table 5. LM1 Model Parameters

itnfl km jm mm
11 135 144 320
30000 |
— Autg;[juning
. Fixed Tunin
25000 | Loop Rangeg
-—- Barrier
20000 | —— Accumulate
----- Memory
15000 |
10000 | B
5000 | : T
e T e nepu
5 10 15 20 25 30
-5000 |

Figure 5. DP2: LM1 CPU Overhead (Sequential Time=70233 s)

The observations to make from Figures 3-5 are:

1. The total overhead which results when autotuning is enabled is usually larger, and less consistent,
than the total overhead in the same TORT calculation with fixed tuning. In the former, the wait
time, and hence the total overhead, is dynamically determined by the operating system; the pro-
grammer has no direct control over it. However, in terms of elapsed time, a problem with auto-
tuning will always run faster than one with fixed tuning, since the system is in the best position to
determine the load and adjust the spin wait time appropriately.

2. The next largest source of overhead is the call to iselfsch in the loop over angles. Even though the
cost of a call to iselfscht, . tc, + IS small, it occurs at a frequency proportional to the number of
angles in the problem. Therefore, as the quadrature order is increased, it takes on a more signifi-



cant role.

3. The next largest source of overhead is the use of barriers to synchronize the slave tasks. Compared
to the iselfsch call, barriers are invoked less frequently, but are individually more expensive. How-
ever, barriers are less expensive than the task start and wait combination used in DP1.

4. Overhead from the accumulation operation and the memory management are relatively minor
contributors. This is an important component of overhead to characterize since a potential im-
provement to DP would be to distribute the partial sums of the scattering integral to the slave tasks.
However, since the serial accumulation overhead is so small, there would be little advantage com-
pared to the added complexity of implementing this idea.

The value of the improvements to TORT'’s Direction Parallel method can be seen by comparing the
magnitude of the overhead between the two versions. For a version of TP6 which used the 320 angle
guadrature, the sequential code on the J90 required 4000 s; with DP1 and eight tasks, the CPU time
was 5424 s; with DP2, 4528 s. Thus, the percentage of additional CPU time for the parallel cases
dropped from 36% to 13%. For the LM1 problem, the sequential time was 70233 s; for DP1 and eight
tasks, CPU time was 98271 s; with DP2, 78841 s. Again, this represents a drop from an additional
40% to only 12% of the sequential CPU time.

7 Conclusions

After the first new parallel algorithm was implemented, a parallel overhead performance model was
constructed and validated against the measured performance of the code. The parallel performance
model identified the components of the parallel algorithm that are the most significant contributors to
the overhead penalty, namely starting new slave tasks in the row sweep and the redundant operations
in the loop over angles. With this knowledge, the slave task start up was moved out of the row sweep
and replaced with barriers, thus keeping the same tasks available to perform work throughout a given
run. Redundancies in the loop over angles were reduced and the locks on the accumulation of the flux
moments were replaced with private accumulation arrays in each task. Together, these improvements,
as implemented in the second new algorithm, produced a more efficient parallel code, thereby illus-
trating the main function of parallel performance models.

Two features of the work presented in this paper set it apart from the majority of endeavors in the area
of multiprocessing applications reported in the literature. These are the production level of the TORT
code and the time-sharing computing environment of the target platforms, which combine to enhance
the relevance of our results to the TORT user community worldwide.

8 References

[Azmy, 1996] Azmy, Y. Y., Barnett, D. A., Burre, C. A., “Multitasking the Three-Dimensional Trans-
port Code TORT on CRAY Platforms”, Proceedings of the 1996 Topical Meeting on Radiation Pro-
tection and Shielding, No. Falmouth, Massachusetts, April 21-25, 1996, Vol. 2, 613, American
Nuclear Society, LaGrange Park, IL (1996).

[CRI, 1996] UNICOS System Libraries Reference Manual, SR-2080 9.0, Cray Research, Inc., Men-
dota Heights, MN (1996).

[Rhoades, 1989] Rhoades, W. A., Flanery, R. E., “3-D Discrete Ordinates Calculations with Parallel-
Vector Processors”, Proceedings of the 1989 Topical Meeting on Advances in Nuclear Engineering
Computation and Radiation Shielding, Sante Fe, New Mexico, April 9-13, 1989, Vol. 2, 69, American

Nuclear Society, LaGrange Park, IL (1989).

[Rhoades, 1997] Rhoades, W. A., Simpson, D. B., The TORT Three-Dimensional Discrete Ordinates
Neutron/Photon Transport Code (TORT Version 3), ORNL/TM-13221 (October 1997).



