


Hardiness Zones for gardeners. In addition,
ecologists have long used the concept of the
ecoregion, an area within which there are sim-
ilar ecological conditions, as a tool for under-
standing large geographic areas [l, 2, 3, 4, 131.
Such regionalization maps, however, are usu-
ally prepared by individual experts in a rather
subjective way, and are essentially objectifica-
tions of expert opinion.

Our goal was to make repeatable the pro-
cess of map regionalization based not on spec-
tral cell characteristics, but on characteristics
identified as important to the growth of woody
vegetation. By using non-hierarchical multi-
variate geographic clustering, we intended to
produce several maps of ecoregions across the
entire nation at a resolution of one square kilo-
meter per cell. At this resolution, the 48 con-
terminous United States contains over 7.8 mil-
lion map cells. Nine characteristics from three
categories-elevation, edaphic (or soil) factors,
and climatic factors-were identified as impor-
tant. The edaphic factors are 1) plant-available
water capacity, 2) soil organic matter, 3) to-
tal Kjeldahl soil nitrogen, and 4) depth to
seasonally-high water table. The climatic fac-
tors are 1) mean precipitation during the grow-
ing season, 2) mean solar insolation during the
growing season, 3) degree-day heat sum dur-
ing the growing season, and 4) degree-day cold
sum during the non-growing season. The grow-
ing season is defined by the frost-free period
between mean day of first and last frost each
year. A map for each of these characteristics
was generated from best-available data at a
1 sq km resolution for input into the cluster-
ing process [9]. Given the size of these input
data and the significant amount of computer
time typically required to perform statistical
clustering, we decided a parallel computer was
needed for this task.

2 The Stone SouperComputer

Because of the geographic clustering applica-
tion and other computational research oppor-
tunities, a proposal was developed which would

Figure 1: The Stone SouperComputer at Oak
Ridge National Laboratory

support the construction of a Beowulf-style
cluster of new PCs [5]. With the proposal re-
jected and significant effort already expended,
we chose to build a cluster anyway using the
resources that were readily available: surplus
Intel 486 and Pentium PCs destined for sal-
vage.

Commandeering a nearly-abandoned com-
puter room and scavenging as many surplus
machines as possible--from Oak Ridge Na-
tional Laboratory, the Y-12 production plant,
and the former K-25 site (all federal facilities
in Oak Ridge)-we setup a “chop shop” to pro-
cess machines and proceeded to construct a
very low cost parallel computer system. Aptly
named the Stone SouperComputer, after the
age-old children’s fable entitled Stone Soup [6],
the heterogeneous cluster grew slowly to 126
nodes as PCs became available and were ei-
ther cannabilized or fashioned into acceptable
nodes. The nodes contain a host of differ-
ent motherboards, processors (of varying speed
and design), controllers, and disk drives. Each
has 32 MB of memory, at least 400 MB of disk
space (for booting and local file access), and is
connected to a private 10 Mb/s Ethernet net-
work for inter-cluster communications. In ad-
dition, one of the nodes is also connected to the



external network for logins and file transfers.
The system runs RedHat  Linux, the GNU com-
pilers, and the PVM and MPI message pass-
ing libraries for parallel software development
[ll, 121.

The parallel cluster, which is used for par-
allel program development and running mod-
els, is constantly changing. As new versions of
Microsoft Windows are released, better hard-
ware becomes available for assimilation into
the cluster since users must upgrade their desk-
top PCs. Staying just behind the curve means
the Stone SouperComputer will have a free
supply of upgrades indefinitely.

The Stone SouperComputer has proven to
be an excellent platform for developing par-
allel models which will port directly to other
systems and for solving problems like non-
hierarchical multivariate geographic clustering.

3 The Algorithm

In our implementation of non-hierarchical clus-
tering, the characteristic values of the 9 input
variables are used as coordinates to locate each
of the 7.8 million map cells in a g-dimensional
environmental data space. The map cells can
be thought of as galaxies of “unit-mass stars”
fixed within this g-dimensional volume. The
density of “unit-mass stars” varies throughout
the data space. “Stars” which are close to
each other in data space have similar values
of the nine input variables, and might, as a re-
sult, be included in the same map ecoregion or
“galaxy.” The clustering task is to determine,
in an iterative fashion, which “stars” belong to-
gether in a “galaxy.” The number of cluster, or
“galaxies,” is specified by the user. The coor-
dinates of a series of “galaxy” centroids, or its
“centers of gravity,” are calculated after each
iteration, allowing the “centers of gravity” to
“walk” to the most densely populated parts of
the data space.

The non-hierarchical algorithm, which is
nearly perfectly parallelizable, consists of two
parts: initial centroid determination, called
seed finding, and iterative clustering until con-

Figure 2: Clusters (or galaxies) in a 3-
dimensional data space. Although the actual
clusters are all roughly the same diameter, in
this visualization sphere color and size are in-
dicative of the number of map cells in each clus-
ter (or the total mass of each galaxy if each
map cell is represented by a unit-mass star).

vergence is reached. The algorithm begins with
a series of “seed” centroid locations in data
space-one for each cluster desired by the user.
In the iterative part of the algorithm, each map
cell is assigned to the cluster whose centroid is
closest, by simple Euclidean distance, to the
cell. After all map cells are assigned to a cen-
troid, new centroid positions are calculated for
each cluster using the mean values for each co-
ordinate of all map cells in that cluster. The
iterative classification procedure is repeated,
each time using newly recalculated mean cen-
troids, until the number of map cells which
change cluster assignments within a single iter-
ation is smaller than a convergence threshold.
Once the threshold is met, the final cluster as-
signments are saved.

Seed centroid locations are ordinarily estab-
lished using a set of rules which sequentially ex-
amines the map cells and attempts to preserve
a subset of them which are as widely-separated



in data space as possible. This inherently serial
process is difficult to parallelize; if the data set
is divided equally among N nodes, and each
node finds the best seeds among its portion
of the cells, and then a single node finds the
“best-of-the-best,” this set of seeds may not be
as widely dispersed as a single serially-obtained
seed set. On the other hand, the serial seed-
finding process is quite slow on a single node,
while the iterations are relatively fast in paral-
lel. It is foolish, in terms of the time to final so-
lution, to spend excessive serial time polishing
high-quality initial seeds, since the centroids
can “walk” relatively quickly to their ultimate
locations in parallel. Thus, we opted to imple-
ment this “best-of-the-best” parallel seed find-
ing algorithm. It has proven to produce rea-
sonably good seeds very quickly.

The iterative portion of the algorithm is im-
plemented in parallel using the MPI message
passing routines-specifically, MPICH from
Argonne National Laboratory [7, S]-by di-
viding the total number of map cells into
parcels or aliquots, such that the number of
aliquots is larger than the number of nodes.
We employ a classical master/slave relation-
ship among nodes and perform dynamic load
balancing because of the heterogeneous nature
of the Stone SouperComputer on which the
algorithm is run. This dynamic load balanc-
ing is achieved by having a single master node
act as a “card dealer” by first distributing the
centroid coordinates, and then distributing an
aliquot of map cells to all nodes [lo]. Each
slave node assigns each of its map cells to a par-
ticular centroid, then reports the results back
to the master. If there are additional aliquots
of map cells to be processed, the master will
send a new aliquot to this slave node for as-
signment. In this way, faster and less-busy
nodes are effectively utilized to perform the
majority of the processing. If the load on the
nodes changes during a run, the distribution
of the work load will automatically be shifted
away from busy or slow nodes onto idle or fast
nodes. At the end of each iteration, the mas-
ter node computes the new mean centroid posi-
tions from all assignments, and distributes the

new centroid locations to all nodes, along with
the first new aliquot of map cells. Because all
nodes must be coordinated and in-step at the
beginning of each new iteration, the algorithm
is inherently self-synchronizing.

If the number of aliquots is too low (i.e., the
aliquot size is too large), the majority of nodes
may have to wait for the slowest minority of
nodes to complete the assignment of a single
aliquot. On the other hand, it may be advan-
tageous to exclude particularly slow nodes so
that the number of aliquots, and therefore the
amount of inter-node communication, is also
reduced, often resulting in shorter run times.
Few aliquots work best for a parallel machine
with few and/or homogeneous nodes or very
slow inter-node communication, while many
aliquots result in better performance on ma-
chines with many heterogeneous nodes and fast
communication. Number of aliquots is a manu-
ally tunable parameter, which makes the code
portable to various architectures, and can be
optimized by monitoring the waiting time of
the master node in this algorithm.

In order to provide some fault-tolerance, the
master node saves centroid coordinates to disk
at the end of each iteration. If one or more
nodes fails or the algorithm crashes for some
reason, the program can simply be restarted
using the last-saved centroid coordinates as ini-
tial seeds, and processing will resume in the
iteration in which the failure occurred.

4 The Results

In an effort to gauge the efficiency and scal-
ability of the parallel clustering algorithm, a
five-iteration test version of the code was de-
veloped and run, using a representative dataset
of about 900,000 map cells, on a number of dif-
ferent architectures with two different aliquot
sizes. The tests were performed on the Stone
SouperComputer, an Intel Paragon XPS5, a
cluster of Sun Microsystems Ultra 2 worksta-
tions, and a Silicon Graphics Inc. (SGI) Origin
2000. The test was performed using 8, 16, 32,
and 64 processors where available.






